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Abstract Global gridded precipitation is an essential driving input for hydrologic models to
simulate runoff dynamics in large river basins. However, the data often fail to adequately
represent precipitation variability in mountainous regions due to orographic effects and sparse
and highly uncertain gauge data. Water balance simulations in tropical montane regions
covered by cloud forests are especially challenging because of the additional water input from
cloud water interception. The ISI-MIP2 hydrologic model ensemble encountered these prob-
lems for Andean sub-basins of the Upper Amazon Basin, where all models significantly
underestimated observed runoff. In this paper, we propose simple yet plausible ways to adjust
global precipitation data provided by WFDEI, the WATCH Forcing Data methodology applied
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to ERA-Interim reanalysis, for tropical montane watersheds. The modifications were based on
plausible reasoning and freely available tropics-wide data: (i) a high-resolution climatology of
the Tropical Rainfall Measuring Mission (TRMM) and (ii) the percentage of tropical montane
cloud forest cover. Using the modified precipitation data, runoff predictions significantly
improved for all hydrologic models considered. The precipitation adjustment methods present-
ed here have the potential to enhance other global precipitation products for hydrologic model
applications in the Upper Amazon Basin as well as in other tropical montane watersheds.

1 Introduction

Over the last decade, numerous global weather forcing data have become available for large-
scale hydrologic modeling (e.g. Decharme and Douville 2006; Rienecker et al. 2011; Saha et
al. 2013; Sheffield et al. 2006; Weedon et al. 2014; Weedon et al. 2011). Based on atmospheric
reanalysis or satellite data products, hydrologic models can be set up uniformly and consis-
tently across the globe. Within the second phase of the Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP2), Huang et al. (this special issue) evaluated the runoff
simulations of a large ensemble of hydrologic models driven by reanalysis forcing data from
WATCH (Weedon et al. 2011) for 12 large-scale river basins. They found that most models can
adequately reproduce monthly streamflow in most of the basins. However, due to the large
number of models and river basins, their analysis was limited to streamflow at river basin
outlets where a good fit to observations does not necessarily indicate a correct representation of
hydrologic processes at internal gauges (Hall 2004).

This is in particular true for the 1.02 million km2 Upper Amazon Basin (UAB), for which all
ISI-MIP2 models significantly underestimated runoff in mountainous sub-basins along the
Eastern Andes. Analyzing the runoff coefficients, i.e. the ratio of observed runoff to precipita-
tion, reveals that the systematic bias in modelled runoff for these basins is probably caused by
errors in the precipitation data and/or the observed runoff. While runoff coefficients for humid
tropical environments typically range between 0.6 and 0.7 (Buytaert et al. 2006b; Campling et
al. 2002), values for mountainous sub-basins in the UAB exceed 0.8. Previous studies found
similar difficulties with water balance closure for upper parts of the Amazon Basin (Coe et al.
2002; Guimberteau et al. 2012; Nerini et al. 2015; Zulkafli et al. 2013). Long-term changes in
water storage, such as surface and subsurface water and in particular glaciers (due to climate
change), might contribute to the unreasonably high runoff coefficients, but to the authors’ best
knowledge there is no quantitative evidence reported for the UAB. Instead, the difficulties with
water balance closure are mainly attributed to errors in precipitation data, although the
possibility of high streamflow uncertainty can also not be discounted (Zulkafli et al. 2013).

Tropical mountain regions are among the most challenging environments for reliable
precipitation estimates (Scheel et al. 2011; Tian and Peters-Lidard 2010). Complex terrain
and orographic effects lead to a high spatio-temporal variability of precipitation (Buytaert et al.
2006a; Houze 2012) which cannot be reflected by point measurements, especially not in data
scarce regions like the Andes (Blacutt et al. 2015). For the tropical Andes of south Ecuador,
Ward et al. (2011) observed large discrepancies between rain-gauge-based precipitation
products and estimates from satellite- (PERSIANN, TRMM 3B42 or also called TMPA) and
reanalysis-based products (NCEP R1, ERA-40). Their results indicate that advanced remote
sensing products provide new insights into precipitation estimation in data scarce areas, but
still have limitations regarding their accuracy. Zulkafli et al. (2014) provided concise
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explanations for limitations of TMPA in and near tropical mountain regions. However, it has
also been shown that the TRMM climatology (Nesbitt and Anders 2009) can resolve clear
precipitation gradients in regions with large average daily rain totals including the Andes.

