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Abstract Estimating the exposure of agriculture to climate variability and change can help us
understand key vulnerabilities and improve adaptive capacity, which is vital to secure and
increase world food production to feed its growing population. A number of indices to estimate
exposure are available in literature. However, testing or validating them is difficult and reveals
a considerable variability, and no systematic methodology has been developed to guide users
in selecting indices for particular applications. This need is addressed in this paper by
developing a flowchart from a conceptual model that uses a system’s approach. Also, we
compare five approaches to estimate exposure indices (EIs) to study the exposure of agricul-
ture to climate variability and change: single stressor-mean climate, single stressor-extreme
climate, multiple stressor-mean climate, multiple stressor-extreme climate; and combinations
of the above approaches. The developed flowchart requires gathering information on the
region of study, including its agriculture, stressor(s), climate factor(s) (CF), period of interest
and the method of aggregation. The flowchart was applied to a case study in Kansas to better
understand the five approaches to estimate EIs and the implications of the choices made in
each step on the estimated the exposure. The flowchart provides options that guide EI
estimation by selecting the most appropriate stressor(s), associated CF(s), and aggregation
methods when a detailed methodological analysis is possible, or proposes a default method
when data or resources do not allow a detailed analysis. Climate adaptation involves integra-
tion of a multitude of factors across complex systems. A more standardized approach to
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assessing exposure can promote information sharing across different locations and systems as
this rapidly evolving area of study moves forward.

1 Introduction

The emerging consensus is that the world likely will exceed 9 billion people by 2050 and is
unlikely to stabilize in the 21st century (Gerland et al. 2014), requiring 70–100 % more food
production (Tscharntke et al. 2012). Even the most optimistic scenarios require at least a 50 %
increase in food production (Horlings and Marsden 2011). Threats posed by climate variability
and extremes to land and water resources are heightening the challenge of increasing food
production (Horlings and Marsden 2011). As the projected degree and pace of climate change
accelerates, exacerbed by other biophysical limits such as declining per-capita land and water
and rising demand for agricultural products, the need for a systemic, powerful adaptation of
agriculture to variable and changing conditions is increasingly obvious (Rickards and Howden
2012). Climate change presents unprecedented challenges to the adaptive capacity of agricul-
ture by influencing crop distribution and production and by increasing the economic and
environmental risks associated with a multitude of agricultural systems (Walthall 2012).

Much of the current understanding of adaptive capacity to climate stressors comes from
vulnerability assessments (Adger et al. 2007). The vulnerability of a system to climate change
is characterized in the earlier IPCC report (McCarthy et al, 2001) as a function of three
dimensions: the exposure, sensitivity and adaptive capacity of the system (Antwi-Agye et al.
2012). McCarthy et al. (2001) defined exposure as the “degree of climate stress upon a particular
unit of analysis”. The vulnerability of an agricultural system to climate change is dependent in part
on the character, magnitude, and rate of climate variation to which a system is exposed (Walthall
2012). Hence, exposure to adverse climatic conditions is an important aspect of agricultural
vulnerability (Jackson et al. 2012). In a recent Intergovernmental Panel for Climate Change report
(IPCC-AR5), exposure is determined to be an important precondition for considering a specific
vulnerability as key. This is because if a system is not at present nor in the future exposed to
hazardous climatic trends or events, its vulnerability to such hazards is not relevant (Oppenheimer
et al. 2014). Thus, estimating the exposure of agriculture to climate change will help us understand
a region’s key vulnerabilities and improve its adaptive capacity, which is important for increasing
food production to meet growing world demand.

The objectives of this study are to (1) compare five conventional approaches used to study
the exposure of agriculture to climate change, (2) develop a systems approach to summarize in
a flowchart the steps and the most relevant processes and information that should be taken into
account to estimate the exposure of agriculture to climate change -, and (3) present a case study
to illustrate the implications of the choices made in the steps of the flowchart and the different
approaches to estimate EIs.

