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Abstract We present an assessment of the impact of future climate change on two key drivers
of fire risk in Australia, fire weather and fuel load. Fire weather conditions are represented by
the McArthur Forest Fire Danger Index (FFDI), calculated from a 12-member regional climate
model ensemble. Fuel load is predicted from net primary production, simulated using a land
surface model forced by the same regional climate model ensemble. Mean annual fine litter is
projected to increase across all ensemble members, by 1.2 to 1.7 t ha−1 in temperate areas, 0.3
to 0.5 t ha−1 in grassland areas and 0.7 to 1.1 t ha−1 in subtropical areas. Ensemble changes in
annual cumulative FFDI vary widely, from 57 to 550 in temperate areas, −186 to 1372 in
grassland areas and −231 to 907 in subtropical areas. These results suggest that uncertainty in
FFDI projections will be underestimated if only a single driving model is used. The largest
increases in fuel load and fire weather are projected to occur in spring. Deriving fuel load from
a land surface model may be possible in other regions, when this information is not directly
available from climate model outputs.
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1 Introduction

Wildfires occur with sufficient and continuous plant biomass (fuel), fuel dry enough to burn,
weather conducive to fire spread and an ignition source (Archibald et al. 2009; Bradstock 2010).
Climate change effects on fire weather are frequently examined using indices that relate surface
weather conditions to wildfire risk, such as the Canadian Forest FireWeather Index system (FWI;
van Wagner 1987) and the Australian McArthur Forest Fire Danger Index (FFDI; McArthur
1967; Luke and McArthur 1978). Since both are widely used in fire management agencies
worldwide and can be calculated from standard climate model output, numerous studies have
projected changes in FWI and FFDI (e.g. Williams et al. 2001; Bedia et al. 2013; Fox-Hughes
et al. 2014; Lehtonen et al. 2014). Other fire weather elements that have been related to climate
change include atmospheric stability (Luo et al. 2013), synoptic patterns (Hasson et al. 2009;
Grose et al. 2014) andmodes of climate variability (Cai et al. 2009). By relating observed weather
patterns to fire incidence or burned area, projected changes in weather have also been used as a
proxy for the presence of fire and its impacts (e.g. Mori and Johnson 2013).

In contrast to the direct use of meteorological variables for fire weather, predicting changes
in biomass growth or fuel load requires a significant transformation of climate model data. The
task is complicated by the need to include the potential response of vegetation to not just
climate change, but also increasing carbon dioxide (CO2; Donohue et al. 2013). Increasing
CO2 is thought to directly promote plant growth by increasing photosynthesis and decreasing
stomatal conductance, although verification of these effects in large scale natural vegetation
communities requires further work (Norby and Zak 2011). There are multiple approaches to
examining how climate change affects wildfire fuel loads. Statistical relationships have been
developed between current vegetation patterns and meteorological variables (Matthews et al.
2012; Thomas et al. 2014; Williamson et al. 2014). These relationships allow vegetation
changes to be derived from projected changes in meteorological variables, but do not account
for direct CO2 effects. Process-based approaches to fuel load and vegetation include dynamic
global vegetation models (DGVMs), landscape fire succession models and biogeochemical
models. These models may represent direct influences on fuel amount, such as litterfall,
decomposition and fire incidence, as well as indirect causes like phenology, primary produc-
tivity, heat and moisture. Process-based models can incorporate direct effects of CO2 on plant
growth and water use efficiency (e.g. Jiang et al. 2013).

Quantitative, integrated assessments of the impact of climate change on multiple fire drivers
are relatively rare (Pechony and Shindell 2010; Kloster et al. 2012; Loepfe et al. 2012; Eliseev
et al. 2014). In Australia, Bradstock (2010) provides a qualitative assessment based on case
studies of five fire regimes drawing on quantitative and qualitative data. Bradstock concludes that
increasing temperatures and dryness may lead to divergent impacts on fire activity across
Australia, with potential increases in temperate forests, but decreases in areas where fires are
currently limited by fuel amount rather than fire weather conditions. The impact of climate
change on multiple wildfire drivers in forested and grassland regions of southeast Australia was
estimated by King et al. (2011, 2012). Both studies examined potential changes in fire weather
and fuel load, but only the grassland study included fuel moisture (curing) as well as direct CO2

effects, via a process-based grassland and water-balance model. Each study projected increases in
fire weather conditions and overall decreases in fuel load, which translated to increases in fire
incidence and area burned in forests, but minimal changes in fire risk in grasslands.

