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Abstract This article establishes quantitative relationships between the evolution of climate
and cropland using daily climate data for a century and data on allocation of land across crops
for six decades in a specific agro-climatic region of California. These relationships are applied
to project how climate scenarios reported by the Intergovernmental Panel on Climate Change
would drive cropland patterns into 2050. Projections of warmer winters, particularly from
2035 to 2050, cause lower wheat area and more alfalfa and tomato area. Only marginal
changes in area were projected for tree and vine crops, in part because although lower, chill
hours remain above critical values.

1 Introduction

Hundreds of previous studies have investigated climate effects on agriculture on a global or
national basis (Adams et al. 1990; Schlenker et al. 2006; Lobell et al. 2011b). Of course,
climate factors relevant to agriculture vary by crop and geography, and for a diverse cropping
system regional and crop aggregation is particularly troublesome (Lobell and Field 2011). Our
study of Yolo County, California, develops climate-cropland relationships using micro climate
information well suited to link to an array of specific crops. Based on 100 years of local
climate history and 60 years of county cropland data, we establish statistical relationships
between climate change and changes in cropping patterns. These relationships are then applied
to assess how down-scaled climate projections constructed under the scenarios of the
Intergovernmental Panel on Climate Change (IPCC) affect cropland patterns projected into
the future (Trenberth et al. 2007).
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A few studies examining regional-scale data in California may be highlighted. Baldocchi
and Wong (2008) and Luedeling et al. (2009) projected substantial loss in chill hours, which
are needed for many tree crops, by the end of the century. Lobell and Field (2011) investigated
the climate impacts on California perennial crop yields using data with classification of 20
crops and monthly average temperatures. The overall effects of climate have been mixed, with
some distinct negative yield effects found for cherries. Deschenes and Kolstad (2011) exam-
ined the relationships between profits and climate change for a number of California crops, and
projected the overall negative effect of climate change on crop profits by the end of the
century. Schlenker et al. (2007) examined implications for farmland values in California, but
their results apply much more to those regions with irrigation water supplied by the Sierra
Nevada Mountain snow pack.

Our study uncovers crop-climate relationships using detailed characterizations of climate
for Yolo County, California. Focusing on a single county allows us to uncover detailed
responses of cropland adjustments to detailed climate outcomes and projections that would
not be feasible for a larger area. Our choice of Yolo County, California, lets us to investigate
historical climate impacts in an especially diverse agricultural environment in which more than
a dozen significant crops compete for land and water resources. Cropland in Yolo County,
which is almost all irrigated, is devoted to trees and vines, vegetables and field crops with
different seasonal cycles. Climate variables are constructed to reflect the specific growing
conditions of these crops and include precipitation, growing degree days for spring/summer
growing crops, growing degree days for winter/spring growing crops, and winter chill hours. A
significant contribution of the present paper is to document that impacts of climate change for
cropland patterns may depend on very local conditions and how these climate impacts alone
may affect patterns of cropland use across crops over a horizon.

Econometric models can relate the historical cropland of each major crop to changes in
market conditions or other relevant factors, including how climate has changed through time.
Historical cropland-climate relationships show magnitudes of potential cropland responses
caused by climate change. Extrapolating such relationships into the future provides insight on
cropland changes that may be induced by climate change. This paper is the first to examine
how the long history of climate change has affected crop choice in the context of diverse
agriculture with more than a dozen relevant crop alternatives and to show the implications for
shifting cropland as climate changes over the next four decades. A recent study by Mehta et al.
(2013) explores irrigation water implications of climate change in Yolo County. Focusing on a
water district in Yolo County, Mehta et al. develops land use data and projections driven solely
by irrigation water allocation and use. Their work is based on an engineering model (and
cropland use estimates reported in Jackson et al. (2012)), which evaluates the hydrologic
implications of climate change scenarios as well as the water management ramifications of the
implied hydrologic changes.

