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Abstract Civil conflicts have swept through many parts of sub-Saharan Africa in the past
half century. Recently, scholars from backgrounds as diver as climate science, economics,
political science, and anthropology have explored the effects of climate change on these
civil conflicts, with mixed results. Our empirical results confirm effects of temperature on
the incidence of civil conflict. The key findings are as follows: (i) between 1970 and 2012
in sub-Saharan Africa, a high temperature during maize growing season reduced the crop’s
yield, which in turn increased the incidence of civil conflict and (ii) future expected warming
is expected to increase civil conflict incidence by 33% in the period 2031–2050, and by
100% in the period 2081–3010, compared to levels between 1981 and 2000. These results
highlight the importance of sufficient food supplies and adaptation to increased climate
warming to facilitate peace in sub-Saharan Africa.

1 Introduction

Conflicts around the world have resulted in major humanitarian and economic losses and
have perpetuated states of poverty. Conflict has been one of the most distinct characteristics
of sub-Saharan Africa (SSA) since the 1960s. Africa has the second highest conflict-related
death toll in the world after Asia: 33.5% of all battle-related deaths between 1989 and 2014
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occurred in Africa.1 However, there is no firm consensus on fundamental solutions to these
conflicts. The complexity of the conflicts in SSA is related to the fact that most African
conflicts are civil and fought within; as such, international norms, institutions, and political
intervention might not be appropriate to resolve SSA’s problems.

Recently, numerous studies have tested the idea that civil conflict and global climate
change over the past half century are related (see Hsiang et al. (2013) for an overview).
For example, incidence of civil conflict was correlated with periods of higher temperatures
(Burke et al. 2009), insufficient rainfall (Miguel et al. 2004; Kelley et al. 2014), and factors
of global climate variation, such as El Niño (Hsiang et al. 2011).2 However, this relationship
has been challenged by the results of studies that found weak or no associations between
climate and civil conflict (Buhang 2010); consequently, criticism has arisen that these direct
connections between climate and civil conflict are a type of environmental determinism
(Raleigh et al. 2014). A major source of this debate lies in the inconclusiveness of the link
between climate and conflict.

This study aimed to identify a causal relationship between climate and civil conflict. Our
hypothesis is that changes in temperature influence the likelihood of civil conflict incidence
through its effects on agricultural outcomes. The empirical strategy to confirm this hypoth-
esis consists of two main ideas: we employed the two-stage least squares regression method
in which crop yield was first regressed on growing season temperature; then, the incidence
of civil conflict was predicted from the resulting measure of temperature-induced crop yield.
This empirical strategy solves the problem of reverse causality in which conflict can influ-
ence agricultural productivity. We chose maize yield as a factor that is influenced by climate
conditions; in turn, the subsequent maize yield affects civil conflict. By narrowing the ana-
lytical focus to one crop’s yield, we were able to identify a precise link through which
temperature influences civil conflict. In addition to maize yield channel for temperature-
civil conflict link, our model also allows possible alternative channel by which temperature
could affect the incidence of civil conflict; to do so, we included annual mean temperature
as regressor for the incidence of civil conflict.

The main findings are summarized as follows. In the sample of 37 SSA countries
between 1970 and 2012, a high temperature during growing season reduced maize yield,
which in turn increased the incidence of civil conflict. This temperature-induced maize yield
effect on the incidence of civil conflict was heterogeneous across the sampled countries and
was greater for countries with lower maize yield. In addition to this temperature-induced
maize yield effect on civil conflict incidence, annual mean temperature is also positively
related to the incidence of civil conflict, implying that there may exist alternative mecha-
nism that temperature is related to the incidence of civil conflict. Using bootstrap estimates
and simulated temperature from the CMIP5 climate models, we found that the expected,
continued increase in temperature will increase the incidence of civil conflict by 33% in the
period 2031–2050, and by 100% in the period 2081–3010, compared to the mean frequency
of civil conflict incidence between 1981 and 2000.