Our study aims to provide the first quantitative, regional assessment of the impact of
projected changes in climate and CO2 on fuel load and fire weather in Australia. Fire weather
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projections are derived from a regional climate model, which is then used to force a land
surface model from which fuel load is estimated (Section 2.4), incorporating both direct and
indirect effects of elevated atmospheric CO2. Variation in Regional Climate Models (RCMs)
and their forcing Global Climate Models (GCMs) is a major source of uncertainty in climate
impact projections (Lung et al. 2013). We aim to explore the uncertainty of these projections
by using a 12-member ensemble, selected for its skill in representing the regional climate and
the independence of individual ensemble members (Evans et al. 2014). By accounting for
uncertainty in climate models and including direct CO2 effects on fuel load, we provide a more
complete estimate of future changes in key aspects of wildfire risk.

2 Materials and methods

Our study combines new and pre-existing regional climate and land surface model simulations
(Fig. 1).

2.1 Regional climate model simulations

We used the Weather Research and Forecasting (WRF) modelling system (Skamarock et al.
2008), which has been extensively evaluated and performs well in terms of regional Australian
climate (Evans and McCabe 2010) and fire weather (Clarke et al. 2013). The simulations used
in this study are drawn from the NSW and ACT Regional Climate Modelling (NARCliM)
project (Evans et al. 2014).

NARCliM uses the Advanced Research WRF version 3.3. Four GCMs are downscaled
using three configurations of WRF resulting in a 12 member ensemble (Fig. 1). A three step
GCM selection process was used. First, a large set drawn from the 3rd Coupled Model
Intercomparison Project (CMIP3; Meehl et al. 2007) was evaluated in order to remove the
worst performing models. Second, better performing models were ranked according to their
independence (Bishop and Abramowitz 2013). Last, GCMs were placed within the future
change space for temperature and precipitation and the most independent models spanning that
space were chosen (Online Resource 1). RCMs were selected similarly. A large set consisting
of different physical parameterisations was evaluated in order to remove the worst performing
RCMs (Evans et al. 2012). From the better performing models, a subset was chosen such that
each chosen RCM is as independent as possible from the other RCMs. Although partial bias
correction of FFDI is possible (Fox-Hughes et al. 2014), we opted to maintain physical
consistency in model dynamics by using direct model output. We address model bias via
ensemble design and reporting of change values, rather than only absolute values.

GCMs were downscaled at hourly resolution in two time slices, 1990–2008 (‘present’) and
2060–2078 (‘future’). For future projections the SRES A2 emissions scenario is used (IPCC
2000), a reasonable choice given emissions continue to track the high end of emissions
scenarios (Friedlingstein et al. 2014). RCMs were run at 50 km grid resolution.

2.2 Land surface model simulations

Fuel load projections are developed from the Community Atmosphere-Biosphere Land
Exchange (CABLE, version 2.0) land surface model, which is designed to simulate fluxes
of energy, water, and carbon at the land surface (Wang et al. 2011). CABLE has been
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extensively tested against observational data (Abramowitz et al. 2008; Wang et al. 2011).
CABLE can be run with prescribed meteorology (e.g. Kala et al. 2014), or coupled in a global
or regional climate model. CABLE is a key part of the Australian Community Climate Earth
System Simulator (ACCESS), a fully coupled earth system science model and contributor to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).
CABLE uses a small set of fixed plant functional types to represent vegetation, such as
evergreen needleleaf, deciduous broadleaf, savanna and grassland.

CABLE was used within the NASA Land Information System version 6.1 (LIS-6.1; Kumar
et al. 2008) at 25 km grid resolution. 12 offline simulations were run at half hourly time
resolution, each forced with meteorological data from one of the 12 regional climate model

Fig. 1 Summary of methodology. FFDI is calculated from a regional climate model ensemble spanning present
(1990–2008) and future (2060–2078) periods. The same ensemble supplies the meteorological forcing to
CABLE, yielding NPP. Based on the relationship between fine litter and NPP in BIOS2, fine litter is calculated
from NPP in CABLE
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ensemble members described above (Fig. 1). The emissions scenarios used in WRF were also
used with CABLE. Within CABLE Leaf Area Index (LAI) is prescribed from the mean of a
monthly LAI ensemble based on the Moderate Resolution Imaging Spectroradiometer
(MODIS) LAI product and weather observations (Kala et al. 2014).

