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Abstract Projections of anthropogenically-induced global climate change and its impacts on
potential distributions of invasive species are crucial for implementing effective conservation
and management strategies. Lantana camara L., a popular ornamental plant native to tropical
America, has become naturalized in some 50 countries and is considered one of the world’s
worst weeds. To increase our understanding of its potential extent of spread and examine the
responses of global geographic distribution, predictive models incorporating global distribu-
tion data of L. camara were generated. These models were used to identify areas of environ-
mental suitability and project the effects of future climate change based on an ensemble of the
four global climate models (GCMs) within the Inter-Sectoral Impact Model Intercomparis on
Project (ISI-MIP). Each model was run under the four emission scenarios (Representative
Concentration Pathways, RCPs) using the Maximum entropy (Maxent) approach. Future
model predictions through 2050 indicated an overall expansion of L. camara, despite future
suitability varying considerably among continents. Under the four RCP scenarios, the range of
L. camara expanded further inland in many regions (e.g. Africa, Australia), especially under
the RCP85 emission scenario. The global distribution of L. camara, though restricted within
geographical regions of similar latitude as at present (35°N~35°S), was projected to expand
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equator-ward in response to future climate conditions. Considerable discrepancy in predicted
environmental suitability for L. camara among GCMs highlights the complexities of the likely
effects of climate change on its potential distribution and the need to improve the reliability of
predictions in novel climates.

1 Introduction

Ornamental plants are the largest pool of non-native species purposely introduced into new
regions of the world for horticultural, landscaping or agricultural purposes. These species are
gaining much attention because some of them have become naturalised and invaded ecosys-
tems in their adventive range causing detrimental ecological and economic impacts across the
globe. Introductions for ornamental purposes are reinforced by consumer demand for novel
species and complicated by limited understanding of the invasion risks posed by these
purposeful introductions (McNeely et al. 2001). Concern over the negative consequences of
invasive ornamental species has increased in recent years as global trade and travel have
rapidly expanded. The introduction of these invasive species threatens the stability and
diversity of native ecosystems and these effects may be further exacerbated by global climate
change. It is widely recognized that the ornamental horticulture industry is a primary path way
for plant invasions worldwide (Reichard and White 2001; Bell et al. 2003). Therefore, there is
a pressing need to identify areas of suitable habitat for invasive ornamental plants and to
closely monitoring of these sites to prevent potential introduction or further range expansion.

Various modeling approaches have been developed and are available for assessing regions
that are potentially susceptible to invasion across a range of scales (Guisan and Zimmermann
2000). Among these modeling approaches, bioclimatic envelope models such as CLIMEX,
Domain, GARP, and Maxent have been extensively used for predicting the potential distribu-
tions of invasive species on the basis of their ecological and climatic profiles (Beaumont et al.
2005), with the assumption that climate is the primary determinant of the distribution of plant
species (Andrewartha and Birch 1984; Baker et al. 2000; Kriticos et al. 2003). Once the
climatic requirements or ecological tolerances of a species are characterized, the models can be
employed to project its potential range in new regions or under future climate change scenarios
to estimate the geographical distribution of suitable conditions. The bioclimatic envelope
modelling approach has its foundations in ecological niche theory for which the fundamental
ecological niche is defined as the set of environmental conditions and resources that allow a
given species to survive and reproduce in the absence of biotic interactions. The realized niche
encompasses a narrower range of conditions and resources in which a viable population is
maintained in the presence of competitors and predators (Hutchinson 1957; Begon et al. 1996).
This distinction between fundamental and realized niches is important in the context of
bioclimatic modelling, particularly with regard to the methodologies used to characterize
bioclimatic envelopes (Pearson and Dawson 2003).

