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Abstract Climate change is expected to affect health through changes in exposure to
weather disasters. Vulnerability to coastal flooding has decreased in recent decades but
remains disproportionately high in low-income countries. We developed a new statistical
model for estimating future storm surge-attributable mortality. The model accounts for sea-
level rise and socioeconomic change, and allows for an initial increase in risk as low-
income countries develop. We used observed disaster mortality data to fit the model,
splitting the dataset to allow the use of a longer time-series of high intensity, high mortality
but infrequent events. The model could not be validated due to a lack of data. However,
model fit suggests it may make reasonable estimates of log mortality risk but that mortality
estimates are unreliable. We made future projections with and without climate change
(A1B) and sea-based adaptation, but given the lack of model validation we interpret the
results qualitatively. In low-income countries, risk initially increases with development up
to mid-century before decreasing. If implemented, sea-based adaptation reduces climate-
associated mortality in some regions, but in others mortality remains high. These patterns
reinforce the importance of implementing disaster risk reduction strategies now. Further,
while average mortality changes discontinuously over time, vulnerability and risk are
evolving conditions of everyday life shaped by socioeconomic processes. Given this, and
the apparent importance of socioeconomic factors that condition risk in our projections, we
suggest future models should focus on estimating risk rather than mortality. This would
strengthen the knowledge base for averting future storm surge-attributable health impacts.
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Abbreviations
DIVA Dynamic Interactive Vulnerability Assessment
EM-DAT Emergency Events Database
GCM General Circulation Model
GDP Gross Domestic Product
HDI Human Development Index
LHS Left-hand side
RHS Right-hand side
SLR Sea-level rise
UN United Nations
UNDP United Nations Development Programme
WPP World Population Prospects

1 Introduction

Climate change is expected to affect health through changes in exposure to weather disasters,
including via wind storms (e.g., cyclones)1 and coastal flooding (IPCC 2012). During 1980–
2000, cyclones caused an average of 12,000 deaths per year globally (Shultz et al. 2005), but a
single disaster can cause a large loss of life in the absence of adequate defences and/or warning
systems. High mortality events often occur in lower-income countries, but high-income
countries are not immune: Cyclone Nargis caused 138,000 deaths in Burma in 2008 (Fritz
et al. 2009), and Hurricane Katrina caused 1800 deaths in the USA in 2005 (Knabb et al.
2006).

Vulnerability to cyclones has decreased in recent decades due to improved disaster pre-
paredness, but vulnerability remains about 200 times greater in low-income than in higher-
income countries (UNISDR 2011). Further, risk does not decline linearly with economic
development: observations suggest that as low income countries develop, risk may initially
increase before decreasing (De Haen and Hemrich 2007; Kellenberg and Mobarak 2008). For
example, expansion of slums in coastal cities may increase population exposure at a greater
pace than can be compensated by protective measures.

Cyclone mortality is associated with high-speed winds, heavy rains, and storm surge. We
focus on mortality risk associated with storm surge, defined as sea water pushed forward and
drawn up by a depression which floods an otherwise dry area of land. Climate change is
expected to worsen storm surge events through sea-level rise and via an increase in intensity,
but not frequency, of cyclones (IPCC 2012; Emanuel 2005). Non-climate factors will also
affect future surge risk including physical changes such as land subsidence, and socioeco-
nomic changes such as increased coastal population (McGranahan et al. 2007) and disaster
preparedness.

Previous studies of future flood mortality are of two types: ‘event-based’ (see Jonkman
et al. 2008 for a review; also, Penning-Roswell et al. 2005; Maaskant et al. 2009) or ‘average
mortality’ (e.g., McMichael et al. 2004; Peduzzi et al. 2012) models. The former focus on
single flood events, using detailed data describing flood characteristics (e.g., depth, velocity),
area-specific conditions (e.g., buildings, evacuation routes), and the exposed population (e.g.,
age distribution). The data requirements mean the strategy is not suitable for global-level
modelling. ‘Average-mortality’ models consider a given area (e.g., a grid cell, a nation-state)

1 Throughout, we use Bcyclones^ as a general term to refer to any major wind storm that may be associated with
a storm surge; e.g., extra-tropical storms, hurricanes, tropical cyclones, typhoons etc.
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and use data on long term probabilities of events, average population exposure, and average
socioeconomic conditions to estimate average mortality. We adopt this latter strategy.