Our results statistically confirmed that a temperature-modulated agricultural yield effect
exists on the incidence of civil conflict. By using individual crop yields and their growing
season temperatures, this causal link was relatively more precise than studies using aggre-
gate measures in existing literature. Our results emphasize the importance of transitioning to
high-heat, stress-tolerant crop varieties and developing agricultural adaptation practices that

1This statistic is based on UCDP Battle-Related Deaths Dataset v.5.
2However, no signal for anthropogenic climate change on civil conflict was found in the previous literature.
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can withstand increasingly unfavorable climatic conditions. This paper does not investigate
all potential channels by which climate conditions may influence civil conflict, which we
leave for future research.3

The rest of the paper will proceed as follows: In Section 2, we discuss the data used in
our analysis. Section 3 presents the theoretical model and empirical specification. The main
results are presented in Section 4, and Section 5 summarizes the findings.

2 Data

2.1 Maize yields

The Food and Agriculture Organization (FAO) database was the source of the data use for
annual maize yield (ton/ha) to measure agricultural productivity. We chose maize for the
following reasons. First, maize is a major crop in terms of production and consumption in
most SSA countries (Smale et al. 2013). It accounts for 30% of the total SSA area under
cereal production (FAO 2000). Moreover , although much of the rest of the world uses maize
primarily as livestock feed, African countries use 95% of their maize production as a human
food source. Second, the effects of temperature variation on maize yields are measurable
because maize is susceptible to hot temperature anomalies (Lobell and Burke 2010). Other
crops (such as cassava and groundnut) grow underground, and climatic conditions only have
indirect effects. To ensure the quality of the data, we excluded three or more consecutive
years of identical yield in a country from the analysis.4

Despite its importance as a human food source, maize yields are generally low in SSA
compared to the rest of the world (Shiferaw et al. 2011). In our sample, the SSA’s aver-
age maize yield is about one-third of the average global yield. However, as Fig. 1a shows,
maize yields have gradually increased in SSA, with recent increases partly attributed to the
introduction of a new variety of maize and increased fertilizer applications (Deryng et al. 2014).

2.2 Civil conflict

Our dependent variable in empirical analysis is the incidence of civil conflict. Following
Nunn and Qian (2014), a country’s civil conflict incidence at time t is equal to 1 if there is
at least one civil conflict, whether it starts at t or is ongoing from t −1, in which there are at
least 25 battle-related deaths. Otherwise, it is equal to 0. Therefore, civil conflict incidence
is the union of civil conflict onset and duration (Elbadawi and Sambanis 2002; Montalvo
and Reynal-Querol 2005). The data for this measure were based on the UCDP/PRIO Armed
Conflict Data Set, version v4-2014a.

Rates of civil conflicts in SSA show inter-annual variability in our sample. In Fig. 1b,
the proportion of countries with civil conflict incidence reached its peak at 0.29 in 1994,
then decreased to 0.11 in 2005; however, it has increased again since 2005. The distribution
of civil conflict incidence is not uniform across SSA countries. The mean civil conflict
incidence is about 0.166; however, countries such as Ethiopia, Sudan, and Uganda show
three times more civil conflict incidences than the mean in our sample period.

3Previous studies examined some of these channels to estimate the impact of climate conditions on civil
conflict (see Miguel et al. (2004) and Bazzi and Blattman (2014) and Smith (2014).
4Repeated observations can be due to data reporting or inputting errors. The results we derived in this paper
do not change by including these observations.
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Fig. 1 Trends on maize yield, civil conflict incidence, maize-growing season temperature, and annual mean
temperature. a and b show annual maize yield and civil conflict incidence, respectively. c shows mean tem-
perature in maize-growing season (solid) and annual mean temperature (dash) in our historical sample. d
extends information in c to year 2100 by using mean of the 18 CMIP5 climate model outputs in the period
of 2006–2100

2.3 Historical temperature

The mean temperature during the maize-growing season and annual mean temperature were
the key variables in representing historical temperature conditions. We computed these vari-
ables from the temperature data of the dataset CRU TS v.3.22, which we obtained from the
Climatic Research Unit of the University of East Anglia (Harris et al. 2014). These data
provide monthly average temperatures between January 1970 and December 2012 on a 0.5◦
grid around theworld. ArcGISwas used to identify the grid points of countries’ temperature data.

