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Abstract There are many climate change scenarios that are of interest to explore by climate
models, but computational power limits the total number of model runs. Pattern scaling is a useful
approach to approximate mean changes in climate model projections, and we extend this
methodology to build a climate model emulator that also accounts for variability of temperature
projections at the seasonal scale. Using 30 runs from the NCAR/DOE CESM1 large initial
condition ensemble for RCP8.5 from 2006 to 2080, we fit a pattern scaling model to grid-specific
seasonal average temperature change. We then use this fitted model to emulate seasonal average
temperature change for the RCP4.5 scenario based on its global average temperature trend. By
using a linear mixed-effects model and carefully resampling the residuals from the RCP8.5
model, we emulate the variability of RCP4.5 and allow the variability to depend on global
average temperature. Specifically, we emulate both the internal variability affecting the long-term
trends across initial condition ensemble members, and the variability superimposed on the long-
term trend within individual ensemble members. The 15 initial condition ensemble members
available for RCP4.5 from the same climate model are then used to validate the emulator. We
view this approach as a step forward in providing relevant climate information for avoided
impacts studies, and more broadly for impact models, since we allow both forced changes and
internal variability to play a role in determining future impact risks.
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BRACE: background and rationale

Understanding the potential consequences of climate change for ecosystems and society
is necessary for an informed response to the climate issue. A wide body of literature on
the impacts of climate change has developed over the past 20 years, as assessed in
successive reports of IPCC’s Working Group 2. Yet much remains to be done. A
particularly important task is improving our understanding of how impacts differ across
alternative levels of future climate change. Better understanding the consequences of a
world in which the radiative forcing driving climate change increases by small, medium, or
large amounts, for example, can inform policy discussions of desired long-term climate
outcomes.
Costs of both mitigation and adaptation vary with future climate outcomes as well. Mitigation
costs have been better studied, indicating that reducing emissions enough to limit radiative
forcing to about 4.5 W/m2 above pre-industrial levels is relatively inexpensive, while costs to
achieve forcing below that level increase rapidly (Clarke et al., 2014). What is less well
understood is what the benefits of such mitigation would be, in terms of reduced climate
change impacts and adaptation costs.
This special issue on the Benefits of Reduced Anthropogenic Climate changE (BRACE) is
aimed at helping to fill a gap in understanding how impacts vary across different future climate
outcomes. This Bavoided^ or Bdifferential^ impacts framing is intended to derive the costs and
benefits of various long-term climate outcomes. The BRACE project contributes to this
literature by assessing the differences in impacts between two specific climate futures: those
associated with Representative Concentration Pathways (RCPs) 4.5 and 8.5. The latter would
lead to a likely global average temperature change of 2.6–4.8 C relative to recent temperatures
by the end of the century, the former to a likely range of 1.1–2.6 C degrees of warming
(Collins et al., 2013).
The BRACE project is not alone in this goal. Other recent or current studies focused on
avoided impacts include the US EPA study on Climate change Impacts and Risk Analysis
(CIRA), the UK AVOID (and now AVOID2) project, and less directly, ongoing EU projects
such as IMPRESSIONS and HELIX. Each has a particular focus: CIRA is a US-only study
with wide sectoral coverage; AVOID is a global study with a substantial mitigation and
emissions pathway component, focusing in particular on the benefits of stringent mitigation
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pathways; IMPRESSIONS and HELIX focus on Europe, with smaller case studies in other
parts of the world.
The BRACE study complements these other activities and breaks new ground in several areas.
It is global in scope, with a regional focus in a subset of papers on the US. It includes a