2.3 Fire weather estimation

Following Noble et al. (1980), FFDI is computed as

FFDI ¼ 2� exp 0:987� ln DFð Þ−0:0345� Hþ 0:0338� Tþ 0:0234� V−0:45ð Þ ð1Þ

where DF is the drought factor, T is the daily maximum temperature (°C), V the 3 pm wind
speed (km h−1) and H the 3 pm relative humidity (%). The drought factor is an estimate of fuel
dryness (Griffiths 1999) and is computed using the Keetch-Byram Drought Index (Keetch and
Byram 1968) based on total daily rainfall. Daily FFDI was calculated from the 12 member
regional climate model ensemble. We lack the curing data needed to calculate the related
Grassland Fire Danger Index (Noble et al. 1980). Although the Forest and Grassland indices
behave similarly, results in Australia’s extensive grasslands therefore remain more uncertain.

2.4 Fuel load estimation

Fuel load is calculated from net primary productivity (NPP), since NPP represents the rate of
production of vegetation. NPP has been equated to litter production (Matthews 1997) and is
strongly correlated with aboveground biomass (Kindermann et al. 2008).

The relationship between fuel load and NPP is derived from the BIOS2 modelling
environment, which simulates both quantities (Fig. 1; Haverd et al. 2013). BIOS2 simulates
the energy, water and carbon balances of the Australian continent at fine spatial (0.05°, ~5 km)
and temporal (hourly) resolution. Central to BIOS2 is the CABLE model, resulting in a similar
representation of NPP by BIOS2 and CABLE v2.0. However, in BIOS2 the soil and carbon
modules are replaced by the SLI soil model (Haverd and Cuntz 2010) and the CASA-CNP
biogeochemical model (Wang et al. 2010). Further, BIOS2 simulations are constrained by
observations of streamflow, evapotranspiration, net ecosystem production and litterfall. BIOS2
was run from 1990 to 2011 using meteorological forcing from the Bureau of Meteorology’s
Australian Water Availability Project data set (AWAP) (Jones et al. 2009). The use of
observational constraints along with the best available gridded weather observations for
Australia means the simulations BIOS2 are likely the best available continental estimates of
fuel load in the absence of high quality, long term, landscape-scale observations.

The Pearson product-moment correlation coefficient was used to calculate the relationship
between annual NPP and annual fuel load in BIOS2 for the period 1990 to 2011. CASA-CNP
divides carbon into plant, litter and soil pools, and litter into metabolic, structural and coarse
woody debris pools (Wang et al. 2010). Taken together, the metabolic and structural litter pools
are referred to as fine litter, which we use to represent fuel load. Where the correlation between
NPP and fine litter was significant (p < 0.05), fine litter was related to NPP using ordinary least
squares linear regression. Although there is no physical reason why this relationship should be
strictly linear, the correlation was generally high with no clear evidence for a non-linear
relationship. Since the link between fine litter and NPP is statistical, this model cannot account
for mechanistic changes in litterfall and litter decomposition (e.g. carbon:nitrogen ratio), which
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mediate the translation of primary productivity into fuel load. However, the model of NPP in
CABLE is mechanistic and is sensitive to changes in climate forcing and CO2 concentration
(Wang et al. 2011). Our model does not include fire so fuel load values should be considered
steady state (equilibrium), albeit an equilibrium that fluctuates in response to NPP.

To understand regional variations, the same methods were applied to model grid cells
averaged over a modified Köppen classification, which separates Australia into 6 mostly
contiguous and climatically similar regions (Fig. 2; Stern et al. 1999). The major Köppen
zones are: equatorial, tropical, subtropical, desert, temperate and grassland. They capture
general trends in vegetation across Australia, but necessarily omit important vegetation
differences between fire regimes within each region. The lag-1 correlations between NPP
and fine litter were significant (p < 0.05) for all 6 climate zones with the highest correlations in
the subtropical (r2 = 0.86), temperate (r2 = 0.80) and grassland (r2 = 0.78) climate zones
(Online Resource 2).

The linear models for each climate zone and model grid cell were then applied to the
present study, allowing fuel load (g C m−2) to be calculated from NPP simulated by the 12
member land surface model ensemble (Fig. 1). Load (t ha−1) is obtained by assuming a carbon
fraction of 47 % (Roberts et al. 2008). We focus on the temperate, grassland and subtropical
zones because of the high correlation between NPP and load in these regions. Model grid cells
without a significant lag-1 correlation between NPP and fine litter are not shown (6 % of all
cells; 23 % of equatorial and tropical climate zone cells).