Lantana camara L. (lantana; Verbenaceae), a hybrid species of tropical American origin,
has spread across tropical and sub-tropical Africa, Asia and Australia in around 60 countries
where it was introduced as a garden ornamental or a hedge plant (Day et al. 2003). As one of
the world’s ten worst weeds (Sharma et al. 2005), L. camara was reported infesting millions of
hectares of natural and cultivated lands, causing great ecological and economic damage
(Vardien et al. 2012). Along with its high reproductive output, reductions in manual weeding,
herbicide tolerance, and reduced competition from other weedy species have allowed
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L. camara to proliferate and spread successfully. Moreover, the high adaptability of this
species to a wide range of climatic conditions has also allowed it to thrive in diverse habitats
such as riverbanks, mountain slopes, valleys, pastures, and commercial forests where it forms
impenetrable stands that obstruct access and use (Baars and Neser 1999). There has been some
modeling methods were employed to investigate the potential distributions of L. camara. For
instance, Taylor and Kumar (2013) used CLIMEX, a climate-matching model to estimate the
potential distribution of L. camara. Priyanka and Joshi (2013) used Maxent model, a correl-
ative niche modeling method to predict distribution of L. camara in the western Himalayan
regions of India. Although these studies revealed that climate change may lead to shifts in
distribution of L. camara at global or regional scales, current knowledge of this species
potential distribution is still limited given its continued spread by humans, rapid land use
changes, and complexities of climate variability which may exacerbate its spread.

Most of bioclimatic envelope modeling on invasive species, for instance, distribution
predictions of L. camara, were based upon SRES-based emission scenarios and climate
projections from the phase 3 of the coupled model intercomparison project (CMIP3). How-
ever, recent studies have demonstrated that new scenarios are required to explore the impact of
different climate policies and the role of adaptation in more detail (Moss et al. 2010). A recent
new set of emission scenarios referred to as Representative Concentration Pathways (RCPs),
integrating socioeconomic development descriptions with climate change projections and with
assumptions about climate mitigation and adaptation policies has been developed by CMIP5.
The RCPs have been used as the basis for simulations with earth system models, producing
projections of the magnitude and pattern of climate change during this century and, in some
cases, as far out as 2300 (Taylor et al. 2012a). These new sets of emission scenarios are
considered to be an important development in climate research and provide a potential
foundation for further research and assessment, including emission mitigation and impact
analysis (van Vuuren et al. 2011a). Currently, there are simulations from global climate models
(e.g. the Intersectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org))
which offer a unique opportunity for this analysis by providing multi-model ensembles of
climate-change impacts across different sectors in a consistent scenario frame work. In our
view, it is critical to project and evaluate species distributions using a more realistic climate
scheme and the latest model simulations.

We used the consensus of L. camara suitability models representing a range of modeling
approaches driven by the four GCMs from ISI-MIP to identify present areas of potential
distribution and project the effects of future climate change during the 2050s. We investigated
the spatial patterns of L. camara habitat changes from its current distribution to future potential
occupied areas using the maximum entropy ecological niche modeling technique. Ultimately,
the aim of this work is to provide valuable distribution information to assist land managers to
most effectively plan and implement early detection and rapid response (EDRR) programs for
this increasingly widespread invasive shrub.

2 Materials and methods

2.1 Occurrence data collection

Presence records of L. camara were retrieved from the Global Biodiversity Information
Facility (GBIF; www.gbif.org/), Pacific Island Ecosystems at Risk (PIER) and Tropicos
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Database (http://www.tropicos.org/). Resources from South Africa, Chinese Virtual Herbarium
databases as well as online flora databases or reports from some Asian countries (Jafri 1974;
Thakur et al. 1992) were also included. Coordinates of all locations were checked following
(Hijmans et al. 1999) for low bias and errors. Geo-referencing was conducted with the
Alexandria Digital Library Gazetteer (http://www.alexandria.ucsb.edu/) when necessary.
Duplicate records were deleted and filtered spatially so that only one point occurred within
each grid cell (~10 km×10 km). Thus, a total of 2307 documented global presence records
were obtained for constructing the models.

