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Abstract We describe a new approach that allows for systematic causal attribution of
weather and climate-related events, in near-real time. The method is designed so as to facil-
itate its implementation at meteorological centers by relying on data and methods that are
routinely available when numerically forecasting the weather. We thus show that causal
attribution can be obtained as a by-product of data assimilation procedures run on a daily
basis to update numerical weather prediction (NWP) models with new atmospheric observa-
tions; hence, the proposed methodology can take advantage of the powerful computational
and observational capacity of weather forecasting centers. We explain the theoretical ratio-
nale of this approach and sketch the most prominent features of a “data assimilation–based
detection and attribution” (DADA) procedure. The proposal is illustrated in the context of
the classical three-variable Lorenz model with additional forcing. The paper concludes by
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raising several theoretical and practical questions that need to be addressed to make the
proposal operational within NWP centers.

Keywords Event attribution · Data assimilation · Causality theory · Modified Lorenz
model

1 Background and motivation

Providing causal assessments about episodes of extreme weather or unusual climate con-
ditions is an important topic in the climate sciences: it arises from the multiple needs for
public dissemination, litigation in a legal context, adaptation to climate change or simply
improvement of the science associated with these events (Stott et al. 2013). The approach
widely used so far to was introduced one decade ago by M.R. Allen and colleagues (Allen
2003; Stone and Allen 2005); it originates from best practices in epidemiology (Greenland
and Rothman 1998) and is referred to as probabilistic event attribution (PEA).

In the PEA approach, one evaluates the extent to which a given external climate forcing
— such as solar irradiation, greenhouse gas (GHG) emissions, ozone or aerosol concentra-
tions — has changed the probability of occurrence of an event of interest. For this purpose,
one thus needs to compute two probabilities: (i) the probability of occurrence of the event
in an ensemble of model simulations representing the observed climatic conditions, which
simulates the actual occurrence probability in the real world, referred to as factual; and (ii)
the probability of occurrence of the event in a second ensemble of model simulations, rep-
resenting this time the alternative world that might have occurred had the forcing of interest
been absent, referred to as counterfactual.

Denoting by p1 and p0 the probabilities of the event occurring in the factual world and
in the counterfactual world respectively, the so-called fraction of attributable risk (FAR) is
then defined:

FAR = 1 − p0

p1
(1)

The FAR has long been interpreted as the fraction of the change in likelihood of an event
which is attributable to the external forcing. Over the past decade, most causal claims have
been following from the FAR and its uncertainty, resulting in statements such as “It is very
likely that over half the risk of European summer temperature anomalies exceeding a thresh-
old of 1.6◦C is attributable to human influence.” Stott et al. (2004). Hannart et al. (2015)
have recently shown that, under realistic assumptions, the FAR may also be interpreted as
the so-called probability of necessary causation (PN) associated — in a complete and self-
consistent theory of causality (Pearl 2000) — with the causal link between the forcing and
the event. The FAR thus corresponds to only one of the two facets of causality in such a
theory, while the probability of sufficient causation (PS) is its second facet.

In this setting,

PN = max 1 − p0

p1
, 0 (2a)

PS = max 1 − 1 − p1

1 − p0
, 0 (2b)

PN = max p1 − p0, 0 (2c)
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where PNS is the probability of necessary and sufficient causation. Pearl (2000) provides
rigorous definitions of these three concepts, as well as a detailed discussion of their mean-
ings and implications. It can be seen from Eq. 2 that causal attribution requires to evaluate
the two probabilities, p0 and p1, which is therefore the central methodological question of
PEA.

So far, most case studies have used large ensembles of climate model simulations in
order to estimate p1 and p0 based on a variety of methods. However, this general approach
has a very high computational cost and is difficult to implement in a timely and sys-
tematic way. As recognized by Stott et al. (2013), this remains an open problem: “the
overarching challenge for the community is to move beyond research-mode case studies
and to develop systems that can deliver regular, reliable and timely assessments in the
aftermath of notable weather and climate-related events, typically in the weeks or months
following (and not many years later as is the case with some research-mode studies)”.
Several research initiatives are presently addressing this real-time attribution challenge.
For instance, the weather@home system (Massey et al. 2014) in the context of the World
Weather Attribution initiative (http://www.climatecentral.org/wwa), the system proposed
by Christidis et al. (2013), or the Weather Risk Attribution Forecast system (http://www.
csag.uct.ac.za/∼daithi/forecast/) aim at meeting those requirements within the conventional
ensemble-based approach.

The purpose of this article is to introduce a new methodological approach that addresses
the latter overarching operational challenge. Our proposal relies on a class of powerful sta-
tistical methods for interfacing high-dimensional models with large observational datasets.
This class of methods originates from the field of weather forecasting and is referred to as
data assimilation (DA) (Bengtsson et al. 1981; Ghil and Malanotte-Rizzoli 1991; Talagrand
1997).

Section 2 explains the rationale of the approach proposed herein, presents a brief
overview of DA, and outlines the most prominent technical features of a “data assimilation–
based detection and attribution” (DADA) approach. Section 3 illustrates the proposal by
implementing it on a version of the classical Lorenz convection model (Lorenz 1963, L63
hereafter) subject to an additional constant force. Finally, in Section 4, we discuss the main
strengths and limitations of the DADA approach, and highlight several theoretical and prac-
tical research questions that need to be addressed to make it potentially operational within
weather forecasting centers in a near future.