Cropland projections through 2050 are conducted under the two IPCC greenhouse gas (GHG)
emission scenarios, B1 (low emissions) and A2 (medium to high emissions). These two scenarios
are widely adopted to provide an acceptable range for future climate projections (Lobell and Field
2011; Luedeling et al. 2009; Deschenes and Kolstad 2011; Mehta et al. 2013). Our cropland
projections use the climate variables constructed using downscaled daily projections from a
global circulation model produced by the National Oceanic and Atmospheric Administration
(NOAA) Geophysical Fluid Dynamics Laboratory (GFDL CM2.1) under the IPCC’s two
scenarios, A2 and B1. Downscaled climate projections were corrected using the Bias Corrected
Constructed Analog (BCCA) method (Cayan et al. 2008) which represents local climate in Yolo
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County for the period of 2010 to 2050. Our analysis relies on the CMIP3 scenarios, however, after
reviewing newer downscaled projections Cayan et al. (2012) state, “In summary… CMIP5
regional climate changes are generally similar to previous generation CMIP3 model results.”

2 Overview of agriculture and historical climate in Yolo County

This section briefly describes agricultural activities and historical climate in Yolo County
based on county-specific data collected from Yolo County Crop Reports (Yolo County
Agricultural Department) and the National Climatic Data Center of the National Oceanic
and Atmospheric Administration (NOAA).

2.1 Agriculture in Yolo County

Yolo County is situated in the northwestern part of the Central Valley of California. In 2009, Yolo
County farm cash receipts were $461 million from 135 thousand hectares of cultivated cropland.
Only 5 % of Yolo farm receipts come from livestock. Crop revenue is diverse with 32 % from
vegetables (almost all from processing tomatoes), 27 % from field crops (alfalfa, rice, wheat and
others), and 26% from fruits and tree nuts (winegrapes, almonds and walnuts and others) (Fig. 1).
As elsewhere, technological change has increased crop yields per unit of land and per unit of
applied water. Some of the trend in cropland changes reflects differential technical change.

2.2 Historical surface temperatures in Yolo County for the past decade

We accessed daily maximum and minimum temperatures from the Davis weather station for the
years from 1909 to 2009. The annual means of daily temperatures show an unmistakable long-term
upward trend (see panel a of Fig. 2). The average annual temperature has risen by 1 °C from
approximately 15.15 to 16.1 °C over the past century. Panel b of Fig. 2 presentsmonthly averages of
minimum and maximum temperatures for January and July. We find distinct upward trends for
minimum temperatures, with January minimums rising twice as fast as July minimums. In Yolo
County, California, climatewarming has been due to risingminimum temperatures, especially in the
winter. Similar findings are reported by Christy et al. (2006) who attributed their findings of
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Fig. 1 2009 Yolo County cropland shares (%) and agricultural market value shares (%) by commodity category.
Cropland shares are based on the total cropland of 135 thousand hectors and value shares are based on total
market value of $461 million. Cropland includes irrigated pasture but excludes non-irrigated (dry) pasture, and
other crops include organic crops, nursery products, and seed crops. Source: 2009 Yolo County Agricultural Crop
Report
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decliningmaximum temperatures in the San Joaquin Valley of California partially tomore irrigation
and changes in land use and by Bar-Am (2009) who found rising minimums for winegrapes
growing regions for California over the century. (More detailed climate information is shown in
Online Resource 1 together with detailed data and comparisons with projections discussed below.)

3 Derivation of climate indexes relevant to crop agriculture

Immediate implications of climate warming for crop agriculture are longer growing seasons for
most crops and reduced chill hours needed for deciduous trees and vines. Changes in the duration of
a growing season can be quantified by growing degree days (GDD)—a heat accumulationmeasure,
while chill hours can be measured as the number of hours below a threshold minimum temperature.
We developed data on GDD and chill hours using past 100 years of data on surface temperatures.

a Annual average temperatures and historical trend inYolo County, California 

b Monthly average minimum and maximum temperatures for January and July and historical trends in
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Fig. 2 Historical annual average temperatures and historical minimum and maximum temperatures for January
and July in Yolo County, California, derived from actual daily maximum and minimum temperatures for 1909–
2009. Solid straight lines indicate linear historical trends. a. Annual average temperatures and historical trend in
Yolo County, California. b. Monthly average minimum and maximum temperatures for January and July and
historical trends in Yolo County, California
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3.1 Growing degree days (GDD)