substantial component on the differences in physical impacts (e.g., heat waves, tropical
cyclones, drought, sea level rise) between the scenarios, drawing heavily on multi-member
initial condition ensembles of the Community Earth System Model (CESM). These ensembles
include a recently produced Large Ensemble (30 members) for RCP 8.5 (Kay et al., submitted)
and a smaller (15 member) ensemble for RCP 4.5 newly developed as part of the BRACE
project (Sanderson et al.). Societal impact studies are based on the new Shared Socioeconomic
Pathways (SSPs; O’Neill et al., 2013); the study therefore contributes to a nascent literature
based on the new scenario framework (van Vuuren et al., 2013) combining RCPs and SSPs.
These ensembles are also used to make several methodological advances in accounting for
variability even when ensemble simulations are not available. The study also includes the first
application of new global scenarios of spatial population distribution, the first use of crop
models within CESM in a global agricultural impact assessment, and new high resolution
(25 km) global simulations of tropical cyclone activity.
BRACE authors cut across disciplines. Many are trained in economics or other social sciences
and focus on societal impacts of climate change. Other authors are physical climate scientists
who build and analyze fully coupled Earth SystemModels (ESMs), including CESM.Many of
the papers have co-authors from both types of scientists.
Most of the BRACE analyses involve multiple papers approaching a specific type of impact –
those related to tropical cyclones, agriculture, and heat extremes – from different perspectives,
building on each other. For example, Bacmeister et al. present new high resolution simulations
of future tropical cyclones; Done et al. present a new index of cyclone damage potential that is
then calculated based on those simulations; and Gettelman et al. estimate actual economic
damages from future cyclone activity based on a spatial model of the economic value of
physical assets. Similarly, on the topic of heat extremes, Oleson et al. analyze the difference in
heat wave occurrence in urban and rural areas in CESM between the two scenarios; Jones et al.
combine these climate model outcomes with projected spatial distributions of the population to
estimate future exposure to heat waves; Anderson et al. use these projections to estimate future
heat-related mortality in US cities; and Marsha et al. focus on mortality consequences for
an individual city (Houston) in which they can account for within-city spatial heteroge-
neity in urban form and socioeconomic conditions. For agriculture, Levis et al. use the
CESM land surface model to assess the impacts on crop yields of the alternative RCPs,
while Ren et al. use these yield effects to investigate their economic implications for
global agriculture in the NCAR integrated assessment model. Tebaldi and Lobell address
a shortcoming of the CESM yield modeling by assessing the potential direct impacts of
extreme heat on crop production.
The large and medium ensembles also afford the opportunity to examine critical methodolog-
ical issues in the treatment of variability and extremes in impact studies. Sanderson et al.
present the RCP4.5 Medium Ensemble and examine the linearity of variability with differences
in global average temperature, identifying where such linearity breaks down and suggesting
physical reasons for nonlinear responses. Alexeeff et al. and Fix et al. propose and test methods
of pattern scaling that go beyond the usual approaches to provide not just spatial patterns of
temperature and precipitation but also estimates of their variability. This group of papers as a
whole offers methods that can expand the types of avoided impacts studies that are possible to
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carry out in the future by extending them to situations in which ensembles of simulations are
not available for all scenarios to be assessed. Further, Tebaldi and Wehner, and Fix et al.,
employ the ensembles to identify when differences in extreme temperature and precipitation
events become apparent (and statistically significant) between them.
Overall, the BRACE study combines modeling of the physical and human systems with
methodological advances in the treatment of variability and extremes to advance understanding
of climate change impacts in a number of sectors at the US and global level.
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1 Introduction

