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Abstract We analyzed the effects of 10,748 weather events on attention to climate change
between December 2011 and November 2014 in local areas across the USA. Attention was
gauged by quantifying the relative increase in Twitter messages about climate change in the
local area around the time of each event. Coastal floods, droughts, wildfires, strong wind, hail,
excessive heat, extreme cold, and heavy snow events all had detectable effects. Attention was
reliably higher directly after events began, compared to directly before. Financial damage
associated with the weather events had a positive and significant effect on attention, although
the effect was small. The abnormality of each weather event’s occurrence compared to local
historical activity was also a significant predictor. In particular and in line with past research,
relative abnormalities in temperature (local warming) generated attention to climate change. In
contrast, wind speed was predictive of attention to climate change in absolute levels. These
results can be useful to predict short-term attention to climate change for strategic climate
communications and to better forecast long-term climate policy support.
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1 Introduction

Personal experiences with weather events can cause attention to the issue of climate change
(Konisky et al. 2015). Previous research on this topic has reported that local abnormalities in
temperature (Joireman et al. 2010; Egan and Mullin 2012; Hamilton and Stampone 2013;
Myers et al. 2013; Zaval et al. 2014; Li et al. 2011; Lang 2014; Kirilenko et al. 2015), as well
as severe rains and associated flooding (Spence et al. 2011; Weber 2013), can increase people’s
concern about climate change, at least temporarily. When people perceive the present temper-
ature to be warmer than usual, they are more likely to report concern about global warming (Li
et al. 2011). This is known as the local warming effect (Zaval et al. 2014). Using similar
methods to the current study, Kirilenko et al. (2015) found that relative abnormalities in local
temperatures predicted increases in Twitter messages about climate change from those areas.
Past experiences with floods correlated with heightened concern about climate change in data
from a 2010 survey of UK citizens (Spence et al. 2011). Additionally, Whitmarsh (2016) found
that UK citizens who had experienced a damaging flood were more likely to report that the
issue of climate change had personal importance to them but were not significantly more likely
to be more knowledgeable, concerned, or active in relation to the issue.

Few studies have explored the effects of weather phenomena beyond temperature and
flooding. Konisky et al. (2015) found a modest short-term effect of experiencing extreme
weather events in general by evaluating data from public opinion polls and historical weather
records. Cutler (2016) analyzed the effect of aggregate local damage caused by severe weather
on concern about climate change and found an effect of damage that was moderated by
individual differences. In another study, New Jersey residents were found to be more likely to
support a green politician after experiencing Hurricane Sandy and Hurricane Irene than before
each hurricane occurred (Rudman et al. 2013). Lang and Ryder (2016) report that experiences
with hurricanes cause interest in climate change measurable using Google search activity in
local areas up to 2 months after each event. After a major drought in 1988 in Kentucky, USA,
residents living in a county with drought-caused water restrictions had significantly higher
environmental attitudes compared to prior levels (Arcury and Christianson 1990).