To our knowledge, only two papers have quantified global storm-surge mortality.
McMichael et al. (2004) developed a model using a 20 year series of mortality data for all
coastal flood disasters. Mortality risk was estimated using national population as the denom-
inator. For future projections, the changes in population vulnerability were linearly scaled to
Gross Domestic Product (GDP) per capita.

Dasgupta et al. (2009) developed a spatially explicit mortality model for 84
countries and 577 coastal cities. They modelled 1:100-year storm surges, and assessed
future impacts under climate change accounting for sea-level rise and a 10 % increase
in event intensity. Despite detailed physical modelling, socioeconomic changes were
poorly represented: future country-level impacts assumed no population or socioeco-
nomic changes from the present, and city-level impacts held socioeconomics constant
but accounted for population change.

In this paper, we developed a new statistically-based ‘average mortality’ model for esti-
mating future mortality attributable to storm surge due to climate change in the context of
socioeconomic change.

First, describe the coastal flood model, the Dynamic Interactive Vulnerability Assessment
(DIVA), which provides the principal input into our mortality risk model: population at risk of
exposure to storm surge. Second, we outline the development of the mortality risk model.
Third, we describe model calibration. Fourth, we project future mortality risk and mortality
under given climate and socioeconomic scenarios.

2 Coastal flood model

The (DIVA) is an integrated bio-geophysical model (Vafeidis et al. 2008; Hinkel and Klein
2009) which assesses the impacts of sea-level rise (assuming no increase in storminess),
subsidence and socio-economic change in the coastal zone. Pattern-scaled climate scenarios
were derived from Brown et al. (2013) (also see Section 5.1.1), subsidence from Peltier
(2000a, b), and socioeconomics (population and GDP) from the SRES socio-economic
scenarios (Nakicenovic and Swart 2000) (see Online Resource, ESM, Appendix S1).

We used the DIVA country-level output, Baverage annual people at risk of exposure to
storm surge^; i.e., expected number of people flooded per year if they do not evacuate or move
to storm shelters, as analysed in Brown et al. (2013).

DIVA considers two engineered adaptation strategies (‘sea-based strategies’). ‘No upgrade
to protection’ models dikes for a common baseline (1995) and assumes this standard of
protection is not upgraded as sea-level rises and socioeconomics change; i.e., a future without
adaptation. ‘Upgrade to protection’ entails that dikes are upgraded reflecting changes in
population density as sea-level rises, and that there is beach nourishment in response to
erosion; i.e., a future with adaptation.

Two aspects of DIVA guided the development of the mortality risk model. Firstly, DIVA
considers sea-based strategies of adaptation and estimates people at risk of flooding if the
defences are breached. It does not account for other adaptation strategies such as warning
systems, shelters, and building regulation (‘land-based strategies’). We therefore included an
analogue of the Human Development Index (HDI) (UNDP 2010) as a proxy variable for land-
based strategies in the mortality risk model. That is, we refer to two types of adaptation: ‘sea-
based strategies’ (as modelled by DIVA), and ‘land-based strategies’ (as modelled in the
mortality risk model).
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Secondly, DIVA assumes that cyclone intensity and frequency will remain at baseline levels
in the future. Thus, the mortality risk model assumes the same.