Pattern scaling is a popular method for approximating average regional changes in future
climate model projections using global average temperature change. Typically, pattern scaling
models assume that regional changes in climate over time follow a linear function of the global
mean change in temperature (Tebaldi and Arblaster 2014). Many studies have demonstrated
that decadal-average regional temperature changes can be closely approximated by linear
pattern scaling (Mitchell 2003, Ruosteenoja et al., 2007, Cabré et al., 2010). In contrast, this
paper focuses on pattern scaling of annual seasonal mean temperatures and considers variabil-
ity around those means, developments which are needed so that pattern scaling can be better
used for impact studies. This study is part of a larger project on the Benefits of Reducing
Anthropogenic Climate changE (BRACE; O’Neill and Gettelman, in prep.), which focuses on
characterizing the difference in impacts driven by climate outcomes resulting from the forcing
associated with Representative Concentration Pathways (RCPs) 8.5 and 4.5.
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To study impacts of particular climate forcing scenarios, outputs from climate model
simulations can be used as inputs to process-based or empirical models of natural or human
systems. Many climate impacts, such as agriculture, heat waves, droughts and air pollution,
require climate model outputs at a regional spatial scale and, at a minimum, at a seasonal or
annual temporal scale rather than in the form of decadal means (Maracchi et al., 2005,
Patz et al., 2005, Piao et al., 2010). At these spatio-temporal scales, the internal variability
of the climate system plays a greater role and may represent a large fraction of total
variability across models and scenarios (Hawkins and Sutton 2009). In addition, to
compare the impacts of different climate scenarios, there is a need for climate model
simulations under multiple scenarios as well as simulations of multiple ensemble members
within a given scenario. Creating these model ensembles allows separation of the forced
response from the noise of internal variability. The inability to generate a large number of
high cost simulations is the driving reason for creating a statistical emulator, which seeks
to mimic the behavior of climate model simulations through computationally inexpensive
statistical methods. Thus, emulators of key climate variables under alternative climate
scenarios can be a valuable tool by providing inputs to impact models at a low computational
cost. This statistical emulation would facilitate the quantitative assessment of avoided impacts,
i.e. impacts that could be avoided if climate change mitigation could reduce the rate of the
climate change forcing effects.

To tailor the pattern scaling methodology to the needs of impact studies, this paper proposes
and illustrates a pattern scaling approach for building a statistical emulator using the NCAR
Community Earth System Model (CESM). The CESM Large Ensemble (CESM-LE), a 30-
member initial condition ensemble of CESM simulations branched at 1930 (and therefore
regarded as independent realizations of internal variability by the time they reach the
baseline period considered here, of 1976–2005) for RCP8.5 (Kay et al., 2014 (to appear))
is used to build a pattern scaling emulator of CESM. We then use the emulator to generate
approximate realizations of regional temperatures under the RCP 4.5 forcing scenario.
Finally, the similarly constructed CESM Medium Ensemble (CESM-ME), a 15-member
initial condition CESM ensemble for RCP4.5 (Sanderson et al., in prep) is used to validate
the emulator. Note that the next phase of the Coupled Model Intercomparison Project
(CMIP6) will include the request for a sizable initial condition ensemble to be run by the
participating models for one of the scenarios planned to inform future projections (O’Neill,
personal comm.). Thus, we see our method as timely in providing a way to extend the
information about internal variability that will be available under a single scenario to others
for which only a single run is planned.

2 Pattern Scaling Emulator of RCP 4.5 Ensemble using RCP 8.5 Ensemble

2.1 Pattern scaling model and its assumptions using RCP 8.5

We first describe our pattern scaling model and the assumptions for the mean and variance of
the statistical model. Our main innovation is that we propose adding the variance by resam-
pling the residuals to allow variability to change over time by grid point in response to the
external forcing. We assume a linear relationship between the grid-specific temperatures and
the global average temperature, typical of pattern scaling models. Using a linear mixed-effects
model, random slopes and intercepts for each ensemble member model the variation among
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ensemble members around the mean pattern common to the ensemble. Specifically, for each
grid point i and season s, we propose the model

T iskt−T is*0 ¼ aisk þ aisð Þ þ bisk þ βisð Þ⋅ gt−g0ð Þ þ εiskt

where t denotes time in years, k denotes ensemble member and 0 indicates the baseline period
of 1976–2005, and T denotes surface temperature. Then, Tis * 0 is the average surface temper-
ature over all K ensemble members at baseline, g is global average temperature over all
ensemble members. The parameter β is the fixed-effect slope, α is the fixed-effect intercept,
the random-effects a , b are assumed to have a multivariate normal distribution with mean zero,
Var aisk½ � ¼ τ2ais and Var bisk½ � ¼ τ2bis with a Matern covariance that accounts for the spatial

correlation among grid points. We assume the residuals are εiskt∼N 0;σ2
is

� �
. We fit this model

separately to each grid point on land for the seasons of boreal summer (JJA) and winter (DJF),
where each model includes all K = 30 ensemble members of RCP 8.5 large ensemble for years
t = 2006 , … , 2080. Because of the large number of data points, it is convenient to use the
well-established two-stage random effects model formulation. The first stage models the
random effects for each ensemble member k at each grid point i and the second stage models
the fixed effects representing the average responses across all ensemble members (Fitzmaurice
et al., 2011). A nonstationary covariance function is used to model the spatial covariance of the
random effects and is fit as a third step in this modeling framework.