Fig. 2 Köppen classification major climate zones
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2.5 Fuel load evaluation

For the purposes of model evaluation a separate CABLE simulation was run, forced by
the MERRA reanalysis (Rienecker et al. 2011) instead of the NARCliM ensemble. The
modelled fuel load values were evaluated over 31 Interim Biogeographic Regions of
Australia (bioregions) in southeast Australia (Fig. 3a; Hutchinson et al. 2005).
Bioregions define zones of similar geology, landform and biota. Given their spatial
extent and variety of vegetation types, the bioregion-based observations from Price
et al. (2015) likely represent the best available validation data for our model. A second
evaluation was conducted using the empirical model of Thomas et al. (2014), which links
fuel in four tree-dominated vegetation types in NSW with observed gradients of tem-
perature and rainfall.

3 Results

Our model tends to underestimate fuel amount but fits the observations reasonably well
(r2 = 0.75; Fig. 3b). For example, while observed maximum fuel loads in forested bioregions
range from 11 to 19 t ha−1, modelled values range from 5.8 to 10.3 t ha−1 (Table 1). Our model
strongly underestimated empirically-derived fuel load estimates in wet sclerophyll forest but
performed reasonably in dry sclerophyll forest, rainforest and grassy woodland (Online
Resource 3). Overall the model performs acceptably given our aim of exploring broad
spatiotemporal trends in fuel load.

Based on this model, mean continental fine litter is projected to increase 0.35 to 0.56 t ha−1

(11 % to 20 %) by 2060–2078 (Fig. 4a), with more fine litter in the lowest future ensemble
member (3.28 t ha−1) than the highest present ensemble member (3.22 t ha−1). The spread in
continental mean annual fine litter depends strongly on choice of GCM and RCM. Those
models simulating the lower (higher) values of fine litter in the present remain the lower
(higher) models in the future. RCM3 consistently simulates the highest litter amounts,
illustrating the importance of RCM physics settings.

The sign and magnitude of changes in continental mean annual cumulative FFDI
(Fig. 4b) are strongly model dependent, in contrast to Fig. 4a. Ensemble members driven
by the ‘wetting’ CCCMA3.1 and MIROC3.2 (Online Resource 1) show little change and
occasionally small decreases. Ensemble members driven by the drying ECHAM5 and
CSIRO-Mk3.0 project large increases in FFDI. Overall ensemble mean FFDI increases
from 5274 to 5816 (10 %). Selecting only ECHAM5 and CSIRO-Mk3.0, the range of
increases is 10 to 23 %, while selecting only CCCMA3.1 and MIROC3.2 gives a range
of −2 to 15 % (excluding outlier MIROC3.2/RCM3 gives a range of −2 to 2 %). These
results highlight the dangers of using a single GCM for estimating future changes in
FFDI. RCM3 is consistently at the lower end of ensemble simulated FFDI (in contrast to
its placement at the upper end of simulated litter), again demonstrating the importance of
RCM physics settings.

The spatial patterns of projected changes in mean annual fine litter are very similar between
models, regardless of the degree of change (Fig. 5a-b; see Online Resource 4 for all 12
ensemble members). All models show increases in fine litter in the southeast and northeast of
Australia, particularly along the coast. Overall, our results consistently show increasing
equilibrium fuel loads (i.e. fine litter) in the future.
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Fig. 3 a Southeast Australian bioregions b Modelled fuel load compared to observations in 31 bioregions
shown in 3a
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In contrast, the overall pattern of change in annual cumulative FFDI is strongly divergent,
with ensemble members forming two groups, some with substantial increases and others with
modest decreases (Fig. 5c-d). In the lowest ensemble member, little change in FFDI is
projected across the continent. The highest ensemble member projects increases ranging from
200 to 600 in the southeast and extending along the coast to the northeast, to over 1800 over
parts of northwest Australia. Again, this highlights the dangers of using single GCMs for
estimating future FFDI since the choice of model determines the sign and magnitude of the
overall change. The overall spatial pattern of change in FFDI is most strongly dictated by
GCM, with RCMs modulating the magnitude of these changes (Online Resource 5).