The maize-growing seasons in SSA vary by geographic region. For example, the maize-
growing season in west Africa is from May to October, but from November to May in
southern Africa. Following Lobell et al. (2008), the 37 countries sampled for this study were
grouped into five regions based on their maize-growing seasons: central Africa (CAF), east
Africa (EAF), southern Africa (SAF), the Sahel (SAH), and west Africa (WAF). A country’s
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maize-growing season temperature in a given year was computed as the area-weighted mean
of the temperatures during that year’s growing season, as based on that country’s grids.

Between 1970 and 2012, the maize growing season temperatures in all regions of SSA
increased by 0.9 ◦C based on the linear trend (Fig. 1c). During the same period, the aver-
age global temperature increased at a rate of about 0.15–0.20 ◦C per decade (IPCC 2014).
Therefore, changes in maize-growing season temperature might be related to large-scale
climate change that has occurred over the past half century (IPCC 2014).

We included annual mean temperature (and their squared term) in regression to allow
any other channels that temperature might have to influence the incidence of civil conflict.
Alternatively, we also used non-growing season temperature of maize (and its squared term)
for the same purpose. Figure 1c shows that temporal patterns of annual mean temperature
closely mimic those of maize-growing season temperature, except that annual mean tem-
perature is lower than growing season temperature since it includes relatively cold season
temperatures as well.

2.4 Future temperature

Future maize-growing season and annual mean temperature are based on simulations from
the 18 climate change models from the Fifth phase of the Coupled Model Intercompari-
son Project (CMIP5).5 Each model provides a predicted monthly mean temperature for the
period of 2006–2100 under the RCP4.5 emissions scenario. Using ArcGIS, we matched
the predicted temperatures from grids of model to countries’ grid points. We assumed that
the maize-growing seasons for each of SSA’s five regions would remain the same in the
future and computed maize-growing season temperature based on the same months used in
historical data.

Maize-growing season temperature is expected to increase by about 1.75 ◦C between
2006 and 2100 (Fig. 1d), and a similar pattern of increase can be seen in terms of annual
mean temperature during the same period. This confirms continued warming in SSA during
2006–2100.

2.5 Nitrogen fertilizer consumption

Nitrogen fertilizer consumption was computed from the FAO database, which provides
annual consumption (kiloton) by country. Fertilizer use is generally low across SSA com-
pared to the rest of the world. High prices (due to reliance on imported fertilizers) and high
transportation costs of fertilizers make it less profitable to use fertilizer in the region; how-
ever, in our sample, increased mean consumption of nitrogen fertilizer was observed, from
20.6 in the 1970s to 46.3 between 2000 and 2012.

2.6 Socioeconomic variables

In this paper, we include total natural resource rent (i.e., the sum of all natural resource
rents as a proportion of GDP) and a logarithm of population to represent socioeconomic
background. Both variables are based on World Bank Development Indicators. Total natural
resource rent captures the structure of economy, and population represents possible size
effect of each country.

5The list of climate models used is presented in Supplementary Materials.
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3 Model

3.1 Theoretical background

The literature on political economy has considered the main causes of civil conflict to
include poverty (Fearon and Laitin 2003), economic shocks (Bazzi and Blattman 2014),
political exclusion (Fearon 2006), weak institutions with resource-dependent economies
(Humphreys 2005), or some combination of these factors.

A recently growing body of empirical studies has linked changes in climatic conditions
with civil conflicts. Burke et al. (2009) found significant correlations between temperatures
and civil conflicts from 1981 to 2002. Likewise, Zhang et al. (2007) found a relation-
ship between paleo-temperatures and war frequency. These studies argue that temperature
changes influence agricultural production, and that subsequent temperature-induced food
shortages increase the incidence of conflicts.