2.2 Environmental variables

Several environmental geodatasets including climate, topography and human impacts were
acquired and evaluated for their usefulness to predict L. camara invasions. A total of 19
bioclimatic variables representing annual trends, seasonality and extreme environmental
conditions between 1950 and 2000 with a spatial resolution of 5arc-min (~10 km×10 km)
were obtained from the WorldClim 1.4 database (version 1.4, http://www.worldclim.org)
(Hijmans et al. 2005). Elevation data was also obtained from the WorldClim database. The
human influence index (Hii, 1995–2004), an estimate of human influence obtained by
incorporating four data types (i.e., human settlement, land transformation, accessibility, and
electrical power infrastructure) as proxies for human influence was taken from the Last of the
Wild data collection (Wildlife Conservation Society 2005) for model generation. This index
was used because numerous alien species (e.g. L. camara) have been reported to be associated
with human modified landscapes, international trade and transportation (Leprieur et al. 2008;
Taylor et al. 2012b). Data values range from 0 to 64, corresponding to no or maximum human
influence on a habitat. The HII dataset was re-sampled to a resolution of 5 arc-min to match the
bioclimatic variables using a bilinear interpolation function, which is considered to be more
realistic than the simpler nearest-neighbor method (Phillips et al. 2006). The topographic
wetness index (TWI, also referred to as the compound topographic index), an estimate of
predicted water accumulation in a defined area, was derived from the HYDRO1k product of
the United States Geological Survey (USGS 2009) and re-sampled to maintain the 5 arc-min
resolution. This index was used because it provides the spatial distribution of soil moisture
within fields, potential surface runoff, ponding water, or water saturation after heavy rainfalls
(Beven and Kirkby 1979) and has been employed for predicting species’ distribution (e.g.
Cohen et al. 2010). High TWI values are generally found for converging, flat terrain, while low
values are typical of steep, diverging areas (Schmidt and Persson 2003).

To reduce the high collinearity and minimize model overfitting, the relative strengths
of each predictor variable was first evaluated using Maxent’s jackknife test. Variables
with contributions of less than 1 % to the model prediction were eliminated. By pair-wise
correlation analyses, the variable with the lower predictive power was removed, thereby
one variable was selected for pairs with a correlation coefficient >|0.80|. Ultimately, the
full set of 22 environmental variables was reduced to a subset of less correlated and more
significant variables, including minimum average temperature of the coldest month
(bio6), annual precipitation (bio12), and precipitation of warmest quarter (bio18)
(Table 1). Whether TWI and HII correlated with any of the bioclimatic variables was
also tested by extracting the HII and climate values for each grid cell and performing
cross-correlation analysis with the data. No strong correlations were found between TWI
(or HII) and climate variables (all R values<0.5).
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3 Results

3.1 Predictors and model performance

The jack-knife procedure revealed that the distribution of L. camara was most constrained by
minimum average temperature of the coldest month (bio6), which accounted for 48.50 % of
the explained variation. The human influence index (HII, 15.32 %) and precipitation of
warmest quarter (bio18, 11.11 %) accounted for the next highest variation (Table 1). Precip-
itation of driest month (bio14) and annual precipitation (bio12) were also important predictors
with mean contributions of greater than 5 %. Other variables such as mean diurnal range
(bio2), maximum temperature of warmest month (bio5) explained only a minor portion of the
variance (no greater than 1 %) and will not be used for predicting the potential impacts of
climate change on L. camara distribution. The probability of occurrence was maximal for
variable bio6 ranging between 3.4 and 5.5 °C, precipitation of warmest quarter ranging from
277 to 507 mm, and values of human influence index varying between 15 and 50. The AUC of
the independent test set for the model was 0.862, and was significantly higher than the null-
model AUC (median=0.624, P<0.05), indicating that the model performed better than
expected by chance. Mean Cohen’s Kappa (0.578) and TSS values (0.654) also confirmed
what the AUC values indicated in the reliability of model predictions.