Cloud water interception (CWI) may be a further explanation for the unrealistically high
runoff coefficients in Andean watersheds. CWI of tropical montane cloud forests leads to
additional water input (Bruijnzeel et al. 2011; Célleri and Feyen 2009; Clark et al. 2014) which
is neither represented in conventional precipitation measurements nor in remote-sensing-based
products. CWI varies strongly with location, site exposure and the type of montane cloud
forests, and can reach values of more than 1000 mm yr.−1 (Bruijnzeel et al. 2011; Giambelluca
and Gerold 2011). Beyond that, it is assumed that streamflow volumes in cloud forests further
increase by reduced evaporative losses under the prevailing low radiation levels and high
atmospheric humidity (cf. Bruijnzeel et al. 2011). Tropical montane cloud forests are typically
found in foggy, wet and windy environments within the tropical belt (Bruijnzeel et al. 2011).
Mulligan (2010) modelled their distribution on the basis of satellite-observed atmospheric
cloud presence and/or modeled ground-level condensing conditions. Based on their analysis,
14.2 % of all tropical forests were classified as Bsignificantly cloud-affected forests^.
Bruijnzeel et al. (2011) modelled CWI inputs across the tropics using the Fog Interception
for the Enhancement of Streamflow in Tropical Areas (FIESTA, now called WaterWorld) - a
water budget model developed by Mulligan and Burke (2005). According to their results, 12 %
of the Latin American land receive fog inputs of more than 100 mm yr.−1 with particularly high
inputs predicted for the Andes in Ecuador and northern Peru. Recently, Clark et al. (2014)
calculated a cloud water contribution of 316 ± 116 mm (or 11 ± 4 %) to annual streamflow for
the Kosñipata catchment in the eastern Peruvian Andes using an isotopic mixing model. These
studies point out the importance of accounting for CWI when modeling the hydrology of
tropical mountainous regions.

In this paper, we propose simple yet plausible methods to adjust global precipitation data
for enhanced streamflow simulations in tropical montane watersheds. This is in particular
valuable for large-scale modeling studies which are based on globally applicable meteorolog-
ical forcing data and general hydrologic models. We address both issues - potential errors of
global precipitation data over complex terrain and CWI as an unaccounted source of water - by
applying suitable correction factors to the globally available WFDEI precipitation data set
(Weedon et al. 2014). While topographic correction factors are derived at seasonal time scales
based on the high resolution TRMM climatology (Nesbitt and Anders 2009), CWI correction
factors were calculated according to the fractional cover of cloud-affected forests as provided
by Mulligan (2010). We hypothesize that these modifications will lead to improved precipi-
tation estimates and thus to improved runoff simulations in the UAB. The study is carried out
within the ISI-MIP2 project, which provides an excellent framework to test this hypothesis
using an ensemble of widely used hydrologic models.

2 Material and methods

2.1 Study area

The UAB (Fig. 1a) is one of 12 large-scale river basins that are modelled within the ISI-MIP2
project to study the impacts of climate change on regional water resources across the globe
(Krysanova and Hattermann, this special issue). At the outlet gauge São Paulo de Olivença, the
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Upper Amazon drains an area of about 1.02 x 106 km2 of which the largest part is located in
Peru (76 %). Smaller parts are shared by Ecuador (13 %) in the north-west and Brazil (11 %) in
the east. The UAB has an elevation range of almost 6600 m, where 40 % of the area lies above
500 m a.s.l. with average slopes greater than 30 % which defines mountain areas according to
Meybeck et al. (2001) and which we hereafter refer to as mountainous Andean region. The
lower parts are referred to as Amazonian lowlands. While tropical rainforest dominates the
Amazonian lowlands, the Andean region exhibits a large diversity of vegetation types with
montane forests in lower altitudes and shrublands as well as montane grasslands dominating in
higher altitudes (Eva et al. 2004). Figure 1b shows the distribution of cloud affected forests
(Mulligan 2010) whose lower elevation boundary in the UAB matches quite well the 500 m
contour line.