The mechanism behind how climate influences civil conflict by changing agricultural
production can be understood as follows. Decreases in crop production due to climatic
warming (Schlenker and Lobell 2010; Lobell et al. 2011) lower the incomes of rural people
in poverty. These lower incomes increase the opportunity costs of participating in peaceful
farming activities and decrease the opportunity costs of participating in alternative means
of generating income, such as looting or stealing (Chassang and Padro-i-Miquel 2009; Dal
Bó and Dal Bó 2011; Fjelde 2015). Some people may prey on others and be likely to
engage in conflict. Rebels will find it easier to recruit people facing dire economic situations
(Chassang and Padro-i-Miquel 2009). For example, the 1989 crop failure in the southern
part of Rwanda contributed to the country’s 1990 civil conflicts (Justino 2006). Moreover,
low agricultural production lowers the incomes of regimes through loss of tax revenues and
the expense of importing food. Groups or parties who oppose them often challenge regimes
during these periods of insufficient financial resources (Kim 2016). In addition, a country
that receives food aid to alleviate hunger after a crop failure might inappropriately distribute
that aid, which might generate conflict among armed groups (Nunn and Qian 2014). In all
of above scenarios, climate-induced crop failure could lead to conflict.

3.2 Empirical specification

Identifying causality in this study is difficult because conflicts affect the capacity to produce
food. Conflicts might reduce agricultural production by lowering the number of agricultural
workers through direct attacks, forced recruitment, and/or loss of soil fertility from inter-
rupted cropping. A study by the FAO (2000) found that civil conflicts in SSA were major
contributors to food insecurity in the 1990s.

We developed an empirical specification to avoid reverse causality based on our study’s
hypothesis. In the first-stage regression, agricultural yield was regressed on growing season
temperature to compute the predicted yield outcome. Here, growing season temperature was
considered an instrumental variable for agricultural yield. For growing season temperature
to be a valid instrument, it must (1) be strongly correlated with agricultural yield and (2) not
directly influence conflict other than its effect on yield. Moreover, if growing season temper-
ature is a valid instrument, then the predicted crop yield is not reversely influenced by civil
conflict. In the second-stage regression, the incidence of civil conflict was regressed on the
predicted yield derived in the first-stage regression. The two-stage regression with a valid
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instrument (growing season temperature) is the two-stage least squares (2SLS) regression.
We employed 2SLS to identify a causality between climate and conflict.

Previous relevant studies that have used 2SLS include Miguel et al. (2004), Koubi et al.
(2012), Smith (2014), and Caruso et al. (2016). Miguel et al. (2004) and Smith (2014) used
rainfall as their instrumental variable to examine the effect of rainfall-induced GDP per
capita and rainfall-induced food prices on civil conflict, respectively. Koubi et al. (2012)
used temperature and precipitation to instrument GDP growth and predicted GDP growth
to explain civil conflict. However, neither temperature nor precipitation is significantly
related toGDPgrowth in their sample,which raises questions about thevalidityof their instruments.

The current study differs from the above in the following ways. First, we used maize
yield instead of aggregate quantities (such as GDP per capita or food prices) as a factor that
is influenced by climate conditions; in turn, the subsequent maize yield affects the incidence
of civil conflict. Caruso et al. (2016) specification is most closely related to our paper for
their use of specific crop yield as the instrument. They used the minimum temperature
during the core month of Indonesia’s rice-growing season to examine temperature-induced
rice production as a predictor of violent events.

Second, although temperature-induced crop failure has been a popular theoretical ground
for civil conflict, it may not be the only mechanism that temperature could influence
civil conflict. For example, Bollfrass and Shaver (2015) showed that at the sub-national
level, non-agricultural regions experienced similar positive correlation between temperature
and civil conflict as agricultural regions, suggesting that temperature may have alternative
means to affect civil conflict. To account for alternative mechanism, we included annual
mean temperature and its squared term as regressors in the second-stage regression. Note
that maize-growing season temperature cannot be used to test temperature’s alternative
mechanism because the instrument is an excluded variable in the second-stage regression.