2 Methodology

2.1 General rationale

In an operational context, a significant difficulty of PEA is that events of interest are usually
rare, i.e. they occur in regions of the climate system’s attractor that are reached quite rarely.
It may hence require a very large ensemble of simulations for the numerical model repre-
senting the climate system to reach the relevant region of the attractor. This requirement is
particularly relevant if the event is defined narrowly, based on multiple features that might
involve some combination of the atmospheric circulation, of the climate system’s thermo-
dynamic state, and of the impacts associated with the event. Simulating a sufficiently large
number of occurrences of such an event for a robust evaluation of p1 and p0 may then be
computationally very costly, and a brute force approach based on an unconstrained ensemble
may become unaffordable in an operational context.

weather@home
http://www.climatecentral.org/wwa
http://www.csag.uct.ac.za/~daithi/forecast/
http://www.csag.uct.ac.za/~daithi/forecast/
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The first general idea underlying the DADA proposal is that the latter computational bur-
den may be greatly reduced by constraining the model to explore only the relevant region
of its state space where the event under scrutiny is defined to occur. Such a selective explo-
ration of a high-dimensional state space is not new. The constrained simulation of very rare
events using complex dynamical models has been studied extensively (e.g., Harris and Kahn
(1951); Del Moral and Garnier (2005)) and is referred to as Rare Event Sampling (RES).
RES methods are based on importance sampling and probabilistic large-deviation theory
(Bucklew 2004), and they are commonly used in several areas — such as queueing, relia-
bility, telecommunication (Heidelberg 1995) — but their adaptation to a climate context has
only recently started (Wouters and Bouchet 2015).

The second general idea of the DADA proposal is to take a shortcut along this path: DA
methods present the key advantage of being already operational in weather forecasting cen-
ters to routinely update an atmospheric model with new observations in order to initialize
the forecast, and we argue that they can be used simultaneously to solve the class of prob-
lems addressed by RES methods. Carrassi et al. (2008, and references therein) have already
used a similarly selective exploration of a reduced number of phase space dimensions in the
context of DA methods designed to control chaotic dynamics.

For the purposes of PEA, we show that,by assimilating the observed trajectory of an
event into a model, one can obtain as a by-product the probability density function (PDF)
associated with this trajectory. PEA is then obtained by assimilating the observations of the
event twice, first in the factual setting of the model and second in its counterfactual setting,
and then by computing the FAR as the ratio of the two PDF values thus obtained.

Heuristically speaking, if an observed event is incompatible with the counterfactual
world but compatible with the factual one — according to the standard approach of defining
the existence of a causal link (Pearl 2000; Hannart et al. 2015) — then assimilation will act
as a crucial experiment, since the event’s observed trajectory will be easy to assimilate in
the factual setting and difficult to assimilate in the counterfactual one, merely because the
counterfactual setting physically precludes the existence of such a trajectory.

In Section 2.2, we formulate this general rationale in probabilistic terms and discuss
the relevance of the approach. We then show in Section 2.3 that, given a similar set of
hypotheses as those that underly the majority of operational DA methods, it is possible to
quantify the extent to which an observed trajectory is compatible with the model physics —
either factual or counterfactual — or not. This quantification in an operational context is at
the core of the DADA approach and it greatly facilitates real-time PEA.

2.2 Probabilistic description of the method

Let yt denote the d-dimensional vector of observations at discrete times {t = 0, 1, . . . , T }.
Here, y = {yt : 0 ≤ t ≤ T } corresponds, for instance, to the full set of all available
meteorological observations over a time interval covering the event of interest, no matter
the diversity and source of the data; typically, the latter include ground station networks,
satellite measurements, ship data, and so on, cf. Bengtsson et al. (1981, Preface, Fig. 1) or
Ghil and Malanotte-Rizzoli (1991, Fig. 1). In the present probabilistic context of PEA, the
observed trajectory y is viewed as a realization of a random variable denoted Y = {Yt : 0 ≤
t ≤ T }, i.e. there exists an ω ∈ � such that Y(ω) = y — where � denotes the sample space
of all possible outcomes and encompasses observational error, as well as internal variability.

In event attribution studies, it is recognized that defining the occurrence of an event, i.e.
selecting a subset F ⊂ �, depends on a rather arbitrary choice. Yet this choice has been
shown to greatly affect causal conclusions (Hannart et al. 2015). For instance, a generic and
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fairly loose event definition is arguably prone to yield a low level of evidence with respect to
both necessary and sufficient causality while, on the other hand, a tighter and more specific
event definition is prone to yield a stringent level for necessary causality but a reduced one
for sufficient causality.

Indeed, it is quite intuitive that many different factors should usually be necessary to
trigger the occurrence of a highly specific event and conversely, that no single factor will
ever hold as a sufficient explanation thereof. For the class of unusual events at stake in
PEA, where both p0 and p1 are very small, we arguably lean towards specific definitions
that inherently result in few sufficient causal factors or none. This conclusion immediately
follows from Eq. (1b), which yields PS � 0 when both p0 and p1 are very small.

Usually, an event occurrence is defined in PEA based on an ad hoc scalar index φ(Y)

exceeding a threshold u, i.e. pi = P(φ(Y) ≥ u); from now on, we associate i = 0 with
the counterfactual and i = 1 with the factual world. While this definition may be already
quite restrictive for u large, it is defensible to restrict the event definition even further. Such
a strategy may reduce an already negligible PS but it also may increase PN by a greater
amount; one thus expects to gain more than is lost in this trade-off. In particular, this will be
the case if additional features, not accounted for in φ(Y), can be identified that will allow
one to further discriminate between the two worlds.

Following this strategy, a central element of our proposal is to use the tightest possi-
ble event occurrence definition, i.e. the trajectory y exactly as it was observed, namely the
singleton event {Y = y}. This singleton event has probability zero in both worlds, i.e.
p1 = p0 = 0. Indeed, the full sequence of observations y, exactly as it occurred, is unique.
Quoting the Greek philosopher Heraclitus “You cannot step into the same river twice, for
other waters are continually flowing in”: the exact same sequence y never occurred before
and will never occur again. Our proposed singleton event definition may thus arguably
match with the suggestion of Trenberth et al. (2015) that “a different framing is desirable
which asks why extremes unfold the way they do” in so far as it focuses on the event exactly
as it happened and is thereby able to spot the detailed physical features of the event that
made it “unfold the way it did”. However, by contrast with Trenberth et al. (2015), our pro-
posed singleton event definition is not conditional on the circulation: the observed vector y
may perfectly include circulation-related observations.