3 Mortality risk model

3.1 Form of the model

Population mortality risk is a function of climatic and socioeconomic conditions. To model
this, we adopted a model structure based on Patt et al. (2010), who developed a statistical
model for estimating country-level vulnerability (as log mortality risk) to climate-related
disasters. We tested various configurations of the model and selected the following form
(see Section 4):

ln
Mi; j þ 1

X i; j
� 106

� �
¼ β1 � ln Ei þ 1ð Þ þ β2 � ln Pi; j

� �þ β3 � Hi; j þ β4 � H2
i; j þ k ð1Þ

where:

Mi,j is average annual surge mortality in country i, in time-slice j

where j is 2000 for calibration, and 2030, 2050, and 2080 for future projections

Xi,j is average annual people at risk of exposure to storm surge (as estimated by DIVA)
‘106’ scales the equation to ‘per million people exposed’
Ei is average annual number of surge events
Pi,j is national population
Hi,j is an analogue of the HDI
βa are fitted parameters, where a= 1 to 4
k is the fitted constant

Following DIVA, which holds event frequency and intensity constant, we hold Ei constant
over time. Mi,j and Ei were shifted by 1 as they may take zero values meaning the log term
would be undefined.

The future time-slices are 2026 to 2030, 2046 to 2050, and 2076 to 2080 for j=2030, 2050
and 2080 respectively. The baseline time-slice (j=2000) used for calibration represents the
present. Typically when conducting a multi-model assessment, data from various sources are
not strictly aligned: exposure data are for 1996 to 2000; mortality data cover 1970 to 2010; and
socioeconomic data are for 2000.

The left-hand side (LHS) of Eq. (1) approximates to ‘log mortality risk per million
people at risk of exposure to storm surge’ when mortality is high (as shifting
mortality by 1 would have little influence). Hence we refer to the LHS as ‘log
mortality risk’.

Following Patt et al. (2010), the variables on the right-hand side (RHS) are interpreted as
follows. Ei and Pi,j represent exposure characteristics. As the number of annual events (Ei)
increases, coping capacity is expected to decrease, and hence average mortality risk is expected
to increase. Conversely, it is ‘expected that larger countries are likely to experience disasters
over a smaller proportion of their territory or population, and also benefit from potential
economies of scale in their disaster management infrastructure’ (Patt et al. 2010); thus as
population (Pi,j) increases, mortality risk is expected to decrease.

444 Climatic Change (2016) 134:441–455



The HDI (Hi,j) is a national-level measure of development accounting for social and economic
factors (UNDP 2010). It takes values from 0 to 1, where 0 is the lowest level of development and 1
the highest. Here, the HDI acts a proxy for land-based strategies of adaptation.

Generally, as Hi,j increases, mortality risk may be expected to decline. However, for coastal
floods, observations suggest that as low income countries develop, risk initially increases (see
Section 1). Because of this, the model includesHi,j as a quadratic term. Due to data availability,
we adopted an analogue of the HDI (see Section 4.1.3).

3.2 Extraction of future mortality estimates

Equation (1) estimates future mortality risk. Estimates of future mortality (Mi,j) are extracted by
rearranging Eq. (1):

Mi; j ¼ exp RHSð Þ � X i; j

106

� �
−1 ð2Þ

where:

RHS ¼ β1 � ln Ei þ 1ð Þ þ β2 � ln Pi; j

� �þ β3 � Hi; j þ β4 � H2
i; j þ k ð3Þ

Note that as the final step is to subtract 1, it is possible to obtain country-level
results where −1≤Mi,j<0. In these instances results are rounded up to 0. Additionally,
if predicted mortality exceeded exposed, we set mortality equal to exposure. In our
projections, this was necessary for three islands in Oceania. It is likely this problem
arose due a combination of model error and locations with low exposure (due to low
populations) but high risk.

4 Model calibration

We drew on various data sources and performed a number of transformations to calibrate the
model (See Fig. 1). In some instances, the same data enters the model in multiple locations;
this situation is not uncommon in integrated assessment methods and we discuss the implica-
tions in Online Resource, ESM, Appendix S2.

4.1 Data for fitting the model

4.1.1 Baseline storm surge exposure (Xi,2000)

Observational data for surge exposure are not available. We used modelled national-level
estimates of exposure from DIVA for average annual exposure for 1996 to 2000. Globally,
about 3.5 million people were at risk of exposure annually (see Online Resource, ESM,
Table S1 for regions, and Table S2 for regional baseline exposure). As these were the only
available exposure estimates we fit Eq. (1) cross-sectionally for a single time-slice.