Our knowledge of how extreme weather experiences affect attention to climate change is
increasing, but still scarce. Many extreme weather events such as wildfires, heavy snow, and
hail have not been looked at yet to the best of our knowledge. Moreover, previous studies on
the effects of hurricanes, droughts, and floods have almost all measured the impacts of these
events weeks or months after they occurred. Past research suggests that these time delays may
have lessened the observed impacts of the weather experiences. Hamilton and Stampone
(2013) found that impacts of temperature changes on beliefs in anthropogenic climate change
were strongest for a 2-day period following each event. Similarly, Konisky et al. (2015) found
that the impact of experiences with extreme weather events within the last month was far
stronger than that of earlier events. In a macro-level study by Brulle et al. (2012), average
reported climate concern at the national level was aggregated in 3-month intervals and no
significant effects of abnormalities on temperature, precipitation, or droughts were detected. To
establish a more comprehensive understanding of how extreme weather experiences affect
climate attention and attitudes, we need research on a more comprehensive range of relevant
weather events and more studies that examine their immediate impacts.
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Several studies have shown that individual differences such as gender, political affiliation,
and environmental values moderate the effect of extreme weather experiences on climate
change concern and attention (for more details, see Brody et al. 2008; Hamilton and Stampone
2013). Howe and Leiserowitz (2013) found that prior beliefs about climate change substan-
tially biased perceptions of local temperatures and, to a lesser degree, biased perceptions of
precipitation, replicating similar results observed with Illinois farmers by Weber and Sonka
(1994). Similarly, Goebbert et al. (2012) showed that perceptions of temperature changes were
substantially more biased contingent on participants’ political ideologies than those of floods
and droughts. Cutler (2016) found that household income, political affiliation, and beliefs
about climate change interact with the effect of local damage from severe weather events to
influence individuals’ concerns about climate change. These findings further highlight the
importance of expanding our knowledge of the effects of extreme weather experiences beyond
temperature changes. Experiences with other weather events may be more influential because
they may be less politicized; i.e., people may have fewer preconceived notions about them.

The aspects of weather events that predict changes in people’s attention and attitudes to
climate change also warrant examination. Brody et al. (2008) showed that the amount of
financial damage and human fatalities caused by weather events in local areas are marginally
predictive of people’s perceived risk of climate change. More studies examining these
variables and other event characteristics are needed. Little research to date has analyzed the
effect of the degree of abnormality of weather events other than temperature changes. In this
context, it is useful to ascertain whether attention is guided by the absolute or relative degree of
abnormality. A well-known psychophysical law known as Weber’s law (Weber 1978) states
that the amount of change in a stimulus that is just noticeable by a human is proportional to the
magnitude of the original stimulus. In other words, the degree of difference needed for a
human to notice a change in a stimulus (such as the loudness of a sound or the temperature in a
room) is predicted best by the amount of the change relative to the stimuli’s prior state, not the
absolute level of the change. Extending this law to the detection of changes in weather predicts
that people’s sensitivity to extreme weather will be relative, i.e., proportional to normal levels
(Weber 2004), but it is also plausible, at least for some events such as those causing substantial
damage, that absolute levels of extremeness could drive attention to the event and to climate
change.

A better understanding of the effects of extreme weather on climate attention benefits short-
term and long-term predictions about climate concern. Accurate short-term predictions can allow
policy makers and grassroots organizations to implement climate communications more strate-
gically by capitalizing on time periods when people have heightened attention to climate change
such as after recent extreme weather experiences. Long-term predictions about climate concern
are more difficult to model with much certainty but can be used by policy makers to forecast the
future favorability of climate policies. Such predictions are already being formulated based on
models of when changes in weather will be statistically detectable in different locations (Ricke
and Caldeira 2014). Similarly, Egan and Mullin (2016) estimate how many Americans will
experience subjectively less preferable weather by the turn of the century if emissions are not
abated. Amore detailed empirical understanding of when and how extremeweather events cause
attention to climate change can improve long-term as well as short-term predictions.

In the current study, we examine the immediate impacts of ten different types of extreme
weather events on attention to climate change: flash flood, excessive heat, wildfire, heavy
snow, tornado, hail, strong wind, extreme cold, coastal flood, and drought events. Each of
these event types is linked to projected effects of climate change in the past literature. See
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Appendix A for a detailed description of how each weather event type is linked to climate
change.

Our analysis uses records of 10,748 weather events from December 2011 to November
2014. We measure attention to climate change using approximately 1.7 million Twitter
messages emitted from local areas surrounding the weather events. Changes in frequencies
of messages about climate change are analyzed as a proxy for changes in attention to climate
change. This is based on the simple assumption that when people’s attention to the issue
increases, they are more likely to post about it on Twitter. We assess the predictive value of
events’ financial damages and fatalities, as well as the effects of the abnormality of events’
occurrences. We separately model and compare the effects of key weather features (temper-
ature, wind speed, and precipitation) on absolute vs. relative scales.