One may find surprising that a causal analysis of such a zero probability event is possi-
ble. However, in the context of the aforementioned causal theory, such a causal analysis is
definitely possible and meaningful. Indeed, the fact that p1 and p0 are null does not imply
that the associated probability of necessary causation PN is null. Generally speaking, the
ratio of two quantities that tends to zero may well converge to a finite quantity (e.g. the
derivative of a differentiable function). Likewise, here the singleton set {Y = y} may be
viewed as the limit of the sphere of radius r centered in y when the radius r tends to zero,
i.e. {Y = y} = limr→0{‖Y − y‖ ≤ r}. It is clear that when r → 0, then p0 → 0 and
p1 → 0. It is also straightforward to show that the limit of PN = 1 − p0/p1 is then finite.
More specifically, we have:

PN = 1 − f0(y)
f1(y)

(3)

where we denote fi the PDF of Y in world i. By contrast, the quantity 1−(1−p1)/(1−p0)

converges to zero when p0 and p1 tends to zero, thus the probability of sufficient causation
PS associated with the singleton event {Y = y} is always zero. Our DADA proposal thus
intentionally sacrifices the evidence of sufficiency, in the hope of maximizing the evidence
of necessity.
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Our betting on the singleton set is thus justifiable already based on the above theoreti-
cal considerations. This choice, moreover, is also motivated by having a highly simplifying
implication from a practical standpoint. Evaluating the PDF of Y at a single point Y = y
is indeed, under many circumstances, considerably easier than evaluating the probability
P(φ(Y) ≥ u) required in the conventional approach. Appendix A gives a concrete illustra-
tion of this situation, and Fig. 1 shows the details of the latter evaluation for a scalar AR(1)
process (panel a, as well as its associated accuracy (panels b and c), and the computational
cost as the sample size n varies (panel d); the latter cost is much larger than the one of
applying the DADA approach consisting in evaluating the PDF at a single point. This simple
example confirms the large computational discrepancy between the two approaches. The
reason for the discrepancy is quite simple: evaluating the conventional probability requires
integrating a PDF over a predefined domain, instead of a one-off evaluation at a single
point. Because both the domain of integration and the PDF may have potentially complex
shapes, one cannot expect, in general, that the requisite integral be amenable to analyti-
cal treatment. Hence numerical integration is the default option: no matter how efficient
an integration scheme one applies, it will require evaluating the PDF at many points and
is thus as many times more costly computationally than just evaluating f (y) at a single
point.

In order to obtain the PDF of Y, the class of dynamic, statistical models referred to as
Hidden Markov Models (HMMs; e.g. Ihler et al. (2007)) is relevant in the context of PEA.
Indeed, the dynamics of a climate event can usually be represented by using a numerical
climate model. Denoting Xt the N -dimensional state vector at time t of the numerical
model, we can assume:

Xt+1 = M(Xt ,Ft ) + vt , (4a)

Yt = H(Xt ) + wt (4b)

where Eq. 4a describes the dynamics of the state vector, with M the numerical model
operator, vt a stochastic term representing modeling error, and Ft a prescribed forcing.
Equation 4b maps the state vector Xt to our observations Yt at any time t , where H is the
so-called observation or forward operator and wt is a stochastic term representing observa-
tional error. The problem of interest here is thus to derive the likelihoods f0(y) and f1(y)
of the observation y when using the counterfactual and factual forcings, by using the HMM
setting of Eq. 4.

DA can be viewed as a class of inference methods designed for the above HMM setting.
While inferring the unknown state vector trajectory X given the observed trajectory y is the
main focus of DA, the likelihood f (y) can also be obtained as a side product thereof, as we
will immediately clarify below. Therefore, with DA able to derive the two likelihoods f0(y)
and f1(y), and the latter two being the keys to causal attribution in our approach, one should
be capable of moving towards near-real-time, systematic causal attribution of weather- and
climate-related events.

2.3 Brief overview of data assimilation

DA was initially developed in the context of numerical weather forecasting, in order
to initialize the model’s state variables X based on observations y that are incomplete,
diverse, unevenly distributed in space and time and are contaminated by measurement error
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Fig. 1 Illustration of the conventional PEA approach as applied to a univariate AR(1) process. a Observed
time series (first component Y1, dotted line) and daily average φ(Y) (heavy solid line) over the three first
days. b Threshold level (vertical axis) as a function of the return period (horizontal axis): simulated values
(crosses); fit based on the Generalized Pareto distribution (GPD, heavy dark-blue line); uncertainty range at
the 95 % level (light blue area); and threshold value u = 3.1 (light solid black line). c Estimated value of
P = P(φ(Y) ≥ u) (heavy dark-blue line) using a GPD fit as a function of the sample size n (horizontal
axis); uncertainty range (light blue area); and true value P = 0.01 (light solid black line). d Computational
time on a desktop computer (seconds, vertical axis) as a function of sample size n (horizontal axis) required
by the conventional method (dark blue line) and the DADA method (solid red line); the latter method is
explained in Sections 2b and 3 below

(Bengtsson et al. 1981; Talagrand 1997). Over the past decades, those methods have grown
out of their original application field to reach a wide variety of topics in geophysics such as
oceanography (Ghil and Malanotte-Rizzoli 1991), atmospheric chemistry, geomagnetism,
hydrology, and space physics, among many other areas (Robert et al. 2006; Cosme et al.
2006; Kondrashov et al. 2011; Bocquet 2012; Martin et al. 2014).

DA is already playing an increasing role in the climate sciences, having being applied,
for instance, to initialize a climate model for seasonal or decadal prediction (Balmaseda
et al. 2009), to constrain a climate model’s parameters (Kondrashov et al. 2008; Ruiz et al.
2013), to infer carbon cycle fluxes from atmospheric concentrations (Chevallier 2013), or to
reconstruct paleoclimatic fields out of sparse and indirect observations (Bhend et al. 2012;
Roques et al. 2014). In the context of D&A, Lee et al. (2008) actually tested a DA-like
approach to include the effects of the various forcings over the last millennium, in addition
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to other paleoclimate proxy data, in combined climate reconstruction and detection analysis.
The present work thus follows a general trend in climate studies.