4.1.2 Baseline storm surge-attributable mortality (Mi,2000)

Data for baseline storm surge-attributable mortality are not available. Thus we derived
estimates from the only accessible global disaster dataset: the Emergency Events Database
(EM-DAT) (CRED 2011).
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EM-DAT provides mortality data by event by country. An event is included if: 10 or more
people are killed; 100 or more are people affected; a state of emergency is declared; or, a call is
made for international assistance. EM-DAT reports total mortality for cyclone events, and
storm surge-specific deaths are not available. Consequently, we extracted all cyclone events
(classified as Hydrological: storm surge/coastal flood; Meteorological: extratropical/tropical
cyclone) over the period 1970 to 2010. For unclassified events, we checked other fields in the
database (e.g., named events are likely to be cyclones). We identified a total of 1569 events.

A large proportion of total cyclone mortality is attributable to large infrequent events.
Therefore it is preferable to assess average mortality using a long time-series of mortality data.
EM-DAT data quality has improved in recent years, and may be considered reasonably
complete for 15 to 20 years. However, events with high mortality may have been reasonably
well recorded for around 30 to 40 years (personal communication, Phillipe Hoyois, EM-DAT).

This presents a trade-off. On one hand, restricting data to the last 20 years would maximise
completeness, but may introduce considerable biases: if an infrequent but high impact event
struck a country during this period, average annual deaths would be high; if it was not struck,
average deaths would be too low. On the other hand, using data covering 40 years would
provide better (although not optimal) coverage of high impact events, but would exclude many
smaller events.

The best use of the data was to create two data sets: a short time-series covering 1990 to
2010 including only ‘small’ events (s=1…S), and a long time-series covering 1970 to 2010
including only ‘large’ events (l=1…L). After inspecting the data, we defined ‘small’ events as
those with less than 200 deaths, and ‘large’ events as those with 200 or more deaths.

As exposure data for the present were available only as averages for the baseline time-slice,
we required corresponding mortality estimates. Our mortality data covered the period from
1970 onward; during this time, world population almost doubled (United Nations 2013) and
this would have influenced death tolls. Thus to bring exposure and mortality data into line, we
standardized deaths in all events to population in the year 2000 using standard methods (e.g.,

Fig. 1 The process of generating inputs for calibrating the mortality risk model, starting from data sources
(shaded boxes1), via raw data (ovals) and its transformations (unshaded rectangular boxes), and finally to the
variables used as inputs (striped boxes) into the mortality risk equation (double bordered box). See text for details
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Donaldson and Donaldson 2003). (See Online Resource, ESM, Appendix S3 for details and
regional-level event and mortality data).

We then estimated the fraction of all-cause cyclone-attributable deaths that were attributable
to storm surge. We assumed that in the least developed countries about 90 % of cyclone
mortality is surge-attributable (Rappaport 2000) compared to about 67 % in more developed
countries (Jonkman 2005; Jonkman et al. 2009). We estimated baseline storm surge-
attributable mortality (Mi,2000) using a piecewise linear function and the HDI-analogue
(Hi,2000) (See Online Resource, ESM, Appendix S4).

Finally, we combined mortality and exposure to estimate average annual mortality risk for
the baseline time-slice. (See Online Resource, ESM, Table S3, for baseline surge-specific
mortality and mortality risk estimates).

4.1.3 Mortality risk model input variables (Ei, Pi,2000, Hi,2000)

We estimated Ei, the average annual number of cyclone events in country i, by summing the
average annual number of events in the ‘small’ and ‘large’ event datasets (See Online
Resource, ESM, Appendix S3, Table S3.1). Populations in the year 2000, Pi,2000, were from
the World Population Prospects (WPP), 2010 Revision (United Nations 2013). Following Patt
et al. (2010), when calibrating the model (see Section 4.2) we tested a variable for fertility (also
from the WPP), used as an indicator of women’s empowerment.