Daily GDD are calculated as the difference between the daily average temperature and a lower
bound below which plant growth is impaired. Further, the GDD calculation is bounded by
temperature above which photosynthetic function is reduced. These two threshold tempera-
tures may differ slightly by plant species and cultivar, but we set these two values for each crop
at 8 and 32 °C following Deschenes and Greenstone (2007). Thus, daily mean temperature
below 8 °C or above 32 °C contributes no additional GDD. Annual GDD are then calculated
by summing up the daily GDD for the relevant growth period.

We calculate GDDs for two different growth periods that are relevant for California, from
April 1 to August 31 for summer harvested (or spring planted) crops and from November 1 to
May 31 for spring harvested (or late fall or winter planted) crops such as fall-sown hard red
wheat, labeled as GDDsummer and GDDwinter, respectively. Panel a of Fig. 3 presents the trends
of both GDDs, that have increased over the last century, from 3,223 to 3,516 for GDDsummer

and from 1,398 to 1,712 for GDDwinter. Our results on increasing GDDs are consistent with
Feng and Hu (2004) and McKenney et al. (2006) who found the growth season to be
lengthening across North America, including California. GDDwinter increased by 0.22 % per
year, which is more than twice of the rate 0.09 % observed for GDDsummer. Importantly, in
California, the amount of GDD is rarely a limiting factor for most summer crops. However, for
winter crops an increase in GDDwinter likely results in positive growth.

3.2 Chill hours

Chill hours are the number of hours below a critical temperature—most commonly 7.22 °C
(Aron 1983). Insufficient winter chill provides inadequate physiological stimulation to renew
growth, resulting in reduced fruit yield (Aron 1983). We approximated chill hours as a function
of daily minimum and maximum temperatures, following Baldocchi and Wong (2008). Their
approach assumes that temperature changes over a 24 h period are gradual, and bounded by the
daily maximum and minimum temperatures with a linear process in which the daily temper-
ature declines to the minimum, rises to the maximum, and declines again to the minimum the
next day. Annual chill hours are the sum of daily chill hours during the plant’s dormancy
period of November through February.

Panel b of Fig. 3 shows that estimated chill hours have decreased by about 160 h over the
last 100 years. Using a shorter time series, Luedeling et al. (2009) also found that winter chill
hours in the Central Valley of California had declined. Data in Table 1 show that chill hours
requirements in Northern California vary by crop. Table 1 indicates that almonds and grapes
require relatively low chill hours, whereas walnuts require considerably more, between 400
and 1500 h. Under the current trends, insufficient chill hours is not yet a major concern in Yolo
County, but could become a binding factor over the next century for crops such as pears,
plums, pistachios, sweet cherries and perhaps walnuts.

4 Cropland model

Change in climate affects expected crop productivity and therefore farmer allocation of
cropland area to specific crops. The economic reasoning is straightforward and will not be
derived in any detail. Growers consider the profit potential of crops they plant before weather
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realizations occur. That means they rely on climate to assess likely yields, costs, pest pressures
and similar considerations. Farmers face many constraints and incentives likely including
relative market prices for outputs and inputs in addition to climate. In this context, econometric
analysis in this section is best interpreted as measuring the extent to which local climate
information contributes to allocation of cropland among crops, given all the other important
factors influencing those decisions. It is, however, important to recognize that such exercise
does not fully account for year-to-year fluctuation in cropland or link cropland to the full
complement of expected prices and other drivers. That is, we do not attempt to account for all
variables in allocation of cropland, rather we focus on how cropland allocation has responded

a Growing dgree days for winter (Nov 1- May 31), growing degree days for summer (Apr 1- Aug 31),