Average projections of important thermal and moisture predictors for L. camara under each
RCP are shown in Fig. S1. Annual mean temperature (bio1) for cells with the presence of
L. camara was projected to rise by 1.2~1.8 °C for RCP2.6, 1.5~2.2 °C for RCP4.5, 1.3~
2.1 °C for RCP6.0 and 1.9~2.8 °C for RCP8.5, depending on the GCMs used by 2050,
relative to the baseline period 1950~2000. All four GCMs projected an average warming of
1.0~2.2 °C for the minimum temperature of the coldest month (bio6). Average annual
precipitation (bio12) was projected to vary by −22.1~113.6 mm for RCP2.6, −52.6~
92.7 mm for RCP4.5, −60.6~82.6 mm for RCP6.0 and −105.4~78.7 mm for RCP8.5.
Precipitation of warmest quarter (bio18) in 2050 were projected to decrease across the four
GCMs for RCP4.5 by 1.8~13.4 mm relatively to the baseline. Similar decreasing of this
variable were projected for RCP2.6 and RCP6.0, except HadGem2-ES model (Fig. S1).

3.2 Current predicted distributions

Predictive maps for L. camara under current climate conditions successfully identified areas of
high probability occurrence (Fig. S2). L. camara has a geographically wide potential distri-
bution covering large parts of the tropics and adjacent subtropical regions. Its distribution is
especially widespread within the Southern Hemisphere but also extends to North America
including Florida and coastal areas along the Gulf of Mexico. In the Americas, regions most
suitable for L. camara were located mainly in the southeastern United States, southern Mexico
extending to Costa Ricaand Panama, Peru, central-eastern Argentina, Uruguay and southeast-
ern Brazil. In Africa, regions projected to be highly suitable for L. camarawere located along a
relatively narrow belt extending from Guinea, southwestern Nigeria, and Uganda to Kenya,
where another downward-suitable belt was present along the southeastern border of the
continent. Much of Ethiopia, southern and eastern parts of Madagascar also comprised highly
suitable habitats for this invasive shrub. In Asia, southern China, northern areas of Pakistan,
India and Nepal, southeastern coastal areas of Sri Lanka as well as parts of several southeastern
Asian countries also had high probabilities of suitable habitats for L. camara colonization.
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Other favorable areas for this invasive shrub included eastern edges of Australia, the northern
coastline of New Zealand, and several Pacific islands including Fiji, Vanuatu, Samoa and New
Caledonia.

3.3 Global range shifts under climate change

Future model projections revealed possible changes in the potential distribution of
L. camara. Under the four RCP emission scenarios, the ensemble model projected
declines in suitability (Fig. 1, blue, four GCMs) in a small proportion (0.08 %~
0.25 %) of scattered regions located primarily in the southeastern United States,
northwestern Venezuela, central and eastern Brazil, eastern Ghana, and northern Zaire.
Decreasing distribution probabilities were also found in Asia, such as the border areas
of India (except the western border), northern Thailand, southwestern Malaysia,
Indonesia, and the Philippines. Regions currently unsuitable for L. camara coloniza-
tion but projected to become suitable by 2050 (Fig. 1, red, four GCMs, 2.52 %~
3.62 %) included northern Mexico, parts of several South American countries, includ-
ing Suriname, French Guiana, and Guyana. Similar probabilities shifts were also
identified in fragmentary regions mostly adjacent to currently suitable areas.

Model predictions using the GCMs tested under different RCP scenarios were highly
variable in their range shift projections. Model predictions using the GCMs tested under
different RCP scenarios were highly variable in their range shift projections, with agreements
of 7.3 to 9.1 % among the four GCMs for the same RCP (Fig. S3). Agreement between the
model predictions was greatest under the RCP8.5 emission scenario. Regions with consistently
favorable environments for L. camara were located mainly in southern U.S. states, large parts
of Central America, and east-central South America. Other suitable regions included Africa
(eastern edges, parts of western regions) as well as eastern Madagascar, southern China,
northeastern India, parts of Southeast Asia, coastal areas of eastern Australia, and Pacific
Island regions.