The average slopes β of the fitted model for every grid point on land are shown in Fig. 1.
We can see from their positive values how the regional temperatures at all the grid points on
land are rising for every degree of increase in global average temperature. Since inclusion of
the fixed-effect intercept term α is not standard in pattern scaling models, we first tested for
statistical significance of this term at each grid point. Based on a two-sided t-test at level 0.05,
we found that the fixed intercepts were statistically significant in 7851 grid points (60.5 %) for
DJF, and in 9678 grid points (74.6 %) for JJA. The random slopes had an average standard
deviation of 0.11 °C. Relative to the residual variance, the random intercepts and slopes for the
individual ensemble members had small variances; thus, the within-ensemble-member vari-
ance was greater than the between-ensemble-member variance across grid points. Based on a
likelihood ratio test for inclusion of random effect parameters at level 0.05, we found that the
random effects were statistically significant in 1510 grid points (11.6 %) for DJF and in 1871
grid points (14.4 %) for JJA. These numbers are conservative estimates of the number of true

(a) Summer (JJA) (b) Winter (DJF)

Fig. 1 The average slopes of the fitted pattern scaling model using the RCP 8.5 CESM-LE, showing the average
rate of change in surface temperature at each grid point per degree increase in average global temperature
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positives since this test for variance parameters in random effects models is known to be
underpowered (Fitzmaurice et al., 2011). To combat this lack of power, using a less stringent
cutoff level of 0.10 to determine statistical significance is often recommended, but we used a
cutoff of level 0.05 for statistical significance for all tests for consistency in the manuscript.

2.2 Identifying key relationships in the pattern scaling model residuals

A key feature of our emulator is use of the residuals of the fitted pattern scaling model to the
CESM-LE. We seek to emulate the internal variability of an ensemble of temperature
simulations. To ensure that our emulator preserved meaningful temporal and spatial relation-
ships in the variability of the CESM ensemble members, we first had to determine which
temporal and spatial relationships were important. We evaluated three aspects of the detrended
CESM-LE ensemble members: (i) multi-decadal trends in variance, (ii) short-term temporal
auto-correlation, and (iii) spatial correlation within each year.

First, we examined the multi-decadal variability trends at each grid point from 2006 to
2080. We conducted an F-test at level 0.05 to compare the variance in local temperature during
2006 to 2030 to the variance during 2056 to 2080 at each grid point on land across all thirty
CESM-LE ensemble members. We found that in 48 % of grid points there is no statistically
significant change in variability of the local temperature as the global temperatures increase. In
15 % of grid points the local temperatures exhibit more variability as the global temperatures
increase and in the remaining 37 % of grid points the variability of temperatures show a
decreasing trend. Figure 2 illustrates examples of these changes in variability for the CESM-
LE members at a few selected grid points.

We next calculated the seasonal autocorrelation of the detrended model residuals at each grid
point on land up to a lag of 15 years. We found that after removing the pattern scaling trend the
temporal autocorrelations in the residuals were negligible for each lag: on average 0.03 for lag
1, −0.10 for lag 2, −0.05 for lag 3, and similarly for lags 4–15. Thus, it is reasonable to consider
detrended model residuals to be temporally exchangeable, i.e. independent, within a short-term
period for our emulator. Finally, we examined the spatial correlation of the residuals by
diagnostic plots of the residuals for selected ensemble members in the CESM-LE RCP8.5,
shown in Supplementary Fig. 1. Spatial patterns are clearly visible, with different patterns for
each ensemble member. Based on this evaluation, we decided to preserve all spatial correlation
in the residuals and preserve any overall long-term variance trends.