Methodologically speaking, DA methods are traditionally grouped into two categories:
sequential and variational (Ide et al. 1997, and references therein). Here, we concentrate
on the sequential approach, but the two approaches are complementary and the choice of
method depends on the specifics of the problem at hand (Ghil and Malanotte-Rizzoli 1991;
Ide et al. 1997; Talagrand 1997). In the sequential approach (Ghil et al. 1981), the state
estimate and a suitable estimate of the associated error covariance matrix are propagated in
time until new observations become available and are used to update the state estimate. In
practice, the evolution of the system of interest is retrieved — like in earlier, typically much
smaller-dimensional applications (Kalman 1960; Jazwinski 1970; Gelb 1974) — through a
sequence of prediction and analysis steps.

Abundant literature is available on DA and on Kalman-type filters. Kalman (1960) first
presented the solution in discrete time for the case in which both the dynamic evolution
operator M in Eq. 4a and the observation operator H in Eq. 4b are linear, and the errors
are Gaussian. Under these assumptions, the state-estimation problem for the system given
by Eq. 4a and 4b has an exact solution given by the sequential Kalman filter (KF) equa-
tions (Appendix B). Further, the likelihood function f (y), which is of primary importance
for DADA, also has an exact expression under the above linearity and Gaussianity assump-
tions (Tandeo et al. 2014). Following the usual notations of DA, which are detailed in
Appendix B, the expression of the likelihood is given by:

f (y) =
T∏

t=0

(2π)−
d
2 |�t |− 1

2 exp

{
−1

2

(
yt − Hx

f
t

)′
�−1

t (yt − Hx
f
t )

}
(5)

with �t = HPf
t H

′ +R. The proof of Eq. 5 is provided in Appendix C, and f (y) is typically
computed by taking the logarithm of this equation to turn the product on the right-hand side
into a sum.

The main interest of Eq. 5 is that, once the observations yt have been assimilated on the
interval 0 ≤ t ≤ T , the necessary ingredients xf

t and Pf
t in Eq. 5 are available from the KF

equations (Appendix B) and thus calculating f (y) is both straightforward and computation-
ally inexpensive. The fundamental connections between this calculation, the HMM context,
and Bayes theorem are further clarified in Appendix C.

Many difficulties arise in applying the simple ideas outlined here to geophysical mod-
els, which are typically nonlinear, have non-Gaussian errors and are huge in size (Ghil
and Malanotte-Rizzoli 1991). Most of these difficulties have been addressed by improving
both sequential and variational methods in several ingenious ways (Bocquet et al. 2010;
Kondrashov et al. 2011).

In particular, the Ensemble Kalman Filter (EnKF; Evensen, 2003) — in which the
uncertainty propagation is evaluated by using a finite-size ensemble of trajectories — is
now operational in numerical weather and oceanic prediction centers worldwide; see e.g.
Houtekamer et al. (2005); Sakov et al. (2012). The EnKF is a convenient approximate solu-
tion to the filtering problem in a nonlinear, large-dimensional context. We simply note here
that it can also be applied to obtain an approximation of the likelihood f (y) by substituting
the approximate sequence {(x̂f

t , P̂f
t ) : t = 0, . . . , T } that the EnKF produces into Eq. 5.

This strategy is illustrated immediately below in the context of the L63 convection model
subject to an additional constant force.
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3 Implementation within the modified L63 model

3.1 The modified model and its two worlds

A simple modification (Palmer 1999) of the L63 model (Lorenz 1963) has been extensively
used for the purpose of illustrating methodological developments in both DA and PEA (e.g.
Carrassi and Vannitsem, 2010; Stone and Allen, 2005). In the nonlinear, coupled system of
three ordinary differential equations (ODEs) for x, y and z below,

dx

dt
= σ(y − x) + λi cos θi ,

dy

dt
= ρx − y − xz + λi sin θi ,

dz

dt
= xy − βz (6)

the time-constant forcing terms in the x- and y-equation represent, in fact, an addition to
the forcing hidden in the original L63 model. The latter forcing is revealed by a well-known
linear change of variables, in which x and y are left unchanged and z → z + ρ + σ (Lorenz
1963). In the new variables, the model of Eq. 6 will take the canonical form of a forced-
dissipative system (Ghil and Childress 1987, Sec. 5.4), with an extra forcing term −β(ρ+σ)

in the z-equation, just like the original L63 model.
Here λi is the intensity of the additional forcing and θi is its direction in world i = 0, 1:

i.e., λ0 = 0 represents a counterfactual world with no additional forcing, while λ1 �= 0. We
take the parameters (σ, ρ, β) to equal their usual values (10, 28, 8/3) that yield the well-
known chaotic behavior, and the (nondimensional) time unit t is interpreted as equaling
days.

The ODE system given by Eq. 6 is discretized by using �t = 0.01 and t refers hereafter
to the number of time increments �t . This system is then turned into a HMM as described in
Eq. 4 by adding an error term vt assumed to be Gaussian and centered with covariance Q =
σ 2

Q I, where I is the 3×3 identity matrix. Furthermore, we assume that all three coordinates
(x, y, z) of the state vector are observed, i.e. that H = I, and that the measurement error
term wt is also Gaussian and centered, with covariance R = σ 2

R I.
The HMM defined above is stationary, i.e. the PDF of the observed vector yt depends

neither on t nor on the initial condition after a sufficiently long time t (Appendix D). In the
factual world, the shape of the PDF is affected by the parameters (λ1, θ1) of the forcing.
In both worlds, the PDFs can be estimated, for instance, by using kernel density estimation
applied to ensembles of simulations obtained for either forcing. In Fig. 2a and b, we plot the
projections of both PDFs onto the plane associated with the greatest variance in the factual
PDF. The difference between the two PDFs is shown in Fig. 2c; it emphasizes the existence
of an area of the state space (represented in white), which is more likely to be reached in the
factual world than in the counterfactual one.