2 Method

2.1 Data

Twitter messages The full Twitter corpus used for this study includes 5.8 million messages
posted between December 2011 and November 2014 that were geocoded as originating from a
location within the USA. Only messages (~1.7 million) with locations within 35 miles of each
weather event and occurring between 1 month before and 3 days after were included in the
analyses. We analyze both original tweets and re-tweets.1 Each of these messages includes the
words climate change or global warming (case-insensitive).2 The messages were collected
using the Twitter API and the (now deprecated) Topsy Social Data API.

Textual identifications of users’ locations from users’ profiles were recoded into geograph-
ical coordinates using the Data Science Toolkit geocoder3 which emulates the Google
Geocoding API (but without a rate limit). For any messages that were downloaded with
coordinates provided by the Twitter API, this location was used in the analysis instead of the
geocoded textual location. We evaluated the distance of the locations of messages downloaded
with geographic coordinates from the coordinates of the locations for these messages deter-
mined by the geocoder based on the textual locations. The median difference was 17.3 miles.
Additionally, we randomly selected a subset of messages (n = 50) that were identified as being
within the USA (and therefore usable in the analysis) and we manually determined if each
geocoded location was correct. We found that 90% of these locations aligned with at least the
correct US state of the Twitter user based on the textual location provided. One issue with
identifying the geographic origin of Twitter messages is that many users do not provide a
precise location beyond what state they live in. Identifying the originating locations of Twitter
messages is inherently limited to somewhat coarse geographic precision (Graham et al. 2014).
Nonetheless, we believe that the precision achieved by our methods of location identification is

1 As a robustness check, we re-ran the analysis excluding all re-tweets. This produced results almost identical to
the analysis of all tweets and re-tweets.
2 Investigating the differences between trends in messages that mention Bglobal warming^ versus messages that
mention Bclimate change^ is outside the scope of this paper. However, we did re-run the mixed-effects regression
using only climate change messages and then only global warming messages. These results can be seen in
Appendix I.
3 http://datasciencetoolkit.org (last accessed on March 10, 2017)
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appropriate for the analyses that follow. See Appendix N for robustness checks related to
location inaccuracies.

Weather events An archive of significant weather events from 2005 through 2014 was
obtained from the National Climatic Data Center’s (NCDC) Storm Event Database.4 Records
of weather events occurring before 2011 were used to quantify the abnormality of each event
occurring in the time range of our Twitter data. Only events that were deemed by event
reporters as causing significant damage or inconvenience were included in this database.5 For
each weather event included, there is a detailed record of its start time, location, event type
(e.g., hurricane or tornado), financial damage caused, deaths caused, and other variables. Some
weather events recorded are indicated as being part of a larger storm system. For cases where
there were multiple events of the same type reported within a single larger storm system, we
only analyzed the first event of each type in each larger system. Further, only weather events
that had ten or more messages included in the abovementioned Twitter corpus published
within 35 miles and within 30 days before or 3 days after the event were included in the
analysis (n = 10,748). The ten messages or more criterion was to ensure that there was a
sufficient number of Twitter messages to accurately estimate the effect of each event. The
median number of messages analyzed for each weather event is 65.6 Events with missing
location information were geocoded using the centroid of the county or the National Weather
Forecast Zone that was provided for the events.

Daily weather records Historical daily temperature, wind speed, and precipitation data were
accessed through the Weather API maintained by Weather Underground.7 The Weather API
provided historical daily weather records from the National Weather Service ASOS weather
station nearest to each event’s reported coordinates. The Automated Surface Observing
Systems (ASOS) system includes approximately 2000 weather stations located at airports
across the country. The ASOS program is partially coordinated by the National Weather
Service.8