and historical trends

b Chill hours (during Nov 1- Feb 28) and threshold chillh ours for grapes, almonds and walnuts 
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Fig. 3 Historical growing degree days for summer months, growing degree days for winter months, and chill
hours in Yolo County, California for the period of 1909–2009, estimated using historical daily minimum and
maximum temperatures. Chill hours are compared to threshold chill hours for three important crops in Yolo
County, grapes, almonds and walnuts. The threshold chill hours are taken from the mid value of the chill hour
range in Table 1. a. Growing degree days for winter (Nov 1- May 31), growing degree days for summer (Apr 1-
Aug 31), and historical trends. b. Chill hours (during Nov 1- Feb 28) and threshold chill hours for grapes,
almonds and walnuts
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to local climate changes alone. Unlike crop yields that depend on realized weather, planted
area depends on climate expectations, which is likely formulated based on past climate change.

To investigate this issue quantitatively, we specify statistical models of cropland for each
major crop as a function of relevant local climate variables and other relevant variables. We
specify 13 equations (see Table 2 for the crop list) with each associated with an individual crop
that currently has significant cropland in Yolo County. Since we use these cropland estimates
to project over a 40 year horizon, we do not include crops such as apricots or barley, which
have ceased to be significant.

Each equation describes cropland of a specific crop and expressed as a linear function of
explanatory variables guided by the general formulation:

Area of cropland for crop i ¼ f market conditions; climate;water availability; agronomic factorsð Þ

Based on these variable categories, each equation is specified with its own set of variables
that are most likely to affect the cropland of that crop. An alternative to our approach is to
estimate a set of land share equations, which allows one to impose the property that the shares
add to 1.0. However, estimating the full system of cropland allocation equations requires
that the same variables appear in each equation. Share equations were estimated by Mu
et al. (2013), which considers only three highly aggregated land uses, and Hendricks
et al. (2014) where almost all the land is used for one of three few crops (corn,
soybeans and an aggregate of other crops). In the context of more than a dozen diverse
crops, it is simply not feasible or appropriate to estimate share equations with all
common variables included in each equation. For example, for the tree and vine crops
we account for chill hours in the specification, whereas we do not include the chill hour
variable where that is less relevant.

We categorize explanatory variables and introduce notation here. Estimation details are
available in Online Resource 2 (also in Jackson et al. 2012) along with more discussion on
data, variable selection, and model specification.

Market conditions Market conditions are represented by own product price and prices of
substitute crops. Yolo farmers are price takers, and for most field crops and vegetables, we
used one-period lagged prices denoted as P(crop)t-1 to represent current own price expecta-
tions. For tree and vine crops, to reflect trends and expectations, we use a moving average of
multiple lags of own prices expressed as MP(crop)t-i,j,k. (for the lags i,j,and k).

Table 1 Winter chill hours re-
quired for selected tree and vine
crops

The range of chill hours reflects
different requirements across
various varieties of the same
crop. This information was pre-
viously published in Baldocchi
and Wong (2008) which indicat-
ed the original source as Austral-
asian Tree Crops Source Book,
http://www.aoi.com.au/atcros/
LM.html)

Crop Chill hours (min-max)

Grape 100–500

Peach 200–1,200

Apricot 350–1,000

Kiwi 400–800

Almond 400–700

Walnut 400–1,500

Sweet cherry 600–1,400

European pear 600–1,500

European plum 700–1,800

Pistachio 800–1,000
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Agronomic practices Agronomic practices constrain cropland decisions. Many annual crops
require crop rotation to maintain yields. In that case, for a given plot of land, the previous
year’s crop affects selection of this year’s crop. To reflect the effects of rotation crops on this
year’s cropland decision, we include the one period lagged cropland of rotation crops denoted
as A(crop)t-1, where it is relevant (Marsh and Jackson 2008).