2 Methods for estimating exposure

2.1 Definitions of exposure in relation to climate

The definitions that systematize exposure in the context of climate change and variability are
multiple, overlapping, and evolving (Oppenheimer et al. 2014) as summarized in supplementary
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material (S.1). In this study, the general definition of exposure is tailored for agricultural
production: the presence of agro-ecosystems in settings that could be adversely affected by
climate stress due to climate variability arising from mean and extreme events affecting
agriculture production.

2.2 Review of exposure methods: index-based approaches

A number of methods are available in the literature to estimate exposure and can be classified
as econometric methods or indices. Econometric methods use socioeconomic survey data
based on questionnaires, whereas an index is calculated using one or more indicators (Deressa
et al. 2008). An index-based approach is the focus of this study because 1) indices are powerful
tools to communicate technical data in relatively simple terms which portray the interrelation-
ships among climate and other physical and biological elements of the environment to help
reveal evidence of the discernible impacts of climate change (Kadir et al. 2013); 2) much of the
current understanding of exposure of agriculture to climate change comes from vulnerability
assessments based on indices; 3) indices often provide important insights on the factors,
processes, and structures that promote or constrain adaptive capacity; 4) the index-based
approach is valuable for monitoring trends and exploring conceptual frameworks (Luers
et al. 2003; Deressa et al. 2008); and 5) indices have often been used to estimate
exposure in agriculture (Luers et al. 2003; Simelton et al. 2009; Challinor et al. 2010;
Antwi-Agyei et al. 2012) and is aligned to areas including water resources (Babel et al. 2011)
and ecosystems (Fraser et al. 2003).

In this paper, exposure index (EI) refers to the indices calculated to represent the exposure
of agriculture to climate change and variability. Stressors refer to events/variables/natural
hazards that stress agriculture, including extreme temperature, drought, floods, landslides, or
sea-level rise. Climate factors (CFs) refer to variables (e.g., crop failure temperature) or
statistics (e.g., standard precipitation index, coefficient of variation in rainfall) that are calcu-
lated to represent one or more stressors.

Numerous EIs are available throughout the literature to estimate exposure of agriculture to
climate change and variability (Table S.1). In summary, Table S.1 shows that EIs are also referred
to as a drought index (Simelton et al. 2009; Challinor et al. 2010), climate change index (Baettig
et al. 2007), hazard EI (Anh 2011), and climate vulnerability index (Jackson et al. 2012).

This study identified exposure assessments are available for many regions in different parts
of the world (China, Ethiopia, Ghana, India, South America, Tajikistan, USA), indicating gaps
in some regions (e.g., temperate and boreal regions). Common characteristics in the exposure
assessments include: They 1) are estimated for a range of spatial scales from household to
regional to global (O’Brien et al. 2004a; O’Brien et al. 2004b; Baettig et al. 2007; Challinor
et al. 2010; Fraser et al. 2013); 2) are estimated for a variety of crops; 3) use a CF to represent a
stressor; 4) are calculated using data from multiple sources, such as measured data (Simelton
et al. 2009; Heltberg and Bonch-Osmolovskiy 2011; Antwi-Agyei et al. 2012), modeled data
(O’Brien et al. 2004b; Baettig et al. 2007; Gbetibouo et al. 2010), survey data (Pandey and Jha
2012), satellite remote-sensing products (Dong et al. 2012), maps (Anh 2011), and/or earlier
studies (Bhattacharya and Das 2007); 5) are estimated at multiple time periods such as past,
present, and/or future -(O’Brien et al. 2004a; Simelton et al. 2009; Antwi-Agyei et al. 2012;
Fraser et al. 2013); and 6) require an aggregation method when multiple CFs are used
(Table S.1b). These characteristics are arranged in steps and used in the development of the
flowchart to estimate EI.
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Issues and challenges in calculating EI include: a) no systematic methodology has been
developed to operationalize the stressors (O’Brien et al. 2004b), b) testing or validating the different
EIs involves considerable subjectivity and difficulty (Luers et al. 2003; Deressa et al. 2008), and c)
the implications of using single/multiple stressor(s), single/multiple CF(s) or combinations on the
estimated EI have not been addressed in detail in the literature. To address this need a flowchart is
developed in this study using the systems framework (Fig. 1b and c) to estimate EI. The flowchart
is comprised of six steps and uses regional characteristics such as: type of agriculture or landuse;
stressor(s); climate factor (CF); time period of interest; and the method of aggregation.