Precipitation regimes vary across latitudes and time scales as influenced by large-scale
meteorological phenomena, such as the Intertropical Convergent Zone (ITCZ), the South
American Monsoon System (SAMS), the El Nino Southern Oscillation (ENSO), and the
Pacific Decadal Oscillation (PDO) (Carvalho et al. 2004). The lower northern and northeastern
parts of the basin receive relatively high average rainfall of more than 3000 mm yr.−1

(Espinoza Villar et al. 2009). Although the distribution of precipitation in the Andean region
is highly disparate, Bookhagen and Strecker (2008) found a clear rainfall peak (>
3500 mm yr.−1) at a mean elevation of 1300 ± 170 m along the eastern slopes of the Andes.
With higher altitudes (> 2000 m a.s.l.), precipitation is generally decreasing to less than
1000 mm yr.−1 (Espinoza Villar et al. 2009).

The long-term mean annual precipitation over the entire UAB in period 1981–2010 was
2204 mm of which 1476 mm or 67 % run off as streamflow at outlet gauge São Paulo de
Olivença. Streamflow data for this gauge were obtained from the Global Runoff Data Center
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Fig. 1 a Elevation map of the UAB including stream gauges and their runoff coefficients based on WFDEI
precipitation and observed runoff (AET = actual evapotranspiration after water balance closure); b distribution of
significantly cloud affected forests (source: Mulligan 2010)
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(GRDC). Streamflow data for the gauge next to the outlet, Tabatinga, was provided by
the Brazilian National Water Agency (ANA), while all other upstream gauges used in
this study (Fig. 1a) were obtained from the Observation Service SO HYBAM (www.ore-
hybam.org). As shown in Fig. 1a, runoff coefficients increase in Andean sub-basins to
unrealistically high values close to or even higher than 1. Similar high runoff coefficients
were reported by previous studies using the ground-based HYBAM and several satellite-
based precipitation data sets (e.g. Nerini et al. 2015; Zubieta et al. 2015; Zulkafli et al.
2013; Zulkafli et al. 2014). This most likely indicates a systematic underestimation of
Andean precipitation caused by observational errors (across products) or unaccounted
sources of water (e.g., CWI).

2.2 Modification of WFDEI precipitation data

Our study is based on precipitation data derived from reanalysis, the WATCH Forcing
Data methodology applied to ERA-Interim data – WFDEI (Weedon et al. 2014). In the
Amazon Basin, ERA-40 reanalysis data (Uppala et al. 2005) were found to underestimate
precipitation in the rainy season and to slightly overestimate precipitation in the dry
season (Betts et al. 2005). According to the newer interim reanalysis (ERA-Interim),
from which the WFDEI data are derived, annual precipitation is largely unbiased
although the seasonal amplitude of precipitation remains too small (Betts et al. 2009).
Recently, Monteiro et al. (2015) compared different reanalysis-based precipitation prod-
ucts with measurements of more than 2000 rain gauges in Brazil and recommended using
WFDEI data for large-scale hydrologic model applications. To consider both potential
errors of WFDEI over complex terrain and CWI as an unaccounted source of water, we
modified the WFDEI data by applying correction factors.

The topographic modification of WFDEI data utilizes the high resolution precipitation
climatology calculated by Nesbitt and Anders (2009) from the TRMM Precipitation
Radar (PR) 2 A25 algorithm. An error model developed by subsampling the TMPA as
sampled by the PR indicates that the climatology at 0.1° resolution can reasonably
capture precipitation gradients in regions of heavy precipitation, notably in the Andes
(Nesbitt and Anders 2009). We used an updated version (v2) of the climatology
consisting of average seasonal precipitation rates for the period 1998 to 2008 on a
0.05° grid between 36° N/S (https://publish.illinois.edu/snesbitt/data/). From Fig. 2a it
is evident that the TRMM climatology reproduces narrow zones with heavy rainfall (>
10 mm day−1) along the eastward slopes of the Andes, largely between 500 and 2000 m
in elevation. Aggregating the climatology to a 0.5° resolution (TRMM_aggregated in
Fig. 2a) allows for a direct comparison with the WFDEI dataset. While in the TRMM
climatology highest precipitation rates occur along the eastern Andes, the WFDEI dataset
displays a particularly wet zone also in the north and north-east of the UAB. Moreover,
the TRMM climatology reproduces only 80 % of the annual WFDEI precipitation on a
basin average, i.e. 1707 compared to 2132 mm. The TRMM climatology most likely
underestimates basin wide precipitation since WFDEI compares very well with the
estimates of the ground-based HYBAM dataset (2143 mm yr.−1) as reported by
Zubieta et al. (2015). It nevertheless seems appropriate to impress the spatial pattern of
the TRMM climatology with higher precipitation inputs along the eastern flanks of the
Andes on the WFDEI dataset while maintaining the basin wide amount of WFDEI
precipitation. Therefore, we derived TRMM correction factors (α) for each 0.5° grid
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cell by dividing the area-normalized average precipitation of TRMM by the area-
normalized average precipitation of WFDEI, such that:

Ti;s
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N

X N
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W̅ i;s
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X N
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where T
�

and W
�

represent for TRMM and WFDEI, respectively, the average daily
precipitation rate (mm) for each individual 0.5° grid cell i within a season s (DJF,
MAM, JJA, or SON) in the period from 1998 to 2008. N is the total number of all grid
cells in the UAB (N = 405). The seasonal TRMM factors are shown in Fig. 2b. Values
higher than 1 mainly occur in the eastern Andean region, whereas values lower than 1
are concentrated in the highest and lowest parts of the UAB, i.e. in the intra-Andean
valleys and in the northern and north-eastern lowlands. A similar spatial pattern is
observed across all seasons, although the adjustment factors slightly differ from each
other. We applied the seasonal TRMM factors as multipliers to the daily gridded fields of
WFDEI rainfall (W) to derive the TRMM-modified WFDEI dataset (WT), hereafter
referred to as WFDEI_TRMM:

WT i;s;t ¼ αi;sWi;s;t ð2Þ

where t is the day within the full period of available WFDEI data, i.e. 1961–2010.
As intercepted cloud water in forested tropical Andean catchments may contribute to

streamflow as an unaccounted source of water with more than 10 % across all seasons
(Clark et al. 2014), we additionally applied CWI correction factors to the WFDEI precipitation
data. CWI factors (β) were derived by rescaling the fractional cover of cloud forests as
provided by Mulligan (2010) to the 0.5° resolution of WFDEI (Fig. 2c). We considered two
scenarios, one assuming that cloud forests gain 15 % more precipitation (γ = 0.15) which is in
agreement with the findings of Clark et al. (2014), and another more extreme scenario with
50 % of additional water input (γ = 0.5):

W
0
i;t ¼ 1þ γ βið ÞWi;t ð3Þ

where W
0
i;t is referred to as either WFDEI_CWI15 or WFDEI_CWI50 depending on

the value used for γ. Likewise, the CWI correction was imposed over the TRMM-
modified WFDEI data, leading to two additional datasets: WFDEI_TRMM_CWI15
and WFDEI_TRMM_CWI50.

It is worth mentioning that basin-wide daily precipitation rates of all modified datasets
are similar to the rates of the original WFDEI data (Table 1). While the TRMM-based
modification had no effect on mean precipitation at the basin scale, the spatial distribu-
tion of precipitation changed remarkably (Fig. S1 in the supplements). The CWI correc-
tion, in contrast, led to slightly increased mean precipitation rates but generally retained
the spatial pattern of WFDEI precipitation. Both methods resulted in increased precip-
itation rates in the eastern Andean region, mainly at altitudes between 500 and 2000 m.
A combination of both modifications (WFDEI_TRMM_CWI) appears reasonable be-
cause each method accounts for different potential sources of errors in the precipitation
data. Maps of average daily precipitation rates for each of the modified datasets can be
found in the supplements (Fig. S1).
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2.3 Hydrologic model simulations

We applied the original WFDEI precipitation and each of the modified datasets in daily
resolution to drive five spatially distributed hydrologic models, i.e. (1) the HBV model
(Bergström 1995), (2) the Mesoscale Hydrologic Model (MHM) (Kumar et al. 2013;
Samaniego et al. 2010), (3) the Soil and Water Assessment Tool (SWAT) (Arnold et al.
1998), updated for improved representation of tropical perennial vegetation (Strauch and

Table 1 Average daily precipitation rates (1998–2008) for the UAB according to WFDEI and all modified
datasets