Our empirical specification was as follows.

Yi,t = β1Ti,t + β2T̄i,t + β3T̄
2
i,t + Xi,t� + Di + t + εi,t (1)

Ci,t = α1Yi,t + α2T̄i,t + α3T̄
2
i,t + Xi,t�

′ + Di + t + μi,t (2)

In the first-stage regression (1), maize yield in country i at time t (Yi,t ) is regressed on the
following variables: maize-growing season temperature (Ti,t ), the set of country-specific
variables (Xi,t ), the country fixed effect (Di ), the time trend (t), annual mean temperature
(T̄i,t ), and its squared term (T̄ 2

i,t ) .
6 The set of country-specific variables includes a logarithm

of the population, the natural resource dependency of the economy, and the one-period
lagged value of the incidence of civil conflict (Ci,t−1), which captures the dynamic effects
of civil conflict.

The identification strategy of the second-stage regression (Eq. 2) compares the incidence
of civil conflict (Ci,t ) for years when the temperature-induced maize yield was high to years
in which it was low. This is captured by coefficient α1 in Eq. 2.

6Temperature could have a nonlinear effect on maize yield; therefore, including squared (or higher order)
values for temperature could be a more appropriate specification (Schlenker and Roberts 2009). In this
study’s 2SLS framework, a nonlinear term should be an instrument for maize yield; however, the squared
term of temperature was not significantly related to maize yield; as such, it was thus not a valid instrument
(Supplementary Table 2). Accordingly, we maintained the linear specification of the first-stage regression.
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4 Results

4.1 2SLS estimates

Under two un-instrumented regression analyses (ordinary least squares (OLS) and logis-
tic regression), maize yield was not significantly related to the incidence of civil conflict
(Table 1). As stated above, these estimates would be biased if maize yield suffered from
endogeneity. The coefficient of annual mean temperature may be insignificant due to this
endogeneity.

Table 2 displays the key findings of the 2SLS regression. In the first-stage regression, the
maize-growing season temperature is negatively correlated with maize yield. In the second-
stage regression, the instrumented maize yield is derived from the first-stage regression; it
is significant and negatively related to the incidence of civil conflict (Stage 2, column (1),
Table 2). The first- and second-stage results collectively imply that a high maize-growing
season temperature reduced maize yield, which in turn increased the incidence of civil
conflict in SSA.7

The existence of alternative mechanism linking temperature and civil conflict is demon-
strated in the second stage of the 2SLS estimation. The coefficient of annual mean
temperature is significant and negatively related to civil conflict incidence; its squared term
is significant and positively linked with the incidence of civil conflict. Given the range
of annual mean temperatures in our sample and the magnitude of coefficient estimates,
an increase in annual mean temperature will lead to greater incidence of civil conflict. To
further examine whether mean temperatures in non-growing seasons are responsible for
significance of annual mean temperature, we ran the same 2SLS estimation where annual
mean temperatures are replaced by mean temperatures in non-growing seasons of maize and
found that the results are qualitatively similar (Supplementary Table 3). These findings sug-
gest that temperature may have alternative source to influence civil conflict incidence other
than by affecting maize yield.

We examined whether rainfall, an alternative climate variable, could induce changes
in maize yield that, in turn, influences civil conflict incidence.8 To do so, we ran the
2SLS regression where maize yield is instrumented by growing season rainfall. The results
showed that although rainfall amount is positively related to maize yield in the first-stage
regression, rainfall-induced maize yield had no significant effect on civil conflict in the
second-stage regression (Supplementary Table 4). Note that previous studies found rainfall-
induced GDP or food price to be significantly related to civil conflict (Miguel et al. 2004;
Smith 2014) and temperature-induced rice production to be associated with civil conflict
(Caruso et al. 2016). Although more research is needed, the link between rainfall and civil
conflict is apparent through aggregate economic factors, whereas the connection between
temperature and civil conflict is seen via micro-level crop yield.