The HDI is the geometric mean of normalised estimates of GDP/capita, life expectancy at
birth, and education (UNDP 2010). For consistency between baseline data and future projec-
tions we used an analogue of the HDI. GDP data was from the World Bank Development
Indicators (World Bank 2012), population and life expectancy data from the WPP (United
Nations 2013), and ‘years of education at the age of 25’ from Barro and Lee (2000). All data
was for the year 2000, or the nearest year available (See Online Resource, ESM, Appendix S5
for the method for calculating the HDI-analogue).

4.2 Calibration

We calibrated the mortality risk model using data for 141 countries with baseline data. After
testing various forms we adopted Eq. (1), which met the following criteria. Firstly, the
parameterized equation had a good statistical fit (adjusted R2 =0.43) (Table 1). Secondly, in
conceptual terms (see Section 3.1), the signs of the estimated parameters are as expected. β1 is
positive, meaning risk increases as events increase; β2 is negative, meaning risk decreases as
population increases; and β4 is negative, meaning the equation is concave in relation to the
HDI-analogue. Finally, it appeared to be fit-for-purpose (i.e., for making future projections) as
the standardized regression coefficients show the equation is most responsive to variables for
which the most reliable projection data are available. That is, the model is most sensitive to
changes in ‘development’ (Hi,j) and population (Pi) and least responsive to ‘events’ (Ei), which
is an approximation and held constant over time. (For further details, see Online Resource,
ESM, Appendix S6).

Classically, we would validate the calibrated model using an independent dataset. We were
unable to do so for two reasons. Firstly, as only 141 national ‘observations’ were available we
used all these data to calibrate the model. Secondly, prior to calibrating the model, the majority
of the data were transformed (see Fig. 1) meaning that even if a sub-set of data were reserved
for validation it would not have been independent. Hence, the best available indicator of model
fit was the adjusted R2. While this suggests log mortality risk is predicted reasonably well, it
does not indicate the model makes reliable future projections.
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For mortality, we compared ‘observed’ mortality (Mi,2000) with estimates extracted using
Eq. (2). Correlation was poor (R=0.08), suggesting mortality estimates are not reliable. This is
partially because the model was fit in the logarithmic space (see Online Resource, ESM,
Appendix S7). Total global ‘observed’ annual mortality due to storm surge is 23,900 compared
to 14,600 predicted by the model.

5 Future projections

We estimated future storm surge-attributable mortality risk and mortality with land-based
adaptation, with and without climate change-associated sea-level rise, and with and without
sea-based strategies of adaptation, for the 2030s, 2050s and 2080s.

5.1 Scenarios and future exposure estimates

5.1.1 Scenarios

The ‘with climate change’ scenario was modelled for an A1B future using seven General
Circulation Models (GCMs) (Online Resource, ESM, Table S3) with an assumption of no
change in storminess (Brown et al. 2013). Across the GCMs, global mean sea-level rise ranged
from 0.28 m to 0.53 m by 2100, with respect to 1961–1990. A sea-level rise scenario for a
‘without climate change’ scenario was also derived.

GDP and population data for an A1B scenario were from IMAGE 2.3 (van Vuuren et al.
2007). Rates of population growth in the coastal zone were assumed to be the same as the
national growth rates. For the HDI-analogue, life expectancy data were from the WPP (United
Nations 2013), and years of education at age 25 were from Barro and Lee (2000). (See Online
Resource, ESM, Table S4).

5.1.2 Future exposure estimates (Xi,j)

DIVA estimated future national-level average annual people at risk of exposure to storm surge
in futures with and without climate change, and with and without sea-based strategies of
adaptation (Note that all future projections made with the mortality model include land-based

Table 1 Estimates of mortality risk equation parameters, 95 % confidence intervals, p-values, and standardized
regression coefficients

Variable Parameter Mean estimate 95 % confidence interval p value Standardized regression
coefficientsa

Ei β1 1.73 0.75 to 2.72 0.001 0.25

Pi,j β2 −0.78 −0.96 to −0.60 0.0001 −0.63
Hi,j β3 18.01 7.68 to 28.35 0.001 1.25

Hij
2 β4 −13.46 −22.38 to −4.54 0.003 −1.08

k 15.60 11.51 to 19.69 0.0001

a The standardized regression coefficients quantify the change in the LHS of the equation relative to its standard
deviation when a given RHS variable is changed by one standard deviation; the greater the absolute value of the
statistic, the more responsive the LHS is to the variable. For example, 0.25 means that a 1 standard deviation
change in Ei is associated with a 0.25 standard deviation change in log mortality risk
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adaptation). In futures with climate change, the median estimate across the GCMs was used as
the exposure estimate (Xi,j).