Table 1 Modelled load statistics compared to southeast Australian bioregions

Bioregion Vegetation type Observed fuel
max (t/ha)*

Modelled fuel
mean (t/ha)

Bias RMSE

Australian Alps Eucalypt Forest 19 9.6 ± 0.2 9.4 9.5

Brigalow Belt South Eucalypt Woodland 4.7 4.0 ± 0.1 0.7 1.7

Broken Hill Complex Chenopod 2.4 0.7 ± 0.0 1.7 1.7

Central Ranges Acacia Woodland 4.7 1.1 ± 0.0 3.6 3.7

Channel Country Chenopod 2.4 0.7 ± 0.0 1.7 1.7

Cobar Peneplain Eucalypt Woodland 10 2.0 ± 0.1 8.0 8.0

Darling Riverine Plains Eucalypt Woodland 10 2.6 ± 0.1 7.4 7.5

Eyre Yorke Block Mallee 8.7 3.2 ± 0.1 5.5 5.7

Flinders Lofty Block Chenopod 2.38 1.8 ± 0.1 0.6 2.0

Furneaux Eucalypt Forest 16.4 11.0 ± 0.7 5.4 5.8

Gawler Acacia Woodland 4.5 0.6 ± 0.0 3.9 3.9

Great Victoria Desert Acacia Woodland 0 1.0 ± 0.0 -1.0 1.1

Kanmantoo Eucalypt Woodland 10 7.4 ± 0.3 2.6 2.8

Mulga Lands Acacia Woodland 4.5 1.0 ± 0.0 3.5 3.5

Murray Darling Depression Mallee 5.8 2.4 ± 0.1 3.4 3.9

Nandewar Eucalypt Forest 16.4 5.8 ± 0.2 10.6 10.7

Naracoorte Coastal Plain Eucalypt Woodland 10 8.0 ± 0.3 2.0 3.3

New England Tablelands Eucalypt Forest 16.4 10.3 ± 0.3 6.1 6.5

NSW North Coast Eucalypt Forest 19 10.1 ± 0.2 8.9 9.1

NSW South Western Slopes Eucalypt Woodland 4.7 6.9 ± 0.1 -2.2 2.7

Nullarbor Chenopod 2.4 0.6 ± 0.0 1.8 1.8

Riverina Chenopod 2.4 3.8 ± 0.1 -1.4 2.3

Simpson Strzelecki Dunefields Hummock Grassland 10 1.0 ± 0.0 9.0 9.0

South East Coastal Plain Eucalypt Forest 16.4 9.1 ± 0.3 7.3 7.6

South East Corner Eucalypt Forest 16.4 9.6 ± 0.2 6.8 7.0

South Eastern Highlands Eucalypt Forest 19 9.4 ± 0.1 9.6 9.8

South Eastern Queensland Eucalypt Forest 11 7.8 ± 0.2 3.2 3.8

Southern Volcanic Plain Wetlands 19 9.1 ± 0.2 9.9 10.0

Stony Plains Chenopod 2.4 0.4 ± 0.0 2.0 2.0

Sydney Basin Eucalypt Forest 16.4 9.7 ± 0.2 6.7 7.1

Victorian Midlands Eucalypt Forest 16.4 8.1 ± 0.2 8.3 8.5

*values are from Price et al. (2015)
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There are strong seasonal patterns in projected changes in fine litter and FFDI.
Increases in fine litter are projected every month in temperate, grassland and subtropical
zones, with the highest increases in mid to late spring (Fig. 6a-c; actual values in
Online Resources 6). In contrast to the fuel load results, monthly values of mean daily
FFDI show both decreases and increases in all three zones (Fig. 6d-f; actual values in
Online Resource 7). However, the magnitude of increases in FFDI is much greater than
that of decreases. As with fine litter, in all three climate zones the largest projected
increases in FFDI are projected to occur in mid to late spring (October and November).
Where decreases in FFDI are projected, they are greatest from late summer to early
autumn. While our focus is on mean FFDI, the strongly divergent projections also
apply to extreme values. For instance, the projected change to the number of days each
year where FFDI exceeds 50 varies widely in temperate (0.2–1.9), grassland (0.5–10.0)
and subtropical (0.0 to 1.8) areas.

Fig. 4 Ensemble mean annual continental (a) fine litter and (b) cumulative FFDI for present and future periods.
Whiskers show the ensemble range, box shows the quartiles. Individual GCM/RCM combinations are repre-
sented by marker (GCM) and colour (RCM)
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4 Discussion