Water availability All major crops in Yolo County are irrigated. Unlike much of the Central
Valley, which relies on watersheds fed by the Sierra Nevada snow pack, about 70 % of
irrigation water in Yolo County is supplied by local rain fed surface water storage, with the rest
pumped from groundwater (Water Resources Association 2005). Given the lack of appropriate
time series data, we use lagged precipitation denoted as Prcpt-i (for lag i) as a proxy for surface
water availability.1 We also use a dummy variable indicating new water storage (Indian Valley
Reservoir) operated since 1976 by the local water district. Precipitation accumulates mainly
from January through March, and the local water district authority announces availability of

1 The amount of rainfall may differ in the valley region of Yolo County and the upper watershed where reservoirs
are located. Hence, our rainfall data may under represent surface water availability. However, as long as the
rainfall in the valley and upper watershed is correlated (likely so), using rainfall in the valley is expected to make
little difference in the regression results.

Table 2 Econometric estimation of crop acreage equations on selected explanatory variables including own
prices, irrigation water variables, growing degree days and chill hours

Fields crops and vegetables

Variable Rice Alfalfa Wheat Corn Safflower Pasture Tomatoes Other veg

Own price P(crop)t-1 620.8*** 13.8 95.3*** 148.6 3.44 −0.66 121*

(3.62) (0.46) (4.09) (0.21) (0.64) (−0.41) (1.69)

Precipitation Prcpt −3.8**

(−2.21)
Prcpt-1 0.86 1.77* −3.56 −0.23 −2.05** 0.31 1.46 0.34

(0.8) (1.88) (−1.47) (−0.21) (−1.92) (1.25) (1.25) (1.43)

Prcpt-2 1.35 1.58* −3.31** 2.87*** −2.24 0.33 −0.57 0.17

(0.99) (1.62) (−1.96) (2.66) (−1.59) (1.22) (−0.47) (0.69)

Moving avg
of GDD

MGDDs −16.9 −6.77 30.5 6.98 6.55

(−0.62) (−0.17) (0.98) (0.93) (1.25)

MGDDw 48.06** −118.8** 46.6

(2.35) (−2.45) (1.51)

Log likelihood −562 −578.8 −629.9 −571.2 −571.39 −509.7 −582.58 −478.31
Fruits and tree nuts

Prunes Grapes Almonds Walnuts Other fruit

Moving avg of
own price

MP(crop)t-i,j,k 0.56** 10.5** 404.5 0.08 0.03*

(2.03) (2.18) (0.55) (0.31) (1.61)

Moving avg of
chill hours

Mchill 1.93** −3.1 −5.92 4.67* 1.88**

(2.36) (−0.7) (−0.98) (1.73) (2.15)

Log likelihood −363 −246.9 457.4 −438.9 −372.8

MP(crop)t-i,j,k used for tree and vine crops are: MPprunes t-5,6,7, MPgrapes t-1,2,3, Pwalnuts t-5, and MPofruit t-1,2,3

Numbers inside parentheses are t-values and the number of asterisks indicates different levels of significance: ***
(P≤0.01), ** (P≤0.05), and * (P≤0.1)
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surface irrigation water in April (Mehta et al. 2013). Thus, current year’s rainfall is included in
the equations for the fall-planted crops, but not for the spring planted crops. (See Online
Resource 3 for more details about irrigation water availability.)

Climate (surface temperature) variables Climate variables represent the trends not year-
to-year short-term changes in weather. We construct 10 years moving averages of annual
climate indexes and adopt those as climate variables in cropland equations. We use 10 years
averages rather than longer moving averages (say 30 years) to reflect climate expectations over
a period in which farmers have observed and expect relatively steady changes. Ten-year
moving averages are denoted as Mchill for chill hours, MGDDw for GDDwinter and MGDDs

for GDDsummer, and we use Mchill for tree and vine crops, MGDDw for wheat, tomatoes and
alfalfa, and MGDDs for all other annual crops.

2 Even though tomatoes and alfalfa are mostly
summer-harvested crops, tomatoes intended for early harvest are planted as early as February,
and the first cut of alfalfa after winter also occurs in April. For these crops, warm temperature
during the winter growth period is particularly relevant.