Under the RCP8.5 emission scenario, there were fewer new habitat losses and more suitable
habitat gains when compared with the other scenarios, especially for the HadGem2-ES,
MIROC- ESM- CHEM, and NorESM1-M models. Under the RCP2.6, RCP4.5 and RCP6.0
scenarios, the HadGem2-ES model predicted slight changes in range shifts for most habitats
(i.e. about 97 % of grid cells were retained). The lowest habitat losses and gains under each of
the other three RCPs were estimated by the HadGem2-ES model, whereas the greatest habitat
losses were derived from the MIROC-ESM-CHEM model. Ensemble global estimated turn-
over rates under the RCP8.5 scenario were higher (42.13 %±0.835) than the other RCPs and
were highest of all the models used. Among the four GCMs, the NorESM1-Mmodel predicted
the highest turnover rates under all the RCPs, whereas the HadGem2-ES model predicted the
lowest turnover rates, especially under the RCP6.0 scenario, where turnover rates were about
one-half of those estimated by the NorESM1-Mmodel (Table 2).

�Fig. 1 Projected global change in L. camara habitat suitability under the four emission scenarios: a RCP2.6, b
RCP4.5, c RCP6, and d RCP8.5 by 2050, showing agreement among the four GCMs. Black areas indicate
predicted current distribution regions. Areas with current suitability that is retained are indicated in white. Areas
with current suitability that decreases are indicated in green (agreement of two GCMs) and blue (agreement of
four GCMs), whereas areas not suitable in the current time period but suitable in the future are shown in light
yellow (agreement of two GCMs) and red (agreement of four GCMs)
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Fig. 1 continued.
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3.4 Future continental range shifts

Ensemble mean change and variation among the four GCMs evaluated for five major
L. camara colonization regions are shown in Fig. S4 (A-F). The effects of climate change
on future suitability varied considerably among continents, with suitable areas increasing
substantially in Oceania (10.6 %~16.4 %, averaged model predictions) across the four RCP
levels, followed by Africa (5.7 %~8.1 %). In particular, increases in suitable areas in Australia
and New Zealand accounted for 9.9 to 15.7 % of their territory when averaged across all the
RCPs. The increase in suitable area was lowest (average values no greater than 0.5 %) under
the four RCP scenarios in Europe. With an increase in RCP levels, projected suitable areas
expanded except in America. The predicted net change in suitable areas for all continents
varied little across the GCMs used under the RCP8.5 scenario (Fig. 2).

Differences in global continental range shifts under the RCP scenarios were investigated
(Fig. S4 (F)). The predicted range gain shown on the right side of the coordinate axes were
substantially larger than the range loss, despite range gains or losses within a specific continent
concentrated in similar latitudinal locations. Projected changes of potential suitable habitats
using the IPSL-CM5A-LR and NorESM1-M models were higher than obtained from the
HadGem2-ES and MIROC-ESM-CHEM models. Future habitat gains and contractions for
L. camara mostly occurred in −20~10°N within America and Africa. The latitudinal extent of
this species in Asia and Oceania was 15~30°N and −15~30°N respectively. In Europe, two
habitat gains were detected at latitude ranges of 0~5°N and 35~45°N, though their magnitude
was smaller than in other continents. In general, the effects of future climate change on global
geographical shifts of L. camara were characterized by distinct habitat gains mostly at lower

Fig. 2 Averaged net changes in L. camara suitability projected by the four GCMs under the four RCPs across
the five continents
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latitudes, but Europe showed a somewhat mixed response. All four ISI-MIP models revealed
habitat gains for this invasive species trending southward globally.