2.3 Summary of index-based approaches

The various EIs in Table S.1 can be summarized by classifying them into five conventional
approaches. In approach 1: single stressor – mean climate, the EI is calculated from a single
stressor and single/multiple CFs. The CFs describe the mean climate of the stressor. In approach
2: single stressor – extreme climate, the EI is also calculated from a single stressor and single/
multiple CFs, but unlike in approach 1, the CFs describe the extreme climate of the stressor. In
approach 3, multiple stressors – mean climate, the EI is calculated from multiple stressors, and
each stressor is represented using single/multipleCFs that describe the mean climate. In approach
4, the EI is calculated from multiple stressors, and each stressor is represented using single/

Fig. 1 a Location map of the meteorological stations used in Kansas. b Conceptual framfork using systems
approach to estimate exposure of agricultural production to climate change and variability (c) Flowchart to
estimate Exposure Index (EI) to represent the exposure of agriculture to climate variability and change. CF in the
figure refers to climate factors; PCA refer to principal component analysis
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multipleCFs that describe extreme climate. Approach 5 is a combination approach in whichCFs
can describe both mean and extreme climate and can represent single or multiple stressors.

An EI estimated using approaches 1 to 5 can be calculated using Eq. 1.

EIi ¼ Average value of CF for a period

The actual value of CF for a year
¼

X Ns

k¼1
Wk; j

X Nc

j¼1

X Ny

i¼1
Ck; j;i

Ny
Ck; j;i

ð1Þ

where, Ck,j,i are the values of a change factor (at the ith year, for a jth CF representing the kth

stressor) at an individual meteorological station, or are the averaged meteorological time series for
a region for the designated temporal domain. Ny, Ns and Nc represents the number of years in the
temporal domain, number of stressors and number of CFs respectively. Wk,j are the weights
provided for the jthCFs representing kth stressor. The numerator in the Eq. 1 represents the average
value of the CF for a normal time-period. This period is subjective to the length of record
available. EI is the ratio, EI = 1means there is no exposure of the system due to climate variability
and change. EI deviating from 1 (EI > 1 or EI < 1) indicates that the system is exposed to the
climate stressors. The greater the deviation from 1, the greater the exposure. TheCFs are preferred
in absolute scale to avoid negative values (e.g., temperature-based CF are converted to Kelvin
scale). See supplementary material-S.2 for further application of this equation and examples.

2.4 Study region and data used

Kansas was chosen as the study region because it is a part of the bread basket of the United
States (Tubiello et al. 2002). It produces approximately 16 % of the U.S. wheat crop (it was the
top-producing state 9 of the last 10 years) and 50 % of U.S. grain sorghum (USDA-NASS
2006). Approximately 90 % of the area of Kansas is farmland (pasture and crops), and the state
has the second highest area under cropland of all U.S. states. Only about 10 % of the cropland
is irrigated, indicating that much of Kansas’ crop production is dependent on rainfall.

Daily rainfall and air temperature (maximum, minimum and average or Tmax, Tmin, Tavg)
data from 23 centennial weather stations across Kansas were downloaded from the High Plains
Regional Climate Center (Anandhi et al. 2013a). The station details are provided in Fig. 1a and
Table S.2, respectively. The records extended from the late 1800s for a few stations, but many
observations began in the early 1900s; consequently, the start dates of the records are different
but the end dates are the same (2009). The records were selected to cover non-overlapping
~30-year timespans backward from 2009. The four time periods are through 1920, 1921–1950,
1951–1980, and 1981–2009. These stations were selected for their long-term data quality
based on criteria such as consistent observation times, low potential for heat-island bias, and
other quality assessments (Easterling et al. 1999; Robeson 2002).