To estimate the magnitude of maize yield’s effects on the incidence of civil conflicts, we
performed two logistic regressions. In one regression, civil conflict incidence is regressed

7This study also tested whether the effects of temperature-induced maize yield on the incidence of civil
conflict depended on maize consumption. See Supplementary Material for details.
8Rainfall, like temperature, was based on CRU TS v.3.22 data and is the average value of monthly average
rainfall during the maize-growing seasons.
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Table 1 The impact of maize yield on the incidence of civil conflict by OLS and logistic regression

OLS Logistic

Coefficient Robust S.E. Coefficient Robust S.E.

Dependent variable Civil conflict incidence

Maize yield −0.018 (0.027) −0.153 (0.313)

Civil conflict incidencet−1 0.494∗∗∗ (0.064) 2.580∗∗∗ (0.351)

Annual mean temperature −0.142 (0.195) −1.997 (1.804)

Annual mean temperature, squared 0.003 (0.004) 0.041 (0.038)

Resource 0.001 (0.000) 0.008 (0.010)

Log(pop) 0.062 (0.202) 0.295 (2.050)

R2 0.51

Log pseudolikelihood −321.069

Observations 1431 1040

Coefficients and robust standard errors (in parentheses) are reported. All specifications include fixed effects
of country and time trend.
∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

on instrumented maize yield, and in the other, un-instrumented maize yield is used as the
regressor. To estimate the marginal effect of growing season temperature on civil conflict
incidence by changing maize yield, we removed annual mean temperature and its squared
term from the regressions.

The results, presented in Fig. 2, show that an increase in instrumented maize yield
decreased the probability of civil conflict; regarding un-instrumented maize yield, the
change in the probability of civil conflict was marginal. The effect of maize yield on civil
conflict was heterogeneous across the 37 sample countries. If a country’s yield was around
the average value between 2000 and 2012 and increased by one standard deviation, then
the probability of civil conflict in that country would decrease, on average, by 0.061, with
a standard deviation of 0.035.9 This wide dispersion in the distribution of changes in prob-
ability is evidence of a significant difference in the effects of temperature-induced maize
yield on the incidence of civil conflict across countries.

The effect of maize yield was stronger when the yield was smaller. According to the
logistic regression analysis using instrumented maize yield in Fig. 2, a 1 ◦ C increase in
growing season temperature reduced maize yield by 0.17, on average. For a country like

9With increase in maize yield by one standard deviation, Rwanda had the largest reduction in the probability
of civil conflict (0.144), whereas South Africa had the smallest (0.002).
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Table 2 The impact of instrumented maize yield on the incidence of civil conflict by 2SLS regression

(1) (2)

Coefficient Robust S.E. Coefficient Robust S.E.

Stage 2. Dependent variable Civil conflict incidence

Maize yield −0.401∗∗ (0.189) −0.249∗∗ (0.119)

Civil conflict incidencet−1 0.485∗∗∗ (0.058) 0.431∗∗∗ (0.078)

Annual mean temperature −0.522∗ (0.311) −0.381∗ (0.221)

Annual mean temperature, squared 0.009∗ (0.004) 0.007∗ (0.003)

Resource −0.000 (0.001) 0.000 (0.001)

Log(pop) −0.098 (0.260) −0.137 (0.343)

Stage 1. Dependent variable Maize yield

Growing season temperature −0.192∗∗∗ (0.046) −0.204∗∗∗ (0.064)

Nitrogen fertilizer consumption 0.002∗∗∗ (0.000)

Civil conflict incidencet−1 −0.022 (0.079) −0.044 (0.069)

Annual mean temperature −0.676 (0.441) −0.482∗∗ (0.236)

Annual mean temperature, squared 0.014∗ (0.008) 0.011∗∗∗ (0.004)