Next, we define an event to occur for the sequence {yt : t = 0, . . . , T } if the scalar
product φ̂′yt between the unit vector φ̂ in the direction φ and yt , i.e. the projection of yt onto
the direction φ, exceeds u for some 0 ≤ t ≤ T , where φ is a specified direction and u is a
threshold chosen based on φ so that p1 = 0.01. Fig. 2d shows a selection of sequences from
both worlds in which an event did occur, where φ was chosen to be the leading direction in
the projection plane.

For this choice of φ, the trajectories associated with event occurrence happen to all lie
in the area of the state space which is more likely to be reached in the factual world than in
the counterfactual one. Accordingly, the probability of the event in the former is found to be
higher than in the latter, i.e. p1 > p0, and the occurrence of an event {max{0≤t≤T } φ′yt ≥ u}
is thereby informative from a causal perspective.
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Fig. 2 Two-dimensional (2-D) projections of the PDF of the modified L63 model; the projection is onto
a plane defined by the two leading eigenvectors of the factual PDF shown in the first panel. a PDF of the
factual attractor, with λ1 = 20 and σQ = 0.1; and b PDF of the counterfactual attractor, with λ0 = 0.
c Difference between the factual and counterfactual PDFs. d Sample trajectories associated with an event
occurrence originating from the factual (red solid lines) and counterfactual worlds (green solid lines); the
vertical dashed line in all four panels indicates the threshold u with respect to the horizontal axis of largest
variance in the factual PDF

Figure 2d also shows that the trajectories associated with the event in the two worlds
— counterfactual (green) and factual (red) — appear to have slightly distinct features: the
red trajectories are shifted towards higher values in the second direction, of highest-but-one
variance. Such distinctions might help discriminate further between the two worlds in the
DADA framework — the circumstances under which such further discrimination is helpful
will be discussed in Section 4.

3.2 DADA for the modified L63 model

The DADA procedure is illustrated in Fig. 3. We plot in panel (a) a trajectory of the state
vector xt simulated under factual conditions, i.e. in the presence of the additional forcing
(black solid line), along with the observations {yt : 0 ≤ t ≤ T } (gray dots), with T = 400.
The EnKF is used to assimilate these observations into a factual model (i = 1) that thus
matches the true model M = M1 = M(λ1, θ1) used for the simulation: a reconstructed
trajectory is obtained from the corresponding analyses xa

t (red solid line in panel (a)), cf.
Eq. 8, and the likelihoods f1(yt ) (red solid line in panel (c)) are obtained by application of
Eq. 5, respectively.

Next, the assimilation is repeated in the counterfactual model (i = 0, i.e. λ = 0) to obtain
a second analysis of the trajectory, from the same observations; see green solid line in panel
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(a), for T = 400. The corresponding likelihoods f0(yt ) are shown in panel (c) as a green
solid line. Comparing the trajectories of the two analyses in Fig. 3a shows that, even though
the counterfactual analysis (green line) uses the same data as the factual analysis (red line),
the former lies closer to the true trajectory (black line).

The local discrepancies between the trajectories estimated in the two worlds appear to be
rather small at first glance, cf. panel (a), and so are the instantaneous differences between
the associated factors on the right-hand side of Eq. 5; the latter are shown as gray rectangles
in panel (c) of the figure. Still, the evidence in favor of the factual world accumulates as
the time t over which the two trajectories differ, albeit by a small amount, lengthens. This
cumulative difference in evidence, log f0(yt ) − log f1(yt ), is reflected by a growing gap
between the two curves, red and green, in panel (c), and by an associated high mean growth
over time of the probability PN of necessary causation, cf. the black solid line in panel (d).

In order to evaluate more systematically its performance and robustness compared to
the conventional FAR approach, the DADA procedure was applied to a large sample of
sequences yt of length T = 20 simulated under diverse conditions. The sample explored
all possible combinations of the triplet of parameters (λ1, σQ, σR), with ten equidistributed
values each, for a total of 103 combinations; the ranges were 0 ≤ λ1 ≤ 40, 0.1 ≤ σQ ≤ 0.5
and 0.1 ≤ σR ≤ 1.0, respectively, with θ1 = −140◦. For each combination of (λ1, σQ, σR),
ten directions φ were randomly generated and u was defined based on φ as in Section 3a
above, so as to achieve p1 ≥ 0.01.

In order to estimate the corresponding conventional probabilities p0 and p1 of the asso-
ciated event defined as {max{0≤t≤T } φ′yt ≥ u}, n = 50 000 sequences yt of length
T = 20 were simulated, by using a single sequence of length nT = 106 and splitting it
into n equal segments. Probabilities p0 and p1 were then directly estimated from empirical
frequencies.

For each quintuplet of parameter values (λ1, σQ, σR; φ, u), one hundred sequences of
observations {yt : 0, . . . , T = 20} were generated with a proportion p1/(p1 + p0) being
simulated from the factual world and a proportion p0/(p1+p0) from the counterfactual one.
All sequences were treated with the DADA procedure — by applying DA to the synthetic
observations according to Eq. 8a–8d — and then Eq. 5 to obtain f0(y) and f1(y) from the
reconstructed trajectories. The a priori mean and covariance x

f

0 and Pf

0 required as inputs
to the DADA procedure were those associated with the PDF of the attractor, given the
forcing conditions (λ1 ∈ [0, 40], θ1 = −140◦) assumed for each assimilation experiment.
As a result, two probabilities PN of necessity are finally obtained for each sequence yt ,
PNp = 1−p0/p1 for the conventional approach and PNf = 1−f0(y)/f1(y) for the DADA
approach.

We next wish to evaluate under various conditions how well the two probabilities PNp

and PNf perform with respect to discriminating between the factual and counterfactual
forcings. Consider a simple discrimination rule whereby a trajectory yt is identified as fac-
tual for PN exceeding a given threshold, and as counterfactual otherwise. The so-called
receiver operating characteristic (ROC) curve plots the rate of true positives as a function
of the rate of false positives obtained when varying the threshold in a binary classification
scheme from 0 to 1; it thus gives an overall visual representation of the skill of our PN as a
discriminative score.