2.2 Measuring attention to climate change

To estimate the attention to climate change caused by each event, we calculate a metric that
captures the relative increase in climate change messages emitted from the local area directly
after each event begins. The local area is defined as a 35-mile radius from the reported location
of the event. Figure 1 illustrates that C−10, C−9,…, C−1 are the counts of climate change
messages across ten 3-day intervals leading up to the time of each event. C1 is the count of
messages in the 3-day interval directly after the event. C1 begins precisely at the recorded start
time for each event. Our attention measure is the number of messages in the interval directly

4 More information on the NCDC Storm Events Database can be found here: https://www.ncdc.noaa.
gov/stormevents/ (last accessed on March 10, 2017).
5 The instructions for weather event reporters including detailed definitions of each event type can be found here:
https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf (last accessed on March 10, 2017). See Appendix
M for additional information on weather event definitions.
6 Descriptive statistics on message counts for all event types are shown in Appendix K.
7 http://www.wunderground.com/weather/api (last accessed on March 10, 2017)
8 http://www.nws.noaa.gov/ost/asostech.html (last accessed on March 10, 2017)
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after the event, centered and standardized by the mean and standard deviation of the
baseline values from approximately 1 month before the event (excluding the 3-day
interval directly before the event as counts in this interval are sometimes also
increased by the weather event).

Our attention variable is similar to a z-score, except that the counts of messages near the
time of each event (C−1 and C1) are not included in the calculation of the mean and standard
deviation used to center and standardize the score. This is done to prevent the C−1 and C1

counts from dominating the standardizing mean and standard deviation values. In Appendix B,
you can see the formulas for the attentionmetric. In Appendix C, you can see the results of the
attention metric vs. calculated z-score values in a simulation where the counts directly before
and after the event linearly increase as the baseline values are held constant. The z-score does
not linearly increase with the simulated increase in attention while the attention metric does.

2.3 Measuring abnormality

We calculate a score representing abnormality in frequency for each event by first dividing the
number of weather events (of the same type, E) that occurred in the same US state (s) in the
same month (m) in the same year (Y) by the average number of events that occurred in the
same calendar month and state historically since 2005.

abnormalityraw EsmYð Þ ¼ EsmY

Esm 2005; Y−1ð Þ

For example, imagine (fictitiously) that 20 hail events occurred in March in the state of New
Jersey in 2014 and the historical average for occurrences of hail events in March in New Jersey
is 10. The raw abnormality ratio would be 20/10 = 2. If only five hail events occurred in 2014
instead of 20, then the raw abnormality ratio would be 5/10 = 0.5. When the denominator was

Fig. 1 Example of climate change tweet counts for ten 3-day intervals prior to an extreme weather event and one
3-day interval after the event
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equal to zero for any event, we replaced that value with 1 to avoid producing an infinite or
undefined raw abnormality score. Only 2% of events had a zero in the denominator of the raw
abnormality ratio.

We next subtract 1 from the raw abnormality ratio so that zero means that the number of
event occurrences in the current month is identical to the historical average (1/1→ 0), i.e., zero
abnormality. This also makes events that had a fractional raw abnormality score (indicating
that the current month had abnormally fewer events than the average) now have a negative
score (e.g., 5/10 → −0.5). The negative or positive difference of the raw abnormality score
from 1/1 reflects the level of abnormality due to a higher or lower frequency compared to the
historical average. We then take the absolute value so that both types of abnormality, less than
and greater than the historical average, have a positive score and increase as the raw
abnormality score decreases or increases away from 1/1.9 This produces an abnormality
variable with a highly skewed distribution, so we log transform the abnormality score to
achieve an abnormality variable that is more normally distributed. We added 1 to each value
directly prior to the log transformation to avoid taking the logarithm of zero, and also, so that
when the value to be transformed is zero, the transformed version of it is also zero (as
log(1) = 0).10