3 Results

3.1 System’s approach to estimate exposure of agricultural production to climate
change and variability

A few studies have used a system’s approach to address exposure while addressing vulnera-
bility assessments in general (Gallopín 2006) and agricultural water resources in particular
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(Bär et al. 2015). This study uses a system’s approach to estimate the exposure of agricultural
production to climate change and variability (Fig. 1b). In this approach, an agricultural
production is the system (represented as oval in Fig. 1b). This has internal processes
(symbolized as spiral in Fig. 1b). Agricultural production system is considered a complex
system which utilizes multiple resources (e.g. water, fertilizer) and provides multiple ecosys-
tem services (e.g. food, climate change mitigation) (Zhang et al. 2007). When the agricultural
production system is exposed to stressors (represented as dotted stars in Fig. 1b) they are
considered a complex system. In this study, climate change and variability are the stressors
which are represented using their characteristics such as type, magnitude, intensity; speed etc.
Also, complex systems have characteristics (such as self-organization, emergence, chaos, and
non-linearity) and operate at a wide range of spatial and temporal scales with many multi-scale
interactions (Slingo et al. 2009; Hopkins et al. 2011). In this study, the characteristics of the
complex system are represented using indicator-based approaches calculated from climate
stressors and CFs. For example, crop failure temperature and yield decreases can be used as
indicators to relate the characteristics of climate change/variability and agricultural production
systems under stress. The advantages of using indicators were discussed in section 2.2. In
general, the arrows in Fig. 1b show the direction of flow. There are two sets of arrow in Fig.1b
(thin and bold arrows). The flow of resources into and from the agricultural production system
is represented by arrows in oval (thin arrow in Fig. 1b). These thin arrows are in both
directions, illustrating the exchanges of the system with its external environment. The bold
arrows in the Fig. 1b show the direction of the flow of processes in exposure estimations. They
also represent the direction in which time moves in the figure.

3.2 Flowchart to estimate EI

The following steps, summarized in the flowchart (Fig. 1c), are recommended for an indicator-
based approach to estimate the exposure of agriculture to climate change and variability.

Step-1: Choose the study region: The scale component is important because agriculture
can be analyzed at multiple scales (Bryant et al. 2000). The region could be based on
physical or administrative boundaries (e.g., plot, field, county, state, country, continent,
globe), and/or based on climate (e.g., point, climate zone), and/or based on hydrology
(e.g., watershed, river basin).
Step-2: Identify the agricultural crops grown in the study region and select the crop(s) to
assess. If there are several crops in a study region and the different crops have different
tolerance /vulnerability for temperatures, then the flowchart to calculate an EI could be
followed for each crop or for themost vulnerable crop in the region or a combination of crops.
Step-3: Identify and select the stressors: Rainfall variability, high and low temperature stress,
drought, and floods were the most common stressors used in estimating EI (Table S.1). The
other stressors used in the literature are potential evapotranspiration and growing season
length (e.g., a function of frost-free period, length or timing of rainy season). Location-
specific stressors may also include cyclones, landslides, sea-level rise, cloud bursts, and
hailstorms (Table S.1).
Step-4: Identify and select CF(s): One or more climate variable can be identified as
stressors. When multiple stressors are selected, each stressor can have one or more CFs.
CFs can represent mean and/or extreme values of the stressor and/or natural disasters that
affect agriculture.
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From the pool of identified climate stressors, select one or more CF for each stressor
based on data availability and relevance. Climate factors from multiple data sources (e.g.,
measurement and model) also can be used to estimate EI.
Step-5: Decide on the period of interest (start/end dates and time of the year), which will
depend on the study region, the chosen crop(s), the stressor(s), CF(s), and data sources.
For example, measured monthly rainfall may be available for longer time periods than
daily or sub-daily rainfall. Similarly, measured rainfall is available for longer time periods
than rainfall obtained from radar or satellite data. After the start and end dates are chosen,
select the time of year, which can be the entire year or the growing season or the time
period during which crop productivity is most affected. It can vary with the region, its
agriculture, and the data source. Growing season was commonly used in the literature
along with the length of measured rainfall/temperature record as the start/end date. Some
information on estimating seasons can be found in Anandhi (2010) and Anandhi et al.
(2013a, b).
Step-6: Select an aggregation method. When multiple CFs are used, an aggregation
method must be selected to estimate EI, but this is not required in the case of single
stressor-single CF combination.