The (Gini 1921) index G was originally introduced as a measure of statistical dispersion
intended to summarize the information contained in the (Lorenz 1905) curve that represents
the income distribution of a nation’s residents; G may be viewed, though, more generally as
a metric summarizing the dispersion of any smooth curve that starts at the origin and ends
at the point (1, 1) with respect to the diagonal of the corresponding square. In particular,
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Fig. 3 Sample trajectories from data assimilation (DA) in our modified L63 model. a True trajectory (black
solid line) and the two trajectories reconstructed by DA in the factual (i = 1) and counterfactual (i = 0)
worlds (red and green solid lines), respectively, over a long sequence, T = 400; the values of λ1 and θ1
here are the same as in Fig. 2, and the assimilated observations are shown as gray dots. b Same as panel (a)
but zoomed over a short sequence, T = 20.c Logarithm of the cumulative evidences f1(y) and f0(y) (red
and green lines, respectively) computed over the window [0, t ≤ T ]; gray bars indicate the instantaneous
differences between f1(yt ) and f0(yt ). d PN computed over the window [0, t]

we use G here to summarize into a single scalar the ROC curve, which ranges from 0 for
random discrimination to 1 for perfect discrimination.

Figure 4a shows ROC curves obtained over the entire sample of n = 50 000 sequences:
they correspond to G = 0.35 for the conventional method and to G = 0.82 for the DADA
method, i.e. the overall performance gap is more than twofold. As expected, the performance
of both methods is nil for λ1 = 0 and it is very sensitive to the intensity of the forcing, cf.
Fig. 4b.

Furthermore, the skill of the DADA method is boosted when decreasing the level of
model error, cf. Fig. 4c; this is an expected result, since DA becomes more reliable when
the model is more accurate, and when it is known to be so. Ultimately, under perfect model
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Fig. 4 Performance of the DADA and conventional methods (red vs. blue solid lines, respectively). a
Receiver operating characteristic (ROC) curve: true positive rate as a function of false positive rate, when
varying the cut-off level u, as obtained from the entire sample of n = 50 000 sequences; see text for details.
b Gini index G as a function of forcing intensity λ1. c Same as (b) for several values of σQ and for DADA
only, with the black arrow indicating the direction of growing σQ. (d) Same as (b) but as a function of model
error amplitude σQ. e Same as (b) but as a function of observational error amplitude σR . f Same as (b) as a
function of the logarithmic contrast between the conventional probabilities log p1/p0

conditions, i.e. as σQ → 0, DADA reaches perfect discriminative power, with G→ 1, no
matter how small, but still positive, the forcing is; see Fig. 4d. On the other hand, the level
of observational error σR appears to have but a limited effect on DADA performance for the
range of values considered, cf. Fig. 4e.

Finally, Fig. 4f shows that both methods perform better when the contrast between p0
and p1 is strong, but the latter does not influence the gap between the two methods, which
remains nearly constant. This constant gap thus appears to quantify the additional power
resulting from the extra discriminative features that the PDF f (y) is able to capture on top
of those associated with the probability P(φ(y) ≥ u).

4 Discussion and conclusions

Considerations rooted in the causality theory of Pearl (2000) have shown that the ratio
between the factual likelihood f1(y) and the counterfactual likelihood f0(y) is relevant
in studying causal attribution of weather- and climate-related events. In this paper, we



168 Climatic Change (2016) 136:155–174

described data assimilation (DA) methods and demonstrated that they are well suited for
deriving f0(y) and f1(y) from trajectories in the factual and the counterfactual worlds,
respectively. Besides, these methods offer the key practical advantage of being already
up-and-running in real time at meteorological centers.

Combining these two sets of considerations, theoretical and practical, opens a novel
route towards real time, systematic causal attribution of weather- and climate-related events,
thereby addressing a key challenge in the field of PEA at present (Stott et al. 2013).

4.1 Theoretical considerations

Implementing the DADA approach in the context of the L63 model in Section 3 allowed
for a detailed step-by-step illustration of our methodological proposal. It also provided a
basic test for an initial performance assessment, which showed an improved level of dis-
criminating power with respect to the conventional approach outlined in Section 1. These
results are promising, and their promise is easy to understand, given the fact that the DADA
approach leverages the available information on the entire trajectory y, as opposed to the
single specific feature φ(y) ≥ u in the conventional approach.

It is important, though, to stress that the term “performance” here should be considered
with caution: improving discriminatory performance may or may not be a desirable out-
come, depending on the causal question being asked. Hannart et al. (2015) and Otto et al.
(2015) have shown that the causal question being formulated reflects the subjective interests
of a particular class of end-users, and that the formulation itself may dramatically affect the
answer.

For example, the question “did anthropogenic CO2 emissions cause the heatwave
observed over Argentina during January 2014?” has been traditionally treated by defining
a “heatwave” in terms of a predefined temperature index reaching a predefined threshold,
i.e., by a singular index exceeding a singular threshold. This class of questions matters for
instance in the context of insurance disbursements, where a financial compensation may
typically be triggered based on such an index exceedance. In this situation, the additional
discriminatory power of DADA is meaningless because the DADA computation does not
address the question at stake: there is simply no alternative to computing the probabilities
p0 and p1 of the index exceeding the threshold.

However, if the question is formulated instead as “did anthropogenic CO2 emissions
cause the atmospheric conditions observed over Argentina during January 2014?” —
i.e., without specifying which feature of the observed sequence is most important —
then improving discrimination makes perfect sense and DADA becomes fully relevant.
Furthermore, DADA is still fully relevant even if the question is formulated more specif-
ically as “did anthropogenic CO2 emissions cause the damages generated in Argentina
by the atmospheric conditions of January 2014?,” provided that a model relating atmo-
spheric observations to damages at every time step t along the trajectory of the physical
model used in the assimilation is available and can be integrated into the observation
operator H.