2.3 Emulation of RCP 4.5 ensemble

Our emulator assumes that we can simulate the response of global average temperature to the
forcing in RCP 4.5 (through a simple, computationally inexpensive climate model). In our
specific application we can use the actual global average temperature ensemble mean time
series from CESM-ME RCP4.5. We indicate global average temperature by gt, for each year t
from 2006 to 2080. We then use our fitted pattern scaling model estimates to generate members
of the Emulated 4.5 ensemble. The algorithm for generating an ensemble follows the steps:

1. Compute the ensemble-average global mean temperature for each year of RCP4.5 and
difference from the initial baseline period, gt − g0.

2. Add the estimated fixed effects, βis, representing the overall average pattern across all
ensemble members.
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3. Generate the emulated random slopes, ~bisk , using the estimated variance and spatial
correlations.

4. Generate the spatially correlated residuals, ~εiskt, year by year such that the residuals are
drawn from years of the CESM-LE with a global average mean temperature within a 1 °C
window of the RCP4.5 global average mean temperature from step 1 above.

5. Combine the results of steps 1 to 4 to compute the emulated ensemble member

~T iskt ¼ ais þ ~bisk þ βis

� �
⋅ gt−g0ð Þ þ ~εiskt

In this way, we can generate hundreds of Emulated 4.5 ensemble members using this
procedure. Note that for the emulation we set the intercept at its mean value from the fitted
random effects model and do not simulate additional variability around the intercepts due to
the complexity of the spatial cross correlations between the random intercepts and slopes. For
further details about Step 3 and 4, see the description in Supplementary Materials.

3 Results and validation of emulated ensemble for RCP 4.5

We consider validation of the mean and of the variance separately. To validate the emulation of
the mean surface temperatures, we considered 20-year average seasonal surfaces. Figure 3 shows

Fig. 2 An exploration of the long-term trends in variability of seasonal temperatures in the CESM-LE climate
experiment. Change in local surface temperatures versus average global temperature change (degrees C) from the
baseline period of 1976–2005 for CESM-LEmembers in selected grid points, and standard deviations of the local
seasonal temperatures during 2006–2030 and during 2056–2080, illustrating examples of an increasing variance
trend (a-c) and a decreasing variance trend (d-f)
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the average increase in surface temperatures for the CESM-ME and the Emulated 4.5 ensemble,
for summer (JJA), winter (DJF), and for each 20-year period from 2020 to 2080. The overall
patterns of average temperature change are well captured by the emulated mean surfaces. To
quantify predictive performance, we computed the absolute mean difference and the root mean
squared error between the CESM-ME and the Emulated 4.5 ensemble for the 20 year average
surfaces. Overall, we found that the root mean squared error (RMSE) of the multi-decadal mean
grid point temperatures was 0.22 °C for summer and 0.34 °C for winter. For the predictive
performance at each grid point on land, the absolute temperature difference was less than 0.2 °C
for 66.1 % of the grid points and less than 1 °C for 98.6 % of the grid points. Supplementary
Fig. 3 shows the absolute differences versus the percent of grid points in which the difference in
mean temperatures falls within each range.