abnormality final ¼ log abnormality raw−1j j þ 1ð Þ

2.4 Estimating the null distribution

The average frequency of messages posted on Twitter increased consistently over the time
range of this analysis. Therefore, the attention metric can be expected to be slightly and
consistently positive even when there is no real effect of any target event. This is because it
quantifies the relative increases in message counts after the event compared to the average
from 1 month prior. Another reason the attention metric may be positive when there is no true
effect of a measured event is the chance that some other event (such as a film release or climate
speech) unrelated to the target event caused an increase in attention to climate change at the
same time and place as the target event. Both of these considerations mean that the true null
value of attention to which the effects of weather events should be compared should not be
assumed to be zero. In order to estimate an appropriate distribution of our attention measure
under the null hypothesis, we calculated attention scores for a set of locations and dates where
there were no occurrences of any recorded extreme weather events occurring within one week
before or after. These null events were matched to the locations and calendar dates of our target
weather events and therefore serve as a distribution of geographically and seasonally compa-
rable control observations. For each target weather event, we matched one control event in the
same location shifted 1 year before or after the target weather event and within 30 days of the
original calendar date.11 About 91% of these control events had enough surrounding Twitter
messages (>=10) to be included in the analysis.

9 When the events with a raw abnormality score of <1 (indicating negative abnormality) are removed from the
analysis, the effect of abnormality is essentially unchanged.
10 A visualization of the transformation from the raw abnormality scores to the final abnormality scores can be
seen in Appendix D.
11 The algorithm for this matching procedure can be found in the electronic supplementary material
Bcontrol_matching_algorithm_ESM2.^
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The distribution of the attention scores for the control events is shown in Appendix E. The
mean of the null distribution of attention is 0.20 and is shown by the dotted vertical gray line.
The distributions of attention for the ten weather event types analyzed can be seen compared to
the null distribution in Appendix F.

3 Results

3.1 Comparing attention before vs. after each event

We examine the effects of the control events and ten different types of extreme weather events
with varying sample sizes: control (9769), flash flood (2381), excessive heat (304), wildfire
(295), heavy snow (584), tornado (807), hail (4299), strong wind (1177), extreme cold (245),
coastal flood (130), and drought (526).

Our measure of attention to climate change (described above) quantifies the relative number
of climate change messages occurring in the local area directly after each weather event. In
Fig. 2, we compare this attention variable to a modified version that quantifies the effect
directly before each event hits.

attentionbefore ¼ C−1−μbaseline

σbaseline
; attentionafter ¼ C1−μbaseline

σbaseline

The dotted gray line in each graph represents the average before and after values for all of
the null event control cases. Across the ten event types examined, attention to climate change
is usually greater directly after each extreme weather event hits compared to directly before.

Fig. 2 Average attention before vs. after different weather events. Error bars depict 1 standard error
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3.2 Linear mixed-effects models

In each of the regressions summarized below in Sections 3.3 and 3.4, we estimated a linear
mixed-effects model specified as follows. The dependent variable is attention, which quan-
tifies the relative increase in climate change messages directly after each event occurs as
described above.12 We control for baseline differences in how people in different locations
regularly respond to weather events by adding a random effect variable indicating the county
or zone that each event was reported in. We include a random effect variable for year to
account for gradual increases in Twitter activity. To account for the potential dependence
between some observations originating from the same larger weather event, we include a
random effect variable for each week and US state pair. We also control for the geographic size
of the state each event was located in with a fixed effect variable for state size. We winsorized
any outliers above the 99.9th percentile of the distribution of attention (Wilcox 2014). The
99.9th percentile of attention across all observations was equal to 14.32, so any observations
above this value were kept in the analysis but transformed to 14.32.13 All of the following
regressions were computed using the lme4 package in the statistical software R (Bates et al.
2015).