On the other hand, the results of Section 3 should also be considered with caution sim-
ply because the L63 testbed obviously differs in many respects from the real situation
envisioned for future applications, both in terms of model dimension n and observa-
tion dimension d: in practice n will be very large and d 
 n, while here we took
d = n = 3.
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In particular, choosing a highly idealized, climatological prior distribution on the initial
condition π(x0) does not raise any difficulty under the tested conditions nor does it influence
significantly the outcome of the procedure (not shown). The choice of π(x0), however,
may be an important problem in practice, when d 
 n, and lead to potentially spurious
results.

As a consequence, it may be both necessary and useful to further constrain the so-called
background PDF π(x0) by using the forecasts originating from τ previous assimilation
cycles, thus following the ideas of lagged-averaged forecasting (Hoffman and Kalnay 1983;
Dalcher et al. 1988). The evidence thus obtained, though, will then also depend on previous
observations over the “initialization” window [−τ, ...,−1] — i.e., it will no longer repre-
sent exclusively the desired evidence f (y). Besides, choosing τ optimally to constrain the
initial background PDF in a satisfactory manner, while at the same time limiting the latter
unwanted dependence on previous observations, is a challenging question that needs to be
adressed.

More generally, the problem of evaluating the evidence f (y) is not new in the HMM and
DA literature; see, for instance, Baum et al. (1970); Hurzeler and Kunsch (2001); Pitt (2002)
and Kantas et al. (2009). Various algorithms are thus available to carry out this evaluation,
depending on a number of key assumptions — such as lack of Gaussianity or linearity —
and on the inferential setting chosen, e.g. particle filtering. These algorithms may provide
accurate and effective solutions to the above problem, as well as improved alternatives to the
Gaussian and linear approximation of Eq. 5, since the latter may not be sufficiently accurate
for succesfully implementing the DADA approach under realistic conditions.

4.2 Practical considerations

While we have shown here that the proposal of using DADA for event attributions has intel-
lectual merit, its main strength lies, in our view, in down-to-earth cost considerations. By
design, the DADA approach allows one to piggyback at a low marginal cost on the large and
powerful infrastructures already in place at several meteorological centers, in terms of both
hardware and personnel. These centers are capable of processing massive amounts of obser-
vational data with high-throughput pipelines on the world’s largestcomputational platforms,
as opposed to requiring the design, set-up and maintenance of a new and large, PEA-specific
infrastructure to collect observations and generate — under real time constraints — the
many model simulations required by the conventional approach recalled in Section 1.

Taking a step back, it is useful to examine our proposal within the wider context of the
emergence of so-called climate services. It is widely recognized that extending the scope
of activity of meteorological centers from being “monoline” weather forecasting providers
to becoming “multiline” climate services providers – encompassing, for instance, weather
forecasting and weather event attribution as two service lines among several others –?? is a
relevant strategic option (Hewitt et al. 2012). Such a strategy may foster the timely and cost-
efficient emergence of the latter services by building upon technological and infrastructure
synergies with the former. For these reasons, our proposal is particularly relevant for, and
could contribute to, the implementation of the strategic option just outlined.

This being said, DADA can very well serve as a method for real time event attribution
even for hypothetical climate services providers that focus uniquely or mainly on longer
time scales, beyond a month, a season or a year. In such a context, DADA may allow for the
assimilation of a broader range of observations, and in particular of ocean observations; it
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may, in fact, be important to include the latter in causal analysis when the event occurrence
under scrutiny is defined over a sufficiently large time window.

Finally, it is important to remember that providing real-time attribution assessments is
a major communication challenge, since different methods give different answers and dif-
ferent definitions of a specific event may also impact the outcome of an assessment — as
mentioned above and as discussed recently by Trenberth et al. (2015). Various recent exam-
ples, such as the ongoing California drought have shown that divergences among experts
may lead to confusion in the media and among stakeholders. In this respect, a detailed com-
parison of the DADA approach with other methods in realistic, real-time situations will be
required before the method can be applied operationally.

Appendix A: Illustration of the computational benefit of the DADA
approach

To illustrate the computational benefit, let Y be for instance a d-variate autoregressive pro-
cess defined by Yt+1 = AYt + wt , where wt is an i.i.d. noise having known PDF g(·)
and where A has the usual properties that insure stationarity (Gardiner 2004). We then
have:

f (y) =
T∏

t=1

g(yt − Ayt−1)π(y0) , (7a)

P(φ(Y) ≥ u) =
∫

φ(y)≥u

T∏
t=1

g(yt − Ayt−1)π(y0)dy1,0 . . . dyd,0 . . . dyd,T , (7b)

with π(·) the prior PDF on the initial state Y0. Equation 7a shows that f (y) can be easily
computed using a closed-form expression, while P(φ(Y) ≥ u) in Eq. 7b is an inte-
gral on d × T + 1 dimensions which must instead be evaluated by using, for instance, a
computationally quite costly Monte-Carlo (MC) simulation.

Appendix B: Data Assimilation

The state-estimation problem for the system given by Eq. 4a and 4b has an exact solution
given by the following sequential Kalman filter (KF) equations:

xa
t = xf

t + K(yt − Hxf
t ) , (8a)

Pa
t = (I − KH)Pf

t , (8b)

xf

t+1 = Mxa
t , (8c)

Pf

t+1 = MPa
tM

′ + Q . (8d)

where ′ denotes the transpose operation. Here Eq. 8a and 8b are referred to as the analysis
step and denoted by a superscript a, while the forecast step is given by Eq. 8c and 8d, and is
denoted by a superscript f (Ide et al. 1997). The vector xa

t and the matrix Pa
t are the mean

and covariance of Xt conditional on (Y1, ...,Yt ) = (y1, ..., yt ); K = Pf
tH

′(HPf
tH

′+R)−1 is
the so-called Kalman gain matrix; while Q and R are the covariances associated with vt and
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wt , respectively. Following (Wiener 1949), one distinguishes between filtering, in which
xa
t and Pa

t are conditioned only on the previous and current observations (y0,..., yt ), and
smoothing, in which they are conditioned on the entire sequence, 0 ≤ t ≤ T . Furthermore,
the sequential algorithm needs to be initialized at time t = 0 with xf

0 and Pf

0 , which thus
represent the a priori mean and covariance of X0, respectively, and have to be prescribed by
the user.