5 Data and estimation

5.1 Data

Cropland estimations outlined above require data from two broad sources, agriculture and
climate. For agriculture we have time series data on Yolo County cropland available from Yolo
County Crop Reports (Yolo County Agricultural Department). The longest consistent time
series available for the crops we considered start from the early 1950s (the starting year varies
slightly by crop), and our data end in 2008. We also obtained time series crop prices for
California from the National Agricultural Statistics Service (NASS) and Economic Research
Service (ERS) of the U.S. Department of Agriculture (USDA). The state represents the
smallest geographic unit for any consistent price data. Given markets tend to be spatially
integrated statewide, we use state prices in place of county prices. All prices are converted into
real prices using the gross domestic product deflator (Bureau of Economic Analysis).

Climate data needed for estimation were obtained from the time series data for the past
hundred years by subsetting the period of the early 1940s though 2008. To construct moving
averages, climate data start 10 years earlier than crop data. Our climate data also provide
annual precipitation for the same time series.

5.2 Estimation

Given we use time series data, statistical properties of all time series data had to be tested
before the model estimation (Enders 2004). In particular, we test for a unit root using the
augmented Dickey-Fuller method (the presence of a unit root implies data nonstationarity).
Given the failure to reject unit roots by most variables, the next step is to test for cointegration

2 GDDwinter likely affects the growth of annuals as well as perennials as shown in Lobell and Field (2011) recent
findings that the low minimum temperature in February adversely affects almond yields. Nevertheless, in our
study, the climate variable for tree crops is represented by Mchill alone, due to the considerable negative
correlation between chill hours and GDDwinter.
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which allows for the use of an error correction model. Given no strong evidence of
cointegration, we transformed all variables into first differences and regressed first-
differences on first-differences (test results are provided in Online Resource 4). Estimations
were conducted using STATA time series routines.

Recent studies and reviews have emphasized nonlinear impacts of climate change
in a variety of outcomes, including field crop yields (Auffhammer et al. 2013; Dell
et al. 2014; Schlenker and Roberts 2009). We do not document effects of highly
nonlinear changes in the distribution of climate extremes because parameters for such
impacts are much more difficult to measure empirically with historical data (Bar-Am
2009; Lobell et al. 2011a). We have tested a simple nonlinear relationship by adding
the squared term of relevant climate variable in each equation. Our results indicate
that the nonlinear term did not improve the overall fit for any of our crops except for
walnuts, suggesting no significant nonlinear impacts over the range of data in the
California context (see Online Resource 2).

We also investigated the robustness of the model specifications for prediction
accuracy. We conduct out of sample robustness checks by splitting the sample into
sub-samples before and after 1980. We use the pre-1980 sample for estimations and
reserve the post 1980 sample for prediction tests. To provide a relative measure for
prediction accuracy, the benchmark model is specified as a univariate time series
ARIMA model (Clark and West 2006). Both benchmark and our models are estimated
using the pre-1980 subsample. Using the estimated results, we predicted BY^ values
for the out of sample period. We compute the root of mean squared error (MSE) from
each prediction. The comparison of these values indicates that our model improves the
out-of-sample forecast accuracy for two thirds of the crops relative to the benchmark
model (Online Resource 2). Even if our model underperformed for one third of the
crops, it is important to bear in mind that the focus in this paper is not Bforecasting,^
but rather isolating the climate effects in the multivariate framework.

6 Estimation results and interpretation

Table 2 reports estimation results for selected regressors, including own prices and climate
variables with full estimation results presented in Online Resource 2. In addition, we report
results for the water availability variable only for annual crops given that recent water
availability would be more important in year-to-year cropland decisions for annuals than for
perennials. (We found that none of the recent water supply variables were statistically
significant for perennials.)

Own prices are important for rice and wheat land. Increased availability of irrigation water
(represented by variable Prcp) expands alfalfa and corn, and contracts wheat and safflower
(P≤0.06). The results on wheat and safflower are consistent with their relatively low depen-
dence on irrigation and low per-land revenue.