Fig. 3 The 20-year average increase in surface temperatures (degrees C) relative to the baseline period of 1976–
2005 for the CESM-ME (a-c, g-i) and the Emulated 4.5 ensemble (d-f, j-l), for each 20-year period from 2020 to
2080, during summer (a-f) and winter (g-l)
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We also compared the mean emulation performance of our random effects pattern scaling
model to the usual simple pattern scaling model (with no fixed intercept and no random
intercepts or slopes) and to an intermediate model that included only fixed and random slopes
(with no fixed or random intercept). We emulated the 20-year mean surface temperature
patterns from 2020 to 2080 under RCP 4.5 for each alternative model, for summer (JJA)
and winter (DJF). We quantified the predictive performance of this model using the 20-year
surface temperature patterns from CESM-ME as our validation. Overall, we found that the
predictive performance of the alternative pattern scaling models was not quite as good as that
of the full random effects pattern scaling model. Specifically, the usual simple pattern scaling
model had a RMSE of 0.24 °C for summer and 0.39 °C for winter and the intermediate model
had a RMSE of 0.30 °C for summer and 0.42 °C for winter. The percentage of grid points with
an absolute temperature difference of <0.2 °C was 62.6 % for the simple pattern scaling model
and 49.8 % for the intermediate model. Supplementary Fig. 3 shows the absolute differences
versus the percent of grid points for the full random effects pattern scaling model in compar-
ison to the simple pattern scaling model. We note that since the random slopes and residuals
are constrained to have mean zero, we would expect the 20-year mean surface temperature
patterns estimated by these two models to be similar. However, when examining residual plots
of the intermediate model fits, the exclusion of the intercept terms brought additional
heteroscedasticity to the residuals that impacted the centering of the residuals around zero
over time (Supplementary Fig. 4).

To validate the variability assumed in the emulator across space, we used a principal
components method. For a given year, we compute the principal components of the
Emulated 4.5 Ensemble members and compute the variance of the Emulated 4.5 Ensemble
explained by the first ten principal components. We then use the same basis functions of these
principal components to compute the proportions of variance explained in the CESM-ME.
If the two ensembles have the same patterns of spatial variation, then the same principal
components will explain the same amount of the total variation. Further details can be
found in the Electronic Supplemental Material. Because the years are assumed to be
independent while principal components are useful to explain correlations, we examined
each year separately. Supplementary Fig. 2 shows the variance explained by the first ten
principal components in the emulated RCP 4.5 ensemble compared to the CESM-ME,
and compared to random noise, for the selected years 2030, 2060, 2080. The cumulative
variance explained by this basis is similar across the Emulated 4.5 Ensemble and the
model output, demonstrating the similarity of the spatial variance and spatial correlations
in the two datasets.

To validate the temporal trends in variance in the Emulated 4.5 Ensemble surface versus the
CESM model output ensemble, we considered the properties of the individual time series for
each grid point. Our emulator assumed that there was no dependence between the variability of
temperatures of different years in the short term. We found that the first through fifteenth order
auto-correlations were small in both the CESM-ME RCP4.5 output and the emulated RCP 4.5
ensemble. Because our emulator assumed that the regional variance may change over time in
response to the forced climate change signal, we computed the variance over each twenty year
period from 2021 to 2080 for the CESM-ME RCP4.5 output and the Emulated 4.5 Ensemble,
and conducted an F-test at level 0.05 to test for differences in the variance. We found
statistically significant differences in the variances in only 348 grid points (2.7 %) during
2021–2040, 585 grid points (4.5 %) during 2041–2060, and 891 grid points (6.9 %) during
2061–2080; thus, the variances were approximated well by the emulator.
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4 Discussion and conclusions

This paper demonstrates that we can construct a pattern scaling emulator to approximate an
initial condition ensemble for regional temperature under a different forcing scenario. The
main features of building the statistical emulator are to fit a pattern scaling model with random
slopes and intercepts to an existing ensemble of climate model runs, and to resample the model
residuals in a way that preserves key spatial and temporal features. By sampling the residuals
within a window of the corresponding global temperature change, we allow the variability to
change based on the forcing component.

We found that the mean temperature changes at regional scales from 2006 to 2080 in the
CESM-ME RCP4.5 were well represented by our linear pattern scaling model for the mean. In
addition, we extended the traditional pattern scalingmethodology to account for variability, so that
many runs of an initial condition ensemble can be approximated rather than just the mean change.
A number of climate model projection studies have found that regional variability in temperatures
may change between the present and future (2050–2100) time periods (Schar et al., 2004, Salinger
2005, Beniston et al., 2007). This changing variability over time was also evident at some grid
points in the CESM-LE RCP8.5. Our proposed pattern scaling methodology accounts for this
phenomenon by assuming that the variability changes as a function of the forcing signal, and
allows the variability of the emulator to also change relative to global temperature.