Under the four RCP emission scenarios, the range of L. camara expanded further inland in
many regions, and was especially noticeable under the RCP8.5 level. In Africa, the range of
L. camara shifted to parts of Tanzania, eastern Gabon, central and northwestern Congo,
western Madagascar as well as the western border of Swaziland extending into Lesotho. In
Australia, there was a considerable inland range expansion in southeastern Queensland and the
wet tropics. Increases in new suitable habitats were found in parts of South Australia, Victoria
and northern Tasmania. In Asia, a typical range shift was detected in China most notably using
the HadGem2-ES and NorESM1-Mmodels. In China, L. camarawas predicted to spread from
southeastern coastal areas (e.g. Guangdong, Hainan, Hongkong, Taiwan and southern Si-
chuan) to marginal areas in eastern regions.

4 Discussion

4.1 Potential distribution and range shifts

The effects of future climate on the predicted range of L. camara were discernible (Fig. 1).
Some regions were identified as vulnerable to invasion; some invaded areas were projected to
contract as they would no longer be climatically suitable, and some regions exhibited habitat
gains and increased potential to be invaded. These findings highlight the complex effects of
climate change on the potential geographical distribution of L. camara rather than simply
increasing invasion risk. Predictions of further inland range expansion of this species under
future climate conditions are consistent with previous findings (Taylor et al. 2012b; Taylor and
Kumar 2013). These shifts in the projected potential range were relatively restricted consid-
ering the physiological tolerance limits to temperature and precipitation of this species.
Therefore, the distribution of L. camara in the coming decades may not occur uniformly but
rather more patchily reflecting the availability of favorable microhabitats (Taylor et al. 2012b).
In a recent pot experiment, Zhang et al. (2014) reported that elevated temperatures led to
significant increases in growth of L. camara along with physiological and allelopathic effects.
These findings further suggest that global warming resulting from climate change is likely to
facilitate invasion of L. camara into new regions of the world. However, given the increasing
influence of direct or indirect human-induced spread of invasive species, caution is needed
when interpreting the capacity or extent of species to shift their range in response to climate
change.

The estimated change in the latitudinal range of L. camara was primarily concentrated
between the 30°N and-20°S latitudes, although the suggested global distribution range occurs
between 35°N and 35°S (Day et al. 2003). One exception to this projected distributional
change in range was found in Europe, where changes occurred at latitudes between 35°N and
−45°N. Compared with current climatic conditions, annual mean temperature (bio1) and
minimum average temperature of the coldest month (bio6) across the RCP levels in Europe
increased 1.9~3.5 and 1.2~2.5 °C respectively. Future fluctuations in temperature were
moderately higher while precipitation declined less than in other regions, which may afford
L. camara new opportunities to colonize European regions. Indeed in previous studies, the
magnitude of future global warming was predicted to be especially high in northern latitudes
(ACI 2005) such as northern Europe, and thus the likelihood of climate-induced range shifts of

202 Climatic Change (2016) 134:193–208



invasive species would likely be more pronounced in these regions (Rahel and Olden 2008).
As a major pantropical highly adaptable weed, L. camaramay survive in natural ecosystems in
these regions and will raise additional concerns about its deleterious economic and environ-
mental impacts under future climate change. Compared with the pole-ward or altitudinal range
expansion documented for numerous invasive species in response to climate change (Parme-
san and Yohe 2003; McLachlan et al. 2005), the global distribution of L. camara, was largely
restricted to the same geographical regions currently colonized. There was a equator-ward
tendency however of this species expanding in response to future climate conditions.