Precipitation dataset Mean (mm/d) Minimum (mm/d) Maximum (mm/d) Standard dev. (mm/d)

WFDEI 5.8 0.9 13.1 2.8

WFDEI_CWI15 5.9 0.9 14.3 2.8

WFDEI_CWI50 6.1 0.9 17.1 2.9

WFDEI_TRMM 5.8 0.6 12.6 2.7

WFDEI_TRMM_CWI15 5.9 0.6 13.7 2.7

WFDEI_TRMM_CWI50 6.2 0.6 16.3 3.0

a)

b)

c)

Fig. 2 a Average precipitation rates (mm day−1) in period 1998–2008 of the WFDEI dataset, the high resolution
0.05° TRMM climatology, and the aggregated 0.5° TRMM climatology as well as the correction factors used in
this study: b the topographic correction factors derived for different seasons (Eq. 1) and c the CWI correction
factors expressed as fractional cover of cloud forests (Mulligan 2010) rescaled to 0.5° resolution
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Volk 2013), (4) the Soil and Water Integrated Model (SWIM) (Krysanova et al. 1998), and (5)
WaterGAP3 (Verzano 2009). A brief description of each model in terms of spatial
disaggregation, the representation of soils and vegetation, required meteorological input
data, and methods for calculating potential evapotranspiration as well as for runoff
routing is provided in the editorial of this special issue (Krysanova and Hattermann),
which also lists the shared sets of input data (e.g. topography, land cover, soils) and basic
setup and modeling protocols.

For this study, all required meteorological forcing data (i.e. precipitation, temperature, solar
radiation, wind speed, and air humidity) were obtained from WFDEI. This is contrary to the
ISI-MIP2 model setup guidelines which requested the use of WATCH data, the predecessor of
WFDEI, due to the fact that the Global Circulation Model (GCM) climate scenarios were bias-
corrected using WATCH data (see Krysanova and Hattermann (this special issue) for more
details). This study, however, could not utilize WATCH because the dataset ends in year 2001
and is thus not appropriate for the modification based on the TRMM climatology (1998–
2008). None of the hydrologic models was specifically calibrated for this study, neither for a
specific gauge nor for a specific precipitation input dataset to avoid the modeling bias
introduced by constraining the model to a specific dataset. Each modeler was requested to
use a model version with typical, physically meaningful a priori parameter values or the basic
setup of the ISI_MIP2 project (Krysanova and Hattermann, this special issue).

The performance of each model to simulate monthly streamflow in the period from 1998 to
2010 at each of the nine stream gauges (Fig. 1) was evaluated based on standard objective
metrics, the Nash-Sutcliffe-Efficiency (NSE) and the percentage bias (PBIAS). NSE can range
from −∞ to 1. Negative values indicate that the observed mean would be a better predictor for
the observed time series than the modelled time series and a value of 1 implies a perfect fit to
observations. PBIAS can range from −100 to +∞, where negative values indicate underesti-
mation and positive values indicate overestimation of observed streamflow. Each hydrologic
model was run six times, each time using a different precipitation input (Tab. 1) while all other
model settings were kept constant.

3 Results & discussion

The modification of WFDEI precipitation based on TRMM and/or CWI correction factors
generally improved the performance of each hydrologic model. However, the level of im-
provement depends on the location (stream gauge), the type of modification, and the hydro-
logic model. In order to depict the general pattern of model performance in relation to each
type of modification we analyzed the ensemble mean (Fig. 3), i.e. the average runoff time
series considering all models. The model specific results are also provided in the supplemen-
tary material (Figs. S2-S6).