Resource −0.004∗∗ (0.001) −0.004∗∗ (0.001)

Log(pop) −0.390 (0.762) −1.298 (0.866)

Kleibergen-Paap F statistic 16.942 14.400

Cragg-Donald Wald F statistic 19.042 25.703

Observations 1431 1030

Coefficients and robust standard errors (in parentheses) are reported. All specifications include fixed effects
of country and time trend.
∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Angola, with an average yield of 0.61 during 2000–2012, a 1 ◦ C increase in growing season
temperature increases probability of civil conflict by 0.12. In contrast, the same prediction
for Cameroon, with an average maize yield of 2.1 during 2000–2012, the probability of
civil conflict would increase by only 0.015. This demonstrates that the same magnitude of
change in growing season temperature has a differentiated impact on probability of civil
conflict, depending on a country’s maize yield level.
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Fig. 2 Probability of civil
conflict incidence during
1970–2012 as a function of maize
yield. Estimated probabilities of
civil conflict incidence as a
function of instrumented and
un-instrumented maize yield are
reported with circles and
triangles, respectively. Each
probability estimate is
accompanied by range plots that
represent the 5–95% confidence
interval
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4.2 Validity of empirical model

The first test of the two requirements for valid instruments concerns whether the instru-
ment exhibited a weak correlation with the endogenous variable of maize yield.10 Weak
instruments may produce biased coefficient estimates. The rule of thumb is that the
Kleibergen-Paap F statistic (Kleibergen and Paap 2006) must be at least 10 to indicate a
strong instrumental variable. The test results from our study found that the Kleibergen-Paap
F statistic is 16.9 (Table 2). Note that the instrumented estimate is always biased, but less so
than the OLS estimates to the extent that identification is strong. To evaluate how much less
this estimate was biased, we compared it to OLS estimates and examined the Cragg-Donald
Wald F statistic to assess the extent of weakness. The F statistic was about 19.04, which
exceeded the Stock and Yogo (2005)’s cutoff value of 16.38 at 10%. These test results imply
that our instrument of growing season temperature has a sufficiently strong correlation with
maize yield.

The second test involves testing the exogeneity of growing season temperature (i.e.,
growing season temperature is uncorrelated with the error term). One test may exploit
adding an additional instrument for maize yield and performing an over-identification test.
Here, we chose nitrogen fertilizer consumption as an additional instrument. Maize is highly
responsive to fertilizer, especially nitrogen fertilizer; most SSA countries, when they do
use fertilizer, predominantly use it on maize (Kelly 2006). In addition, it is reasonable to
expect that nitrogen fertilizer consumption would influence the incidence of civil conflict
only through its effects on maize yield. Therefore, nitrogen fertilizer consumption may be
a valid instrument.

Table 2 (Stage 1, column (2)) shows that nitrogen fertilizer consumption is significantly
related to maize yield in the first-stage regression. As expected, the coefficient of nitro-
gen fertilizer consumption is positive, meaning that greater nitrogen fertilizer use increased
maize yield. With two instruments, the Kleibergen-Paap F statistic is 14.4; thus, this set of
two instruments is sufficiently correlated with maize yield. The Sargan-Hansen test for over-
identification asserts the null hypothesis that a set of two instruments is exogenous. The
test statistic was 2.168, its p value was 0.14, and thus the null hypothesis was not rejected,
implying that covariates of two instruments and the error term are uncorrelated. However,
this test result does not provide direct evidence that growing season temperature alone is

10Other relevant tests for 2SLS estimations are provided in the Supplementary Materials.
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exogenous. Therefore, a supplementary test is to simply regress the incidence of civil con-
flict on maize-growing season temperature.11 The results show that maize-growing season
temperature is insignificantly associated with the incidence of civil conflict (Supplementary
Table 5). In sum, our test results show that growing season temperature is unlikely to have
direct association with the incidence of civil conflict in our sample; hence, the exogeneity
condition for the instrument is likely to be satisfied.