Our results suggest that projected changes in climate and atmospheric CO2 will increase fuel
load in both forested and grassland areas of Australia by the latter part of the twenty-first
century, independent of model choice. In contrast, changes in fire weather are more model-
dependent. The high end of ensemble projections represents substantial increases in fire
weather conditions, while the lower end represents little change. These results suggest that
FFDI projections are strongly dependent on the choice of GCM, with RCM choice modulating
these effects. Across all ensemble members, the biggest increases in fire weather conditions are
projected to occur in late spring, suggesting a longer (stronger) fire season in areas where
spring is shoulder (peak) season. However, the impact of these changes will strongly depend
on the relative importance of fuel and weather in regional fire regimes. Projections of
increasing fuel load are potentially more significant in grassland regions, where fire incidence
tends to be load-limited, while increases in fire weather conditions may be more significant in

Fig. 5 Change in mean annual (a) fine litter and (b) cumulative FFDI from the lowest and highest ensemble
members, calculated from the average of all grid cell changes
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forested areas, where fire incidence is limited more by weather conditions that dry fuel out
enough for it to burn (Bradstock 2010; King et al. 2012). Where both fire weather and fuel load
increase, rate of fire spread can also be expected to increase (McArthur 1967).

These fire weather projections, particular in temperate areas, are in broad agreement with a
range of previous studies which have projected increased wildfire risk from weather, partic-
ularly in spring (Cai et al. 2009; Hasson et al. 2009; Matthews et al. 2012; Fox-Hughes et al.
2014). While our study focuses on average conditions, similar changes occur at the upper end
of the FFDI distribution, when fires that occur are most difficult to control (Clarke et al. 2012).
Perhaps surprisingly, fire weather is often projected to remain stable or increase modestly in a
subset of regions, seasons and models (Flannigan et al. 2009) – even in temperate areas
(Clarke et al. 2011; Lucas et al. 2007). Unlike most studies, we intentionally maximised the
range of plausible future changes in temperature and precipitation, hence our spread of FFDI
values is not unexpected. One exception is CSIRO and Bureau of Meteorology (2015), which
used three GCMs but found virtually no decreases in FFDI, possibly because none of these
GCMs showed substantial increases in precipitation.

Our projections of uniform and widespread increases in fuel load differ from previous
assessments for Australia. King et al. (2012) projected mostly decreases in grassy fuel load in
southeast Australia, with CO2 fertilisation insufficient to compensate for changing temperature
and rainfall. Matthews et al. (2012) and Penman and York (2010) projected decreases in forest
fuel load at two forested sites in southeast Australia, although the decreases reported by
Penman and York (2010) were not significantly different to present values. Neither of these
studies factored in CO2 fertilization. However, all three studies used GCMs projecting an

Fig. 6 Change in mean monthly (a) fine litter load and (b) FFDI in temperate, grassland and subtropical climate
zones. Unbroken line shows multimodel mean, dotted lines show ensemble minimum and maximum values
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overall decrease in rainfall, in contrast to our ensemble of GCMs spanning both increases and
decreases in rainfall.

Improving certainty in regional rainfall projections may not clarify all vegetation trends,
due to differences in the response of major vegetation types to precipitation (Thomas et al.
2014; Gibson et al. 2014). The complex relationships observed between climate and vegetation
type contrast with the near uniform changes in vegetation amount projected in our study. A
possible reason is the CO2 fertilisation effect in land surface models, which has elsewhere been
found to be the major cause of modelled increases in gross primary productivity (NPP plus
autotrophic respiration), strongly above rainfall or temperature and regardless of climate zone
(Raupach et al. 2013). However, modelled CO2 fertilisation effects still require validation in
mature Australian native vegetation and the degree to which plant growth is nutrient-limited,
rather than CO2 limited, is a major question (Norby and Zak 2011). A further caveat is that
plant functional type distribution in our model cannot respond to climate change (e.g. Gibson
et al. 2014). Nevertheless, the model captures observed variation across multiple fuel types and
climatic zones, albeit with consistent underestimates. This may relate to biases in BIOS2,
which we used to link NPP with fine litter and which underpredicts fine litter in cool temperate
and several forested ecosystems (Haverd et al. 2013).

In conclusion, we have provided the first regional assessment of the combined effects of
climate change and increasing CO2 on fuel load levels and fire weather conditions in Australia.
In the forests of temperate and subtropical climate zones, where fuel moisture is a greater limit
of overall fire activity, our results suggest the possibility of both little change and strong
increases in wildfire risk, due to the wide spread in fire weather projections. In contrast, fuel
load is consistently projected to increase, which could increase wildfire risk in grasslands and
other areas where fuel amount tends to limit fire incidence. Refining this simple model to
better reflect the complexities of Australian vegetation types, particularly in northern Australia,
and improving regional-scale rainfall predictions will lead to a better understanding of long-
term changes in Australian fuel load and fire weather.
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