The flowchart for Kansas case study area demonstrate the different steps (briefly below and
elaborated in S.3 in supplementary material).

Step 1: Choose the study region: Kansas.
Step 2: Identify and select the crops: Identified crops: sorghum, corn, soybean, and
wheat. Selected crops: corn, sorghum and soybean.
Step 3: Identify and select the stressors: Identified stressors: rainfall, maximum and
minimum temperatures, hail, windstorms. Selected stressors: rainfall, maximum temper-
ature, and minimum temperature.
Step 4: Select the CF(s) to estimate exposure: The selected CFs: average rainfall and
temperatures (Tmax, Tmin, Tavg); failure (ceiling) temperatures (days ≥35 °C); optimum
temperature range for vegetative productivity in a crop (days with 30–33 °C).
Step 5: The period of interest (start/end dates and time of the year): The start date for
100 years of data varied between 1890 and 1908; while for ~thirty year period are 1921,
1951, and 1981. The end dates for the time periods are 1920, 1950, 1980, and 2009. Time
of year: growing season [May through October (Anandhi et al. (2013a, b)].
Step 6: Estimate and validate EI: CFs were aggregated using equal weights and EIs were
calculated using Eq. 1 (elaborated in S1). Validation: estimated EIs plotted with sorghum
yield stressed by rainfall and temperatures.

3.3 EI estimated using five approaches

The differences in the estimates among the five approaches for Kansas illustrate the implica-
tions of the choices made in the various steps in the flowchart (Figs. S.1 and S.2). Using 23
centennial stations (climate stations with >100-year time series, boxplots) elicited spatial
variability and the implications of choosing the region (Step 1). The spread of 5-year moving
averages time-series plot in Fig. S.1 and boxplot in each subplot (Fig. S.2) presented variability
in exposure by station, location and by time-period. The variability in the estimated EIs for the
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different stressors [rainfall and temperatures (Tmax, Tmin, Tavg)] can be observed by the y-axis
of Figs. S.1, S.2. The implications of mean and extreme climate were highlighted by choosing
CFs for a stressor to represent mean and extreme climate (Step 4). For instance average and
minimum temperature EIs did not show a lot of variability in the time series and would be less
useful. EIs based on extremes had more variability than those on mean, but the match to
drought years was not that consistent. Choosing four different time periods and moving
averages highlighted the variability in period of interest (Step 5). Combining stressors and
CFs highlighted the variability among the five approaches (Step 6).

4 Discussion

4.1 Climate stressors

Identifying stressor(s) is an important component in estimating exposure (Fig. 1b). We
recommend using region-specific climate stressors based on expert and local knowledge
(e.g., through discussion with agronomists, breeders, plant physiologists, extension specialists
and advisors, farmer experience), literature, or data. In some cases, additional region-specific
stressors (e.g. landslides, sea-level-rise, cyclones) have been beneficial (Bhattacharya and Das
2007; Anh 2011). In addition, light, and humidity that control the growth and development of
insects, pests, and diseases in agricultural crops (Esbjerg and Sigsgaard 2014) can also be
stressors. However, data on climate variables such as solar radiation and humidity are sparse
compared with rainfall and temperature (Anandhi et al. 2012; Anandhi et al. 2014).

In the absence of expert knowledge, literature or data on region-specific climate stressors,
rainfall, and maximum and minimum temperature are recommended as climate stressors. The
default data source is measured rainfall and/or temperature records, because they are readily
available for long time periods worldwide. In situations where measurements or other data
sources are not readily available, available global datasets which include global monthly
precipitation datasets can be used.