Growing degree days for summer harvested crops (MGDDs) did not directly affect
the allocation of cropland in Yolo County. However, MGDDw for alfalfa and wheat
which grow through the winter had significant effects on their cropland (P≤0.01 and
P≤0.02, respectively) but with different signs, positive for alfalfa and negative for
wheat. A warm winter is expected to provide favorable conditions for alfalfa produc-
tion (consistent with Lobell and Field (2011)). The negative effect on wheat may be
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because many wheat varieties require a period of cool growing conditions known as
vernalization (Chouard 1960).3

Prunes and grapes also have significant own price effects (P≤0.05). None of precipitation
variables were significant for any tree crop. Winter chill hours are statistically significant for
prunes, miscellaneous fruits (P≤0.05), and walnuts (P≤0.08), indicating that continuing
warming in winter would reduce the land area for these crops in the future. A 1 % reduction
in chill hours (in 10 years moving average terms or equivalently a permanent 1 % reduction)
induces a reduction in cropland by about 1 % for prunes and walnuts. Recall walnuts and
prunes are among the crops that require relatively high chill hours (Table 1).

Overall, these parameter estimates indicate moderate influences of climate variables and the
effects on individual cropland of each climate variable are dictated largely by two facts,
whether the crop requires cooling periods and whether the crop grows over the winter season.
Other climate-related factors that affect Yolo County cropland, such as irrigation water impacts
caused by lower snow pack (outside Yolo County) or potential impacts of statewide or global
climate change on relative prices, are beyond the scope of this study. To the extent that Yolo
precipitation and temperature are correlated with snowpack these variables also capture some
expectations of irrigation water availability from outside the county.

7 Cropland projections

We now use the estimates of climate-related parameters to project how local climate change
alone may affect allocation of Yolo County cropland for the period of 2010–2050. We focus on
the horizon ending 2050 to avoid extrapolating beyond the usefulness of the historical
relationships. Under the two IPCC scenarios, A2 and B1, which are based on storylines for
higher and lower GHG emissions, respectively, we obtained downscaled climate projections
from the GFDL model (Cayan et al. 2008) to represent future climates.

Using these localized daily climate projections, we constructed scenario-specific climate
indexes, GDDsummer, GDDwinter, and chill hours, and then 10 years moving averages of these
indexes. We used these climate Bdata^ and downscaled precipitation projections in our
estimated cropland equations to obtain cropland projections, holding all other independent
variables constant at the value in the last year (2008) of actual data. Using these climate related
variables as sole drivers for cropland changes, we isolate the effects on future land exclusively
of the changes in specific climate related variables. (See Online Resource 1 for more details on
the climate projections.)

The crop-by-crop panels in Fig. 4 present the climate-change induced future cropland as
well as the observed and fitted values over the historical period. The fitted cropland tracks the
actual land of each crop well over the historical period. The cropland projections into the future
use the estimates obtained in our regressions, which are based on historical data. They do not
incorporate unanticipated shocks, such as new pests, unanticipated technologies or changes in
relative prices that may affect cropland directly and through adjustment to climate change
(Gutierrez et al. 2006). Our projected cropland varies much less from year to year than does the
historical cropland. This smoothing follows because future cropland was projected by varying
only future climate (temperature and precipitation, holding all other variables constant).

3 Wheat varieties planted in California these days do not require a cool period. However, the plausibility of
vernalization is based on the fact that our data period extends more than a half century.
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We only mention some of the main results here. Future rice land rises slightly. Recall from
our regression results that the own price of rice is a more significant determinant of rice land
than climate. Wheat area decreases significantly under the warming of the B1 scenario in the
final 15 years of the projection period. The opposite is true for alfalfa. Increasing GDD inwinter
is favorable for alfalfa, and alfalfa area increases significantly during this warming period.

Safflower land fluctuates over a wider range than other crops during the projection period.
Our regressions showed that safflower increases when water availability is restricted. The
increasing trend of tomato land in the latter half of the projection period under the B1 scenario
may be related to the increase in GDDwinter as a warmer climate in the late winter or early
spring allows early planting.