3.3 Examining event type and event characteristics

In the regression displayed in Table 1, we included the null events’ average effect as the
intercept term and the other ten event types as dummy variables. This allows the coefficient for
each event type to be interpreted as the increase in attention compared to the average control
event. We then sequentially add financial damage, deaths, and abnormality as predictors.
Coastal floods, droughts, wildfires, strong wind, hail, excessive heat, extreme cold, and heavy
snow events all had detectable effects. Damage is a significant predictor but has a relatively
small effect size. Abnormality is also a significant predictor. Interestingly, adding abnormality
in the regression and thereby controlling for it attenuates the coefficient of each of the weather
event types, which suggests that abnormality plays an important role in various types of events.
As a robustness check, we re-ran the full model, removing outliers above the 99th percentile.
The results were nearly identical after the top 1% of all attention scores were excluded from the
analysis. In Appendix H, we illustrate that messages containing random keywords do not
systematically increase after weather events as messages about climate change do. This rules
out the possibility that increased Twitter activity after a weather event is common to all topics.

3.4 Absolute vs. relative effects of temperature, wind speed, and precipitation

We also compared the effects of absolute vs. relative levels of the weather variables temper-
ature, wind speed, and precipitation on attention, shown in Table 2. The relative scales were
generated by transforming each raw value (temperature degrees, wind speed miles/hour, and
precipitation inches) into a z-score using the mean and standard deviation from 10 years of

12 We also ran this analysis with the attention before as the dependent variable. These results are included in
Appendix G.
13 We also evaluated a model excluding the outliers from the regression instead of winsorizing them, which
produced almost identical results as the winsorized regression.
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historical observations for each variable at the same location and calendar day of each target
observation. We compare these relative variables to absolute versions of each. The absolute
variables are globally (using all observations in the data set) z-scored versions of the raw
values to make the scale of their coefficients comparable to the relative variable coefficients.
We regressed the relative and absolute weather variables on attention using all observations in
our data set, controlling for the type of weather event, damage, deaths, and abnormality as well
as the control variables we included in the regressions above. As a robustness check, we run
the same regression, excluding all observations for which there was a reported weather event,
only including control observations (where no extreme events were reported). The fact that the
results are similar in the control-only analysis suggests that the effects also exist outside the
context of large extreme weather events. In both sets of results, the same pattern is seen: wind
speed is most predictive of attention in absolute terms and temperature is most predictive in
relative terms. Precipitation is not strongly predictive of attention in either form.

Table 1 Mixed-effects regression results

Dependent variable: attentionafter

Weather events +Damage +Deaths +Abnormality

Control (intercept) 0.216*** 0.212*** 0.212*** 0.210***
0.021 0.021 0.021 0.021

Flash flood 0.024 0.027 0.027 −0.037
0.036 0.036 0.036 0.039

Excessive heat 0.305*** 0.309*** 0.293*** 0.182*
0.088 0.096 0.099 0.103

Wildfire 0.341*** 0.342*** 0.343*** 0.242**
0.09 0.094 0.094 0.098

Heavy snow 0.502*** 0.547*** 0.547*** 0.474***
0.068 0.073 0.073 0.076

Tornado 0.093* 0.067 0.066 −0.005
0.053 0.056 0.056 0.059

Hail 0.089*** 0.121*** 0.121*** 0.076**
0.03 0.032 0.032 0.034

Strong wind 0.268*** 0.263*** 0.263*** 0.179***
0.049 0.05 0.05 0.054

Extreme cold 0.716*** 0.770*** 0.761*** 0.593***
0.107 0.116 0.117 0.125

Coastal flood 0.389*** 0.575*** 0.576*** 0.457***
0.133 0.143 0.143 0.146

Drought 0.197*** 0.203*** 0.202*** 0.062
0.069 0.076 0.076 0.084

Damage (in millions) 0.009*** 0.009*** 0.009***
0.002 0.002 0.002

Deaths 0.035 0.038
0.043 0.043

Abnormality 0.110***
0.028

Observations 20,517 18,919 18,919 18,919
AIC 73,639 67,924 67,930 67,922

SE is shown below each coefficient estimate. An identical regression model using attention (before) as the
dependent variable is shown in Appendix G

*p < 0.1; **p < 0.05; ***p < 0.01
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4 Discussion

We found that the effects of extreme weather experiences are usually larger directly after
weather events hit compared to directly before. This finding could be due to the actual
experiences of the events being more impactful than the purely descriptive information about
the events which is often made available by the weather forecasts directly before each event
hits. Alternatively or in addition, it could be that when media attention increases after an event
hits, this drives up the event’s effect on attention to climate change. Future research could help
tease apart the underlying mechanisms. Coastal floods, strong winds, extreme cold, excessive
heat, drought, wildfires, hail, and heavy snow events all had detectable effects on attention to
climate change.