4.2 Comparison of results and uncertainties

Based on the predicted global geographic shifts of L. camara, many regions of the tropics,
subtropics, and warm temperate regions were modeled as having suitable climatic conditions
for colonization by this species, which is consistent with current global distribution records.
Compared with findings derived using the CLIMEX software (Taylor et al. 2012c), predictions
of L. camara invasion using Maxent were more conservative despite similarities in its
distribution between the two modeling approaches, especially on the African continent.
CLIMEX predictions indicated that most of eastern and central Africa, parts of West Africa
as well as eastern Madagascar were suitable for L. camara, which markedly exceeds its current
known distribution in Africa. However, Maxent in this study predicted a much smaller possible
range of L. camara fitting well with these occurrence points. Discrepancies in model
projections between Taylor et al. (2012c) and the present study may be largely due to
differences in the modelling methods and environmental data sets employed. The CLIMEX
model predictions of a broader distribution of L. camara in former study was based on direct
physiological measures of how a species responds, in terms of growth or tolerance for
example, to specific abiotic conditions such as temperature, moisture and light (Helmuth
et al. 2005). On the other hand, Maxent assesses those areas presenting suitable environmental
conditions for colonization by L. camara based on correlations between a species’ geo-
referenced location data and environmental variables. Thus, CLIMEX projects the fundamen-
tal niche onto environmental space while Maxent projects the realized niche onto space. The
fundamental niche, representing the ecophysiological limits to the persistence of L. camara, is
more extensive than the realized niche, and the realized niche always occurs within the
fundamental niche (Brown et al. 1996).

When assessing future changes in the geographic distribution of species with correlative
models (i.e. Maxent), one fundamental assumption is the principle of niche conservatism,
which states that species tend to preserve their ancestral niche requirements over time and
space (Holt and Gaines 1992; Wiens et al. 2010). For invasive L. camara, its complex history
of introductions, as well as morphological or genetically differences from original ancestral
populations, could favor niche shifts due to adaptive evolution (Smith and Smith 1982;
Sanders 2006; Clements and DiTommaso 2011). Recent studies have revealed the different
directions of niche change in this species among continents (i.e. expansion in India vs.
contraction in Australia and Africa) (Goncalves et al. 2014). However, whether the principle
of niche conservatism held for this species was not tested in these previous studies or this
study. Correlating current climate with the observed species distribution may therefore not
identify the full potential climatic range of the species. Another important factor which has
received limited attention is the effect of equilibrium state and geographic background
conditions on predicting habitat changes in L. camara based on future climate change
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scenarios (Zhu et al. 2014). Distribution of L. camara may not be in equilibrium with its
environment (as is the case with most invasive species), due to biotic interactions, dispersal
characteristics, and human management of the landscape. Therefore, the realized niches used in
correlative bioclimatic envelope methodologies may not represent absolute limits to species’
ranges and thus future distributionsmay show very different realized niches (Pearson andDawson
2003; Huntley et al. 2010). The assumption of equilibrium is particularly violated when niche
models are calibrated over a large geographic area in a non-equilibrium state (Gallien et al. 2012).
If invasive L. camara is not in equilibrium with its environment, the climate niche quantification
and transferability will be limited. In contrast, since mechanistic models (i.e. CLIMEX) do not
assume equilibrium or a relationship between species occurrence and environmental data, models
based on physiological restrictions to species ranges are expected to identify the absolute
environmental limits more precisely (Roura-Pascual and Suarez 2008). However, mechanistic
models have other limitations, such as not providing information on the current distribution of a
species, nor including non-climatic factors that play important roles in determining species
distributions and the dynamics of distribution change (e.g. biotic interactions, dispersal process,
genetic adaptation) as well as the different tolerance ranges of individuals of a species (Soberon
and Peterson 2005). Despite some questioning of the validity of bioclimatic envelope modelling
strategies, it is stressed that the spatial scale at which these models are applied is of fundamental
importance (Pearson and Dawson 2003). A corresponding modelling framework for addressing
the environment-biota relationship in a hierarchical manner was proposed, which identified
correlative models as more appropriate at global, regional and landscape scales than mechanistic
models, which seem to be more accurate at finer spatial scales (Guisan and Zimmermann 2000;
Soberon and Peterson 2005). Since we employed the correlative niche modelling methodMaxent
in this study for predicting and interpreting at broad spatial scales, where climatic factors tend to
be the primary controls on distribution of L. camara, influences of non-climatic factors are
minimized and is thus a valuable first approximation as to the potential effects of climate change
on species’ range expansion. For the development of bioclimatic envelope models and their major
applications in the future, a strategy involving both correlative andmechanistic approaches should
be conceived, and data on biotic interactions, species’ adaptability to new climatic conditions as
well as species’ dispersal capabilities would be incorporated into distribution models for more
robust predictions of a species’ potential range (Roura-Pascual and Suarez 2008; Kearney and
Porter 2009).