Figure 3 clearly illustrates that - based on the original WFDEI data - the ensemble mean
performance was remarkably poor for mountainous sub-basins within the eastern Andean
region (i.e. gauges Francisco de Orellana, Chazuta, Borja, and Lagarto), with NSE ranging
from −1.43 to 0.10 and PBIAS ranging from −50.9 % to −25.7 %. Figure 4 shows the
systematic underestimation of runoff based on WFDEI exemplarily for the gauges Francisco
de Orellana and Borja. For these gauges, Zulkafli et al. (2014) reported slightly better
performance values using the JULES model based on TMPA version 7 precipitation, with
NSE and PBIAS of −0.47 and −16.5 % for Francisco de Orellana and −0.34 and −40.4 % for
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Borja, respectively. The best, though still poor, modelled runoff results for these gauges were
recently published by Zubieta et al. (2015). They report NSE and PBIAS values of −0.15 and
−20.1 % for Francisco de Orellana and 0.23 and −3.9 % for Borja, respectively, using the
MGB-IPH model driven by ground-based HYBAM precipitation data. For gauge Borja, their
results - especially the low PBIAS - are surprising since the runoff ratio according to the
HYBAM observations was estimated to be 1.34 (Zubieta et al. 2015); observed runoff in this
watershed was thus 30 % higher than observed precipitation. Compared to our WFDEI-based
results, model performance was similar or even worse when TMPA version 6 data (Zulkafli et
al. 2014) or alternative satellite products, such as CMORPH and PERSIANN were used
(Zubieta et al. 2015). These recent results highlight how challenging Andean watersheds are
for hydrologic model applications. With increasing catchment area, however, NSE and PBIAS
values generally improve to 0.67 and −8.8 % at the outlet gauge São Paulo de Olivença
(Fig. 3), confirming that model performance at the catchment outlet is not necessarily
representative for the performance at internal gauges (cf. Hall 2004).

The modification of precipitation data considerably improved runoff simulations for all
stream gauges, except for gauge Tabatinga. The effect was strongest for the Andean watersheds,
especially at gauge Borja where the NSE for the ensemble mean increased by almost two units to
0.53 and PBIAS decreased to only −1.8 % (Fig. 3). This clearly shows the value of accounting
for the spatial pattern of the TRMM climatology and CWI in cloud forest affected regions.
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There is, however, no clear indication as to which type of modification is best for the whole
UAB. The combined modification including TRMM and the strongest CWI correction,
WFDEI_TRMM_CWI50, worked best for gauges Borja (see also Fig. 4), Lagarto and São
Paulo de Olivença, while WFDEI_TRMM_CWI15 (combined modification but with lower
CWI correction) was best for gauges Requena and San Regis. In contrast, considering only
TRMM (WFDEI_TRMM) was most advantageous to simulate runoff at gauge Tamshiyacu and
considering only a CWI correction (WFDEI_CWI50)worked best for gauge Francisco deOrellana
where the TRMM-basedmodification in turn has led toworsemodel performance (see also Fig. 4).

This shows that errors in the original WFDEI data follow a complex spatial pattern that
cannot be fully accounted for by any of the modified datasets. For example, the CWI
correction factors cannot reflect the strong variability of CWI with location, site exposure
and the type of cloud forest as observed in numerous field experiments (Bruijnzeel et al. 2011;
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supplementary material (Figs. S7-S43)
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Giambelluca and Gerold 2011). Nevertheless, our results show that simple yet plausible
adjustments can already improve hydrologic simulations in the UAB to a large extent. On
average – across all models and gauges – NSE and PBIAS could be improved from 0.11 to
more than 0.45 and from 25 % to less than 15 %, respectively, using any of the following four
modified datasets (sorted by increasing NSE): WFDEI_TRMM, WFDEI_CWI50,
WFDEI_TRMM_CWI15, WFDEI_TRMM_CWI50. It is worth mentioning that this sorting
and the achieved performance values can vary depending on the hydrologic model selected,
but the modifications consistently outperformed the original WFDEI precipitation in every
case (cf. Figs. S2-S6 in the supplementary material).

The only gauge where each of the modified precipitation datasets had worsened the model
performancewas Tabatinga. The gauge appeared already as an exception by having a significantly
smaller observed runoff coefficient (0.6) than the four other lowland gauges including the basin
outlet (0.67–0.73). Tabatinga was thus the only gauge for which the ensemble simulation did not
underestimate observed runoff based on the original WFDEI dataset. The modified precipitation
datasets led to increased runoff at all gauges, either directly by assuming additional cloud water
input (CWI correction) or indirectly by relocating precipitation tomountainous regions with lower
evapotranspiration and higher surface runoff (TRMM correction). This caused an overestimation
of runoff for Tabatinga. Though we cannot explain with certainty why the observed runoff ratio
and thus the model results are significantly different for this gauge, inconsistencies in streamflow
estimates by applying different rating curvesmay play amajor role. Streamflow data for Tabatinga
were obtained online from the hydro-meteorological information system of ANA (http://www.
snirh.gov.br/hidroweb/), while the data for all other gauges were obtained from HYBAM or
GRDC. The uncertainty of streamflow rates measured byHYBAM is usually very low, around 5–
10 % for the Amazon foreland (Filizola and Guyot 2004; Filizola et al. 2009).