In considering the effects of extreme cold and heavy snow, it is important to keep in mind
that we did not distinguish between messages expressing belief or disbelief in climate change.
We considered developing an automated text analysis algorithm to code for belief and disbelief
in messages but expected that such a method would be inherently low in accuracy, largely
because of the common use of sarcasm in climate messages. We believe that to accurately code
messages automatically or by hand for expressing belief or disbelief in climate change, it
would be necessary to know the context of each message such as personal characteristics of the
user, other messages the user has written, and messages recently written to him or her. The
sizable task of developing such an algorithm is beyond the scope of this paper but could be a
fruitful direction for future research.

We feel for two main reasons that it is not essential to differentiate between belief and
disbelief in order for our results to be informative. Firstly, messaging of both types is likely to
be correlated with the other. If climate skeptics increase the frequency of their messaging, we
would expect climate activists to increase their frequency in response and vice versa. As a
result of this, if we did distinguish between belief and disbelief climate messages, we would
not expect to see dramatic differences across event types. We would expect a difference in
which type of messages initiated attention, but not necessarily which type was ultimately more
abundant. Secondly, it is easy to logically sort out which weather events likely increase Twitter

Table 2 Mixed-effects regression results

Dependent variable: attentionafter

All cases Control only

Relative Absolute Relative Absolute

Control (intercept) 0.179*** 0.223*** 0.172*** 0.204***
0.026 0.03 0.027 0.032

Wind speed 0.012 0.026** 0.016 0.029*
0.007 0.013 0.011 0.015

Temperature 0.048*** −0.01 0.038* 0.003
0.015 0.025 0.019 0.029

Precipitation 0.001* −0.006 0.0001 −0.021
0.0003 0.011 0.001 0.014

Observations 16,372 18,043 8455 8455
AIC 58,634 64,662 28,634 28,628

SE is shown below each coefficient estimate

*p < 0.1; **p < 0.05; ***p < 0.01
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messages because of climate skeptic reactions. We feel the increases in attention in our US
sample caused by extreme cold and heavy snow are most likely initiated by disbelief messages,
although positive climate messages probably also increased in response. However, in contrast,
in a study of UK citizens by Capstick and Pidgeon (2014), three times as many people saw
recent severely cold winters as evidence of climate change than those who saw the events as
disconfirming it. Thus, these assumptions might not apply in regions outside of the USA.

The nonsignificant effects of flash floods and tornados are interesting to consider. In the
case of flash floods, it could be that their immediate physical impacts such as flooded
basements and roadways need to be physically attended to promptly and, therefore, climate
messaging does not increase because affected people are preoccupied with responding to the
events practically. The nonsignificant effect of tornados may be because all tornados that are
included in the extreme weather event database are not necessarily intense or destructive. The
definition of a tornado in the instructions for the personnel who submitted the weather events
to the archive is a Bviolently rotating column of air, extending to or beneath a cumuliform
cloud and with some visible ground-based effects^ (National Weather Service 2007).
Alternatively, it could simply be the case that flash floods and/or tornados are not associated
with climate change in most people’s minds. Future research should investigate the public’s
mental associations between different types of weather events and climate change.