In addition, we examine the possible effect of multicollinearity between maize-growing
season temperature and annual mean temperature, due to their interrelated nature. Multi-
collinearity may result in large standard errors in least squares estimates. In the first-stage
regression, multicollinearity may have caused an insignificant coefficient of annual mean
temperature (Stage 1, column (1) in Table 2). However, the key point of including annual
mean temperature is to capture alternative channel in which temperature could influence the
incidence of civil conflict in the second-stage regression. In Stage 2 of Table 2, we found
that annual mean temperature and its squared term are statistically significant in the second
stage; therefore, multicollinearity does not invalidate the significance of alternative channel
for temperature-civil conflict link.

4.3 Projections

We estimated the climate change impacts on future incidence of civil conflict. To do so, we
evaluated existing literature such as Burke et al. (2009) and Schlenker and Lobell (2010)
and combined a bootstrap estimation and simulated temperature from the climate models.
More specifically, we ran 10,000 bootstraps on the 2SLS regression based on the historical
data to estimate parameters.12 This bootstrapping incorporates the uncertainty of parame-
ter estimates. We then multiplied simulated growing season temperature and annual mean
temperature from 18 climate model runs with parameter estimates to generate predicted
maize yield values, which were then used to produce predicted values of future civil con-
flict incidence. By using multiple climate models, we incorporated the uncertainty of future
estimates due to model differences. In sum, the future distribution of civil conflict inci-
dence is based on 18,000 predicted values. For a comparison with the historical incidence
of civil conflict, the mean probability of civil conflict incidence during 1981–2000 is set as
the baseline probability, which is equal to 0.18.

Based on our bootstrap simulations, the predicted probability of civil conflict in the
future is higher than the baseline probability (Fig. 3). During the period of 2031–2050, the
median of predicted probability of civil conflict is 0.24, which is 33% higher than the base-
line probability. Furthermore, the 25th–75th quantile interval does not include the baseline
probability, which implies a significant deviation of civil conflict incidence from the base-
line probability. In the more distant future (2081–2100), the median predicted probability
of civil conflict will increase to 0.37, which is about 100% higher than the baseline proba-
bility. However, uncertainty regarding predicted probability rises as well, compared to the
period of 2031–2050, and thus this result should be interpreted with caution.

Note that our future projection on civil conflict incidence does not incorporate the poten-
tial effects of policy change and agricultural development. Maize varieties with greater
tolerance to heat and drought play an important role in adapting to climate change (Fedoroff et al.

11We thank an anonymous referee for suggesting this regression.
12We removed total natural resource rent and population from the bootstrap regressions since there is no
projection of these variables extended to the year 2100.
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Fig. 3 Future projection of civil conflict incidence during 2031–2050 and 2081–2100. Each box with
whiskers is based on 18,000 bootstrap runs per year. The box represents the 25–75 percentile range of pre-
dicted probability of civil conflict incidence, where whiskers extends this to the 5 and 95 percentiles. The
median predicted probability is shown as a dashed line

2010; Hellin et al. 2012). Past experience demonstrates that new maize varieties can offset
yield losses by up to 40% (Thornton et al. 2009). In sum, more civil conflict incidences are
expected under crop failure caused by high temperatures, although future advances in maize
crop practice could reduce these negative effects.

5 Conclusions

Our empirical analysis found that temperature-induced maize yield influences the incidence
of civil conflict. Expected warming in the future will likely increase the likelihood of civil
conflict incidence as a result of crop failure caused by high temperatures. These results
imply that adapting to the warming atmosphere by widely adopting heat-tolerant crops could
reduce the likelihood of civil conflict, as well as alleviate hunger and poverty.

Recent civil conflicts in SSA have been driven by a wider variety of factors than in the
past. According to the United Nations (2009), the multidimensionality of factors contribut-
ing to civil conflicts requires multidimensional solutions from numerous fields. We believe
that ensuring sufficient food production should be a building block of a lasting solution.
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