4.3 Predictions under RCPs scenarios and implications

Future projections of the potential distribution of L. camara under a set of RCP scenarios
suggested an overall expansion in territory susceptible of being colonized. Although changes
in climatic suitable regions varied among the continents, the models indicated that all
continents currently colonized by L. camara would be susceptible to increased spread with
rising RCP levels by 2050, most notably in Oceania and Africa. Our findings contrast those of
Taylor and Kumar (2013) in which climatically suitable areas for L. camara were generally
projected to contract globally under future climate change. Besides the different modeling
algorithms and predictors employed, other possible reasons for the contrasting predictions may
be due to the set of scenarios and GCMs used. The radiative forcing prescribed in the SRES
and RCP scenarios can lead to different average temperature responses as well as seasonal and
annual temperature and precipitation extremes. Climate changes simulated in the CMIP3 and
CMIP5 ensembles are not directly comparable because of the differences in prescribed forcing
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agents (e.g. CO2 and aerosols) between the SRES and RCP scenarios (Rogelj et al. 2012). It is
difficult to determine the exact cause of the discrepancy of GCM outputs between the two
studies. Nevertheless, the results are helpful in improving our understanding of model
responses to a specific radiative forcing and highlight the uncertainties in predicting species
distribution shifts under future climates.

Considering the aggressive growth and reproductive habit of L. camara, its broad ecological
tolerance and high adaptability, it is likely that with climate change, currently isolated areas of
infestation in some regions of the world (e.g. coastal areas of eastern Australia, parts of Southeast
Asia) will further expand. Effective regulatory strategies focused on limiting human-facilitated
propagation and movement of this species, as well as close monitoring and preventive approaches
must be developed and implemented. For regions such as parts of Africa that have been identified
as being especially prone to increased invasion by L. camara under all climate models and
scenarios, a more in depth understanding of the factors that affect the population dynamics of
invasive species over time could have clear implications for the management and restoration of
invaded ecosystems (Ramaswami and Sukumar 2013). For instance, the functional relationships
and interactions between the various cultivars of L. camara and insect herbivores should be
investigated to improve the likelihood of developing successful biological control programs
(Cilliers and Neser 1991). In either case, to what extent climate determines changes in the natural
distribution of aspecies and the role that other non-climatic factors play need to be considered for
more robust estimates of potential range shifts with climate change (Pearson andDawson 2003). It
should be noted that using only climatic variables as explanatory variables for scenarios may
produce large uncertainties and difficulties in interpreting model projections. Aside overall
climatic conditions, information about habitat availability and human activity are likely to be
more influential at a local scale (e.g.Willis and Whittaker 2002). For instance, a case study of
L. camara in Australia by Taylor et al. (2012b) revealed that land-use plays an important role in
determining habitat availability and hence colonization potential. When incorporating land-use
data into the modelling process, more constrained distribution projections with both the reference
climate and climate change scenarios were derived, which provided land managers a more
accurate assessment of where management efforts would need to be targeted (Taylor et al.
2012b). These limiting factors, not included in our analysis, map help local decision-makers
identify areas vulnerable to potential invasion by L. camara.
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