Financial damage had a small positive effect, and the effect of fatalities caused by each
event was also small and positive, but nonsignificant. These results echo findings reported by
Brody et al. (2008). The abnormality of each event had a significant effect on attention to
climate change across events. Once abnormality was added to the model, the coefficients for
the effects of the event types all lessened and, in some cases, became nonsignificant, such as in
the case of droughts and excessive heat. This suggests that abnormality is generally relevant to
the effects of weather events on attention to climate change and, in some cases, may be
essential for an effect to occur. It appears that the psychophysical law (Weber 1978) that
relative changes in stimuli are more readily perceived by humans than absolute changes is
relevant to the domain of extreme weather.

The results in Table 2 show a replication of past findings (Li et al. 2011; Kirilenko et al.
2015) that temperature is more predictive in relative terms than in absolute terms. We
interestingly found that wind speed is more predictive in absolute terms. This pattern was
found in the regressions with all cases and with only control cases. This finding is also
reflected in the results reported in Table 1. When abnormality is added to the regression, the
main effect for excessive heat becomes nonsignificant while the main effect for strong wind
lessens but remains significant. The predictive value of absolute wind speed could be due to
the damage caused by winds at objectively high levels. We controlled for financial damage in
our analyses, but strong winds can cause damage in natural surroundings that do not have
financial consequences, such as felled trees in forests. The finding that precipitation was not
predictive could mean that it is more difficult for people to detect short-term abnormalities in
precipitation than in temperature and wind speed. Longer-term trends in precipitation are
evidently more detectable. Droughts, for example, had a positive and significant effect.

One limitation of this research is the fact that some weather events tend to co-occur with
others. We quantified the tendency of our weather events to co-occur with other types of
weather events and determined that the levels of co-occurrences with the event types we
analyzed are not high enough for concern that this may be a confounding factor.14

14 The weather event Bco-occurrence^ matrix can be seen in Appendix J.
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Nonetheless, this is a fundamental aspect of weather events which should be kept in mind
while interpreting our results. Another limitation of these findings is that our sample of Twitter
users has an unknown demographic distribution, for example, in terms of ethnicity, gender,
political ideology, and age. It is not entirely clear how representative our sample is of the US
population on all of these dimensions.15 There may be some differences in effects of extreme
weather on our sample compared to the entire US population. For example, if our sample is
younger than the US population, our subjects might respond more strongly to extreme weather
events and may have somewhat different conceptions of how connected climate change is to
different types of events. Also, it should be kept in mind that not all tweets originate from
profiles representing individuals. Many tweets are also emitted by people in charge of Twitter
profiles representing various organizations. This is another reason why our sample is likely not
representative of the US population. Lastly, it should be noted that our method of measuring
attention is not equally sensitive to different types of weather events because of differences in
the time courses of different types of events. Droughts, for example, can develop gradually
over several months. In our analysis of droughts, the reported start time for each event is the
time the drought conditions passed a threshold to be considered a severe drought, but the
drying period may have begun weeks or months before that. This means that our attention
measure is less sensitive to the effects of droughts because our measure uses the month prior to
the reported start of each event as the baseline to gauge the amount of increased attention
caused by the event after the start time.

5 Conclusion

We report several findings that can be incorporated into short-term predictions about climate
attention for strategic communications and long-term forecasts for policy use. We find that
more weather events than previously examined can cause immediate attention to climate
change. This information could be useful for strategic climate change messaging.
Additionally, we find that financial damage is less predictive of increased attention than one
might intuitively expect but that abnormality, or degree of unexpectedness, is consistently
predictive. We find that wind speed is most predictive in absolute terms, while temperature is
most predictive in relative terms.

One key direction for future research is to explore what other factors predict the effects of
weather events. For example, do emotions caused by weather events mediate events’ effects on
attention to climate change? We mentioned above how our knowledge in this domain can
enable more strategic communications about climate change. However, it is important to keep
in mind that past research also suggests that attention to climate change caused by weather
experiences may fade rapidly (Hamilton and Stampone 2013; Konisky et al. 2015). More
research is needed to determine how best we can strategically leverage experiences with
extreme weather to encourage long-lasting effects on attention and concern about climate
change.
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