Projected prune land shows a downward trend under both scenarios–a result of the
projected reduction in winter chill hours. However, prune fluctuates more under the B1
scenario than under A2. Grape land is almost constant over the projected period; changes in
grape land are induced by changes in factors other than climate. Almond, unlike other tree and
vine crops, increases in the latter half of the projected period when winter warming occurs
under the B1 scenario. The almond crop has a relatively low winter chill hour requirement, and

Fig. 4 Cropland projections (thousand hectares) into 2050 by crop under A2 and B1 scenarios in Yolo County,
California when climate changes following GFDL projections while all other factors held constant at 2008 levels.
Abbreviated notation above is: Obs observed, Pred predicted, Proj.B1 projected under B1, and Proj.A2 projected
under A2

�

Table 3 Yolo County cropland in 2008 and projected acreage in 2050 with the projections induced by climate
change alone and the range in projected cropland is provided by the projections under B1 and A2 scenarios

2008 (historical) 2050 (projection)

1,000 ha

Total (Land in listed crops) 98.1 101.7–102.2

Major field crops 66.3 65.5–66.2

Rice 12.2 15.1–15.5

Alfalfa 22.9 26.2–28.7

Wheat 17.2 7.4–12.9

Corn 3.3 2.5–4.3

Safflower 5.5 4.2–4.4

Irrigated Pasture 5.3 5.1–5.2

Vegetables 17.2 20.8–21.9

Proc. Tomatoes 15.2 18.7–19.8

Other vegetables 2.0 2.1

Fruits and tree nuts 14.6 14.7–14.8

Prune 0.8 0.8

Grapes 4.9 5.1

Walnut 3.6 3.3

Almond 4.7 5–5.1

Other fruits 0.6 0.4–0.5

Cropland projections obtained under scenarios B1 and A2 provide the range in 2050 cropland. Field crops
include only the listed crops and the total cropland refers only to crops listed in the table. Land use above does not
include minor field crops, seeds, organic crops, and nursery crops
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is affected relatively little by the projected lower chill hours. For walnut and other fruit crops,
reduced chill hours are found to be a contributing factor, and their land tends to fall more under
the B1 scenarios.

8 Summary, implications and limitations

Table 3 summarizes projections of crop area performed under the two alternative climate
scenarios to 2050 compared with area by crop in 2008, the base year of projections. Yolo
County climate change has played a moderate role in the evolution of cropland in the past
60 years. Even though the warmer winter under the B1 scenario increases alfalfa planting, this
increase cannot offset the loss in wheat land, leading to a slight decline in field crop area. The
projected increase in alfalfa relative to wheat presents an interesting implication for water use.
A significant shift from wheat to alfalfa would increase regional irrigation water demand.

Our results suggest climate change has been less important for the crop area allocation
across trees and vines in Yolo County. In the second half of the projection period, cropland
reductions for prunes, walnuts, and other fruits under B1 are offset by the increase for almond
and grape land. Reduction in winter chill hours does not appear to be a major factor, at least
through 2050. We stress that our projections are not cropland forecasts. They are driven solely
by projections of local climate variables with no other drivers of cropland included over the
projection period. That is, no attempt is made to forecast relative prices, technical changes,
new markets, or other factors that will also surely affect how much of each crop is planted.

Several limitations of this study suggest further research. First, our specific results apply to
a single county and replication for other regions is in order. Second, assessing potential effects
across even more alternative variable definitions and econometric specifications, such as share
equations estimated with more aggregate data would be useful. In keeping with our focus on
local climate, we did not explore the influence of out-of-region climate changes such as those
related to snowpack. A more detailed treatment of irrigation water availability from outside the
county may provide a useful clarification of these results. One important item on the agenda is
to examine projection results under alternative GCMs or climate change scenarios. The
approach of this paper may be enhanced by using the most recent climate forecasts from a
range of GCMs and scenarios including the potential impact of climate extremes and those
consistent with downscaled CMIP5 projections. That would usefully consider more than one
location to compare local responses to local climate changes. This would likely include
comparing local regions in California that grow similar crops but may have different climate
responses. Cross section time series data may also be more likely to reveal non-linear impacts.
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