4.2 Climate factors (CFs)

In the systems approach, we use CFs to represent the exposure of agricultural production to
climate change and variability. As global temperatures rise, crops will increasingly begin to
experience failure in traditional production regions, especially if climate variability increases or
precipitation lessens. The standard deviation of precipitation and temperatures or their coeffi-
cients of variation (CV) can be useful as CFs. Failure temperature at which plant growth,
production, and yield are severely affected (Hatfield et al. 2008) can also be used as CFs.
These critical temperatures are documented for the major crops in the world [Table 2.3 in
Hatfield et al. (2008)] and can be applied in developing CFs for vulnerability studies. Specific
stages of growth (e.g., flowering, pollination, grain filling) are particularly sensitive to weather
conditions and critical for final yield (Lavalle et al. 2009).

Some CFs can be site specific. In tropical regions, heavy rainfall and strong winds are
destructive to crops (Lansigan et al. 2000). In general, extreme high and low rainfall decreases
yield (e.g. high rainfall prior to harvesting and low rainfall during critical crop growth stages)
in many regions of the world. Indices such as the standard precipitation index (calculated from
precipitation) and the PDSI [calculated from precipitation and temperature, Dai et al. (2004)]
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could be used as CFs to represent drought and floods (Yan et al. 2013). These indices allow
comparisons across time and regions. The potential evapotranspiration rate calculated from
weather variablesalso could be applied as a CF because it represents the integrated effects of
changes in water availability and temperature on plant growth. Growing degree days (Anandhi
2016) and length or duration of warm/cold/wet/dry spells (Anandhi et al. 2016) during specific
growth stages can also CFs. Warm nights and hot or cold days could also be selected as CFs
because of their effects on crop yield (Prasad et al. 1999; Wheeler et al. 2000; Prasad et al.
2008). The other potential CFs include mean temperature, mean precipitation, and number of
days with precipitation due to their correlated with changes in insect phenology. These CFs
impact insects relative to their date of first appearance of an insect, changes in insect generation
time, number of generations per season, and geographical distribution (Esbjerg and Sigsgaard
2014). Specific temperature thresholds are available for very few insect pests or diseases [e.g.,
Fig. 1 in Yáñez-López et al. (2014)]. If available, they can be chosen as CFs.

An aggregated EI is calculated by combining multiple CFs to represent single or multiple
stressor(s). When aggregating CFs, all CFs can be assigned equal or different weights (Baettig
et al. 2007) based on expert judgment or statistical methods such as principal component
analysis (Deressa et al. 2008; Simelton et al. 2009), correlation with past disaster events, or
fuzzy logic (Bhattacharya and Das 2007).

To overcome issues of incommensurability when combining multiple indicators, normali-
zation of data to a unitless scale and subsequent summation of the normalized data is common
practice. This normalization/summation approach is problematic, however, because potentially
important information regarding the relationships between the original variables are obscured
(Abson et al. 2012). Although equal weight method is used in this study and is recommended
for applications where no expert knowledge or data indicate a basis for assigning CFs different
weights, the results in those situations can be highly biased by dominating CFs.

4.3 Kansas - case study

Our results highlight the subjectivity of the exposure of agriculture to climate change and
variability estimated using EIs according to the choice of region, crop, stressor, CF, period of
interest, and the approach used in estimating EIs. Climate for a region and crop and the choice
of stressors and CFs requires careful consideration; choosing the wrong stressors/CFs that can
result in overrating or underrating the vulnerability of agriculture to climate change and
variability. For example, in the case study, if only maximum temperature were chosen as the
stressor and days ≥35 °C were chosen as the CF, we would conclude that Kansas agriculture is
very highly exposed to climate variability and change and is extremely vulnerable. In contrast,
if only average temperature were chosen as the stressor and average temperature in the
growing season were chosen as the CF, we could conclude that Kansas agriculture is not
exposed to climate variability and change and is not vulnerable. We recommend estimating the
EI using approaches 1–2 to select the most representative stressors and CFs. Then calculate the
EI using Approach 5 by aggregating the selected stressors for vulnerability and risk assess-
ments. Furthermore, the EIs are affected by assigning equal weights to CFs during aggregation
(Figs. S.1 and S.2 h-i). The single CF with the largest variation will dominate the other CF;
conversely, the impact of the dominant CF can be reduced by variation in other CFs (e.g. days
with Tmax ≥35 °C dominate; Figs. S.1 and S.2 h-i). The domination of days with Tmax
≥35 °C suppresses the stressor rainfall which impacts agricultural productivity in the region.
Identification of the exposure of agriculture to climate change and variability is less subjective
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when chosen stressors/CFs involve characteristics that are representative and crucial to the
survival or degradation of agro-ecosystems exposed to climate change and variability.