Our pattern scaling methodology made a number of assumptions and choices regarding the
spatial and temporal properties of CESM. Each assumption was evaluated and tested for
statistical significance. We conducted tests for statistical significance at every grid point on
land at level 0.05, and thus the principles of multiple testing apply. When conducting a large
number of independent statistical tests at level 0.05, this means that 5 % of the tests of effects
that are truly null are expected to be statistically significant by random chance alone, i.e. false
positives. In our setting 5 % of all grid points tested would be 648 grid points. However, it is
important to note that in climate model settings, the spatial correlation of the temperature
patterns may cause the tests to not be completely independent, so the actual false positive rate
may be slightly lower or higher than 5 %.

Our choice of a one-degree-width window for sampling the residuals was based on
empirical evidence and statistical and geo-physical considerations. Empirically, we observed
changes in variance over longer periods (as shown in Supplementary Fig. 1). Geo-physically,
we know that some changes in variance of temperatures are expected eventually in response to
major changes in global forcing, while also knowing the climate system itself is relatively
stable and not highly sensitive to very small changes in global forcing. A smaller window may
improve the statistical accuracy of the emulator. Empirically, we observed that a slight
reduction in the width of the sampling window corresponded to a slight decrease in the
number of statistically significant F-tests for differences in the variance between the
Emulated 4.5 Ensemble and the CESM-ME. However, we observed a satisfactory level of
significant tests relative to the expected false positive rate using a one degree-width sampling
window. In addition, the need to reduce the false positive rate must be balanced with the need
to create different members of the Emulated 4.5 Ensemble, where a smaller sampling window
reduces the number of residuals to choose from. We suggest that the choice of window may
need to be tailored to specific climate variables.

Previous studies have found that linear pattern scaling models provide a good approxima-
tion to average regional temperature changes (Mitchell 2003, Ruosteenoja et al., 2007, Cabré
et al., 2010), especially when the main drivers of change are increasing greenhouse gas
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concentrations. We found better predictive performance of our pattern scaling emulator model
with random effects than a simple pattern scaling model. Note that the marginal model of our
pattern scaling emulator represents the ensemble average and reduces to the fixed effect
coefficients because random intercepts and slopes have mean zero. The fixed effect coeffi-
cients are estimated by the generalized least squares estimator which incorporates the corre-
lations induced by the random effects structure. The ordinary least squares estimator in a
simple pattern scaling model assumes complete independence within and between ensemble
members, which could lead to a biased estimate of the pattern scaling slopes if within-member
correlations are present (Fitzmaurice et al., 2011). Thus, the difference between the estimates
from two models depends on the degree of correlations within ensemble members.

An advantage of our emulator is using the CESM-LE output directly, to preserve spatial and
temporal relationships in the emulator residuals. However, this strategy relies on the availabil-
ity of a climate model experiment with a large initial condition ensemble. This may limit the
wider applicability of the method depending on the design of future ensemble experiments.

We view our pattern scaling emulator approach as a step forward in providing relevant
climate information for avoided impacts studies, but there are also some considerations and
limitation to be overcome in extending this methodology to emulate scenarios other than
RCP4.5. The emulation of strongly mitigated pathways (e.g. CMIP5 RCP2.6) or other
trajectories such as overshoots with significant ramp-up and decline may pose challenges to
our method, which we have not investigated. In particular, those scenarios with significant
overshoot in forcing and therefore global mean temperature change could be more challenging
because it may not satisfy the assumption of a time-invariant pattern if different parts of the
climate system respond to the forcing change at different rates. We recommend additional
investigation into the patterns of change in these types of scenarios to develop and validate an
appropriate emulation technique.