Appendix C: Derivation of the model evidence

In this appendix, we outline the derivation of model evidence within a general Bayesian
framework, and we apply the latter to the narrower KF context to obtain Eq. 5. Con-
sider two consecutive cycles of a DA run, the first with state vector xt and observation
vector yt at instant t and the subsequent one with state vector xt+1 and observation vec-
tor yt+1 at instant t + 1. We plan to find a tractable expression for the model evidence
p(yt , yt+1).

The model evidence provided by the full sequence of observations y = (y0, ..., yT )

will be inferred by recursion, using the results of this two-observation setting. In order to
decouple the two cycles, one first has to spell out the Bayesian inference p(yt , yt+1) =
p(yt )p(yt+1|yt ). We look for a tractable expression for p(yt+1|yt ) by further introducing
the states xt+1 and xt as intermediate random variables:

p(yt+1|yt ) = ∫
xt+1

p(yt+1|yt , xt+1)p(xt+1|yt ) dxt+1

= ∫
xt+1

p(yt+1|xt+1)
{∫

xt
p(xt+1|xt ) p(xt |yt ) dxt

}
dxt+1 ,

(9)

where p(yt+1|xt+1) is the likelihood of the observation vector yt+1 conditional on the state
vector xt+1 and it is known from Eq. 4b. The conditional PDF p(xt |yt ) of xt on yt at instant
t — which appears on the right-hand side of the above equation — is referred to as the
analysis PDF in the DA literature, where it is denoted by a superscript a (Ide et al. 1997),
and it constitutes the main DA output. The integral

∫
xt

p(xt+1|xt )p(xt |yt ) dxt = p(xt+1|yt ),
in which p(xt+1|xt ) is known from the model dynamics given by Eq. 4, propagates this
analysis PDF further in time, to instant t + 1. Hence, the result of this integration coincides
with the forecast PDF, denoted by superscript f in the DA literature (Ide et al. 1997). It
follows that this decomposition is tractable using a DA scheme that is able to estimate the
conditional and forecast PDFs.

Next, let us apply the general Bayesian inference (9) to the case in which all the PDFs
involved are Gaussian; this requires, in turn, that both the dynamics and observation models
M and H be linear, and that the input statistics all be Gaussian. In this case, the Kalman
filter allows for the exact computation of the PDFs mentioned in Eq. 9, which turn out to be
Gaussian.

In the following, N (x,P) designates the Gaussian PDF of mean x and covariance matrix
P. In this context, the analysis PDF at instant t is N (xa

t ,P
a
t ), where xa

t and Pa
t are the anal-

ysis state and error covariance matrix at instant t . As a result of the linearity assumptions,
the forecast PDF at instant t + 1 is given by a Gaussian distribution N (xf

t+1,P
f

t+1), where

xf

t+1 and Pf

t+1 are the forecast state and error covariance matrix at instant t + 1. Further, the
integration on xt+1 in Eq. 9 can readily be performed under these circumstances, with the
outcome that p(yt+1|yt ) is distributed as N (Hxf

t+1,R + HPf

t+1 H
′).
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The desired model evidence f (y) can then be computed by recursion on successive time
steps as:

f (y) = p(y0)

T∏
t=1

(2π)−
d
2 |�t |− 1

2 exp

{
−1

2
(yt − Hxf

t )′�−1
t (yt − Hxf

t )

}
; (10)

here p(y0) represents the prior PDF of the initial state, �t = R + HPf
t H

′, and this expres-
sion coincides with Eq. 5 and can be evaluated with the help of any DA method that yields
the forecast states and forecast error covariance matrices, such as the KF or the EnKF. Note
that the traditional standard Kalman smoother would give the same result as the KF, since
they share the same forecasts.

Finally, Eqs. 9 and 10 above show that the likelihood f (y) may be obtained as a by-
product of the inference on the state vector x, which usually is the main purpose in numerical
weather prediction. This idea may actually be highlighted in even greater generality by
considering the equality:

f (y) = p(y|x)p(x)
p(x|y) . (11)

While Eq. 11 is a direct consequence of Bayes theorem, it also illustrates a point that is
arguably not so intuitive. The likelihood f (y) is obtained here as the ratio of two quantities:
a numerator p(y|x)p(x) that is a model premise inherently postulated by Eq. 4a and 4b, and
a denominator p(x|y) that may be viewed as the end result of the primary inferxence on
x. In other words, estimating f (y) requires only a straightforward division, provided x has
been previously inferred.

Equation 11 thus expresses with great clarity and simplicity a fundamental idea but-
tressing our proposal, as it provides a general theoretical justification for the suggestion of
deriving the likelihood from an inferential treatment that focuses on x. To put it succintly,
this equation basically says, “He who can do more can do less.” In the context of DA, whose
end purpose is to infer the state vector x out of an observation y — i.e., the more part — it
is possible to obtain the likelihood as a by-product thereof — i.e., the less part — and thus
almost for free.

Appendix D: PDF of the state vector

We associate a label ω ∈ � with each realization of the random process vt that drive
the model given by Eq. 6. The PDF of the state vector xt can be obtained as the numer-
ical solution of the corresponding Fokker-Planck equation, and it is the mean over � of
the sample measures obtained for each realization ω of the noise vt and (Chekroun et al.
2011, and references therein). Each sample measure is supported on a random attractor
that may have very fine structure and be time-dependent (Chekroun et al. 2011, Figs. 1–
3 and supplementary material), but the PDF is supported smoothly, in the counterfactual
world in which λ0 = 0, on a “thickened” version of the fairly well-known strange attrac-
tor of the original L63 model. The latter PDF represents its attractor in dynamic system’s
terminology.
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