4.4 Validation of EI

Validation of the EI can be carried out by comparing the estimated index with periods in which
climate change and variability have stressed agricultural production systems. These periods
can be obtained in a number of ways: (1) from earlier studies that refer to these periods as
climate causing yield reduction; (2) using information from crop performance reports pub-
lished by agricultural universities and research stations on yield reduction due to climate stress;
(3) relating low crop yield to high exposure. In this study we used the first two methods. The
droughts of the 1890s, 1930s, and 1950s have long served as benchmarks for severe and
sustained drought in Kansas (Woodhouse et al. 2002). Although the spatial dimensions of
these droughts were different, both the 1930s and 1950s had severe societal and ecological
impacts on Kansas (Layzell and Evans 2012), thereby indicating high exposure and sensitivity
to climate. The droughts were quantified using the PDSI (Dai et al. 2004). High exposure of
agriculture to climate change and variability during those periods can be observed in our study
based on high EIs when using temperature and precipitation as stressors. Most years with high
exposure during 1957 to 2008 observed in this study coincide with the years reported as yield-
limiting for grain sorghum crop in this region [Table 1, Assefa et al. (2010)].

While comparing EIs with yield data over multi-decadal time periods, we have to be aware
that major crop yields doubled in the second half of the 20th century (Khan and Hanjra 2009).
Similar increases in grain sorghum, corn and soybean production were observed in the study
region during the period as a result of hybrid improvement and adoption of better agronomic
practices (Assefa and Staggenborg 2010; Assefa and Staggenborg 2011; Assefa et al. 2012;
Rincker et al. 2014). Agricultural changes are further influenced by policy changes, urban
development, and economic and social changes (Bryant et al. 2000). Such changes can mask
the sensitivity of agriculture to climate change and variability. In general, it is difficult to
separate climate effects from those of improved agricultural technologies when applying
historic crop yields in an analysis (Lavalle et al. 2009).

5 Summary

In this paper, we used the system’s approach to represent exposure of crop production to
climate stressors, and summarized index-based approaches to estimate EIs using a conceptual
diagram and flowchart. Applying this flowchart to estimate EIs requires information about the
region of study, its agriculture, the climate stressor(s), climate factor(s) (CF), the period of
interest, and the method of aggregation. The flowchart was applied to a case study in Kansas to
better illustrate the steps; implications of the five approaches; subjectivity of stressor(s), CF(s),
time periods, and study region when selecting an EI for application to a particular system.

When possible, EIs should be developed using the most appropriate stressor(s), associated
CF(s), and aggregation methods based on a detailed methodological analysis. A detailed study
is suggested. However, such a detailed study is likely to be too cumbersome because of
resource constraints or insufficient information to provide conclusive evidence about which
stressor(s), CF(s) and aggregation methods to employ. In that case, this study recommends
using rainfall and temperature as the default stressors, CF(s) representing the mean and
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extreme statistics as the default CFs, and equal weights to aggregate the CFs for calculating EI.
This can be used as a preliminary start for an area, but again it has to be stressed the expert
knowledge about critical factors for crop production needs to be included. Our discussions
include highlighting this uncertainty and recommendation of local knowledge.

This analysis will be useful for general policy options (such as investment in irrigation,
water harvesting, and other natural resource conservation) for decreasing the risk of exposure
of the farmers and increasing their adaptive capacity to climate change and variability. EI’s
developed following the conceptual model and the steps in the flowchart can help prioritize our
future research on risk and adaptation.

Calculating EIs for projected future temperature and rainfall and other dimensions of
vulnerability, such as sensitivity and adaptive capacity, are deferred for future work. For a
later paper it would be of interest to compare the use of the methodology in the flowchart and
the application of the conceptual model to multiple locations with contrasting conditions.
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