The results of each hydrologic model are of course dependent on their respective param-
eterization and model structure. We refused to conduct a comprehensive calibration of each
model because this would have increased the risk to compensate potential errors in the
precipitation input data and could have introduced biased results. We, however, acknowledge
that the model performance could have further increased by allowing the explicit calibration of
each individual model to a specific input dataset. Although parameter uncertainty could not be
addressed in this study, our approach of using an ensemble of hydrologic models takes into
account model structural uncertainty and should therefore allow for a robust assessment of
different precipitation datasets. The assessment was based on observed and modelled runoff.
However, we also compared the results with an independent dataset on actual evapotranspi-
ration (AET) provided by the MOD16 product (Mu et al. 2013) of MODIS. Both, the observed
AET after waterbalance closure (precipitation minus observed runoff) and the simulated AET
(precipitation minus simulated runoff) increased and were thus closer to the AET estimated by
MOD16, in particular for the ‘critical’ montane subbasins, when considering the proposed
correction of precipitation data (cf. Figs. S44 and S45 in the supplementary material). This
further highlights the advantage of the presented approach.

4 Conclusions

This study provides simple methods to adjust globally available precipitation data for hydro-
logic model applications in the Upper Amazon Basin (UAB), a region prone to precipitation
data errors. Our modifications are based on plausible assumptions. First, we assume that the
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global WFDEI precipitation product can be improved by impressing the spatial pattern of the
TRMM climatology, which has been proven to resolve precipitation gradients in regions of
heavy precipitation, notably in the Andes (Nesbitt and Anders 2009). Second, we assume that
cloud water interception is an important but unaccounted source of water that can be
considered by increased precipitation in regions that are significantly affected by cloud forests,
as mapped by Mulligan (2010).

By means of hydrologic model ensemble simulations, we found that both types of modifi-
cation can significantly improve runoff simulations, which supports our aforementioned hypoth-
esis. Combining both modifications further improved the hydrologic simulations, particularly in
Andean headwater catchments that are characterized by complex mountainous terrain and high
percentages of cloud forest. However, our study assumed static long-term surface and subsurface
water storages, although changes of those storages might have had an impact on the runoff
observed in the UAB. Therefore, the modeling approach for Andean headwater catchments
should be extended if future research can disentangle substantial effects of long-term storage
changes (e.g. accelerated glacier melt due to climate change) on large-scale runoff.

Due to their simplicity and plausibility, the presented methods should be easily applicable
to other precipitation products and hydrologic model applications, for the UAB or other
tropical montane watersheds with similar large precipitation gradients and cloud forest cover-
ages. The data required to apply these methods are open source (TRMM climatology: https://
publish.illinois.edu/snesbitt/data/, cloud forest fractional cover: http://www.ambiotek.com/
tropicalhydrology/). Users can adjust the amount of additional water input in cloud forests
(parameter γ, Eq. 3) according to their region. Although our results are not clear in this regard,
a CWI input of 15 % of precipitation is certainly much more realistic than a 50 % scenario (cf.
Clark et al. 2014). Additional studies analyzing the catchment-scale water budget in tropical
montane cloud forests with particular consideration of CWI, similar to the work of Clark et al.
(2014), are needed to improve the empirical basis for the adjustment of precipitation. Since our
approach ignores temporal dynamics of CWI, promising avenues for future research could also
involve (1) daily adaptation strategies by considering actual temperature and atmospheric
moisture as well as (2) climate change induced shifts in the occurrence of fog and the spatial
distribution of cloud forests. Smaller-scale studies which do not depend on global datasets
should of course prefer local measurements of precipitation and fog deposition (if available).
Large-scale or global studies such as ISI-MIP2, however, should benefit from the presented
approach to adjust tropical montane precipitation. As an example, global precipitation datasets
that are improved for tropical montane regions could be used to bias-correct GCM climate
scenario data in order to increase the reliability of climate change impact studies.
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