In addition to the above mentioned mitigation cases, our pattern scaling approach may not
hold for scenarios that include regionally varying forcing, such as emissions of aerosol
precursors or land-use changes because these effects could result in different spatio-temporal
patterns across the different scenarios of interest. This type of forcing signal could affect the
mean spatial patterns in ways that cannot be accounted for by a simple linear regression of a
single pattern on global average temperature changes, dominated by the effects of greenhouse
gases. Approaches involving more than one scaling variable could be used to address this
limitation. In this respect, it may be interesting to note that RCP4.5 assumes different land use
change and different and aerosol forcing than RCP8.5, yet those differences did not result in
meaningfully different patterns of temperature changes or variability for the mean temperatures
we examined in this study. However, other climate variables may be more sensitive. Here we
also add as a note of caution that our exercise used the actual global average temperature time
series under RCP4.5 from the CESM-ME experiment. More general implementations of this
methodology would use a simple model to emulate also global average temperature under
RCP4.5, introducing an additional degree of uncertainty in the emulation of the actual CESM
results.

An overview of the CESM characteristics and performance metrics is beyond the scope of
this paper, but Hurrell et al. (2013) and Kay et al. (2014) contain evaluations of the model
output under a wide range of perspectives for both mean and variability patterns. In addition,
results from applying many validation metrics evaluating the specific experiments that we use
in this study have been made publically available online (NCAR CGD 2016). We emphasize
that the eventual use of this type of emulator model for impacts work relies directly on the
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validity of the underlying climate model in reproducing all relevant spatial and temporal trends
in the climate variables. Thus, additional validation of the underlying climate model is a
critical precursor to any impacts work, and the specifics of the validation should be focused to
depend on the particular features most relevant to the impacts that the work addresses. Another
concern is that we detected no short-term temporal auto-correlations when there are known
decadal variability events in climate systems. Ideally, we would model these phenomena
directly in the mean function, but if these signals introduce inconsistently timed non-
linearities in the trend of temperatures that vary by ensemble member, they may not be
detectable in the ensemble mean pattern. In addition, the statistical test examines the average
correlation over a fixed time interval, so decadal patterns that have slight variability in time
intervals (such as El Nino) may be hard to detect. For other applications of pattern scaling
beyond seasonal average temperatures, temporal auto-correlations may be more pronounced.
In the case where temporal correlations over a few years are important to incorporate in the
emulator, an alternative strategy would be to sample several years of residuals simultaneously,
thus preserving most of this correlation.

The emulation of some climate variables may not satisfy the assumption of linearity in local
mean changes as global temperature increases. For example, precipitation mean changes in the
future have been found to deviate from linearity in several studies (Wilby 1997, Watterson
2008, Cabré et al., 2010). Thus, some assumptions may need to be modified to work well for
other climate variables. Another limitation is that our current emulator strategy is univariate,
whereas impact modeling often requires more than just temperature. For example, one
important priority for adaptation and mitigation planning is comparison of the agricultural
yields of major crops such as maize, wheat, soy, and rice across global crop models and forcing
scenarios (Rosenzweig et al., 2014), which would require extending this method to jointly
emulate additional variables such as humidity, CO2 concentration and precipitation, among
others (Izaurralde et al., 2006, Bondeau et al., 2007, Deryng et al., 2011).

Overall, our pattern scaling emulator for seasonal temperature represents a step forward in
providing relevant climate information for avoided impacts studies, and more broadly for impact
models, since the Emulated 4.5 ensemble for temperature includes both forced and internal
variability. Our emulator approach would allow impact studies to be carried out for many
alternative scenarios seeing an increase in greenhouse gas forcing, all of them including internal
variability. One may be interested in the impacts corresponding to each ensemble member, to
look at how impacts might play out in conditions similar to the real world, where forced and
internal variability always interplay. By looking at the ensemble of impact outcomes, one could
quantify the relative role in the uncertainty in impacts due to either component. By emulating the
variability of regional temperatures to approximate a large initial condition ensemble of temper-
ature changes, we can obtain a more complete characterization of the impacts and the differences
in impacts across scenarios. This methodology presents some promising features for avoided
impact studies, and should be extended to more general assumptions, including non-linear mean
trends and multivariate models with correlation among climate variables.
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