5.2 Results

We estimated future log mortality risk at the national-level, and mortality for 21 regions (see
Online Resource, ESM, Table S1). Given the model was not validated, and that it is known
that mortality predictions are poor, the results should be seen as indicative at best. Of more
interest are: (i) how future mortality risk changes with different input variables, and, (ii) how
mortality patterns may change in futures with and without climate change, and with and
without sea-based adaptation.

In the projections it was possible for surge exposure to be 0; here, to avoid division by 0, we
set the LHS of Eq. (1) to 0. (i.e., if exposure to surge is zero, mortality risk must also be 0).

5.2.1 Log mortality risk

We estimated future log mortality risk at the national level (We did not aggregate this to
regional level as it is not additive; log(a)+log(b)=log(a×b)). Quantitative estimates of log
mortality risk are difficult to interpret, but qualitative patterns show how factors included in the
model interact to shape changes in mortality risk over time.

Figure 2 shows projected log mortality risk estimates made using Eq. 1 for four selected
countries chosen to illustrate diverse patterns. In each plot, the colour contours represent log
mortality risk (i.e., LHS of Eq. 1) for that country, as a function of factors on the RHS of Eq. 1:
the HDI-analogue (Hi,j, x-axis) and national population (Pi,j, y-axis). Note that the pattern of
contours differs for each country due to the influence of number of annual events (Ei). The black
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Fig. 2 Projected log mortality risk estimates made using Eq. 1, for four selected countries, as a function of the
HDI-analogue (Hi,j, x-axis) and national population (Pi,j, y-axis). The colour contours represent log mortality risk
per million (LHS of Eq. 1), with blues corresponding to the lowest risk and reds to the highest. The black dots
indicate log mortality risk for a given time-slice (shown in brackets). Each dot is labelled with projected average
annual surge exposure (Xi,j, un-bracketed numbers), which is a function of sea-level rise, land subsidence, and
population living in the coastal zone. Results are for futures with climate change (A1b emissions) and land-based
adaptation, but without sea-based adaptation (e.g., improved sea dikes)
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dots indicate the projected trajectory of logmortality risk over the next century, assuming climate
change and land-based adaptation but without sea-based adaptation. Each dot is labelled with the
time-slice (in brackets) and projections of average annual surge exposure (Xi,j), which is a
function of sea-level rise, land subsidence and population living in the coastal zone.

In Bangladesh, despite an increasing HDI, risk increases until 2050 but then decreases to
2030 levels in 2080 as HDI continues to increase. That is, the benefits of improved land-based
strategies in the 2080s are partially off-set by increased exposure risk. InMozambique there is an
even larger increase in mortality risk out to 2050 as HDI rises from a very low to moderate level.
After this risk may rise further before returning to 2050 levels in 2080; again, rises in exposure
partially off-set benefits associated with land-based adaptation and increases in population.

In the USA, risk continually decreases, largely because population increases. This is despite
more than a 10-fold increase in exposure by 2080; that is, population increases off-set exposure
increases. Finally, Jamaica illustrates the difficulties of estimating baseline exposure risk in
high-risk small islands; the estimated average exposure of 10 per year is likely to be too low.
However, the model suggests baseline risk amongst the exposed is high, and that despite
increases in exposure with time, risk declines – although it remains high - as the HDI increases.

5.2.2 Mortality

As the mortality projections are not robust we provide estimates of future mortality at regional
level as categorical estimates. Figure 3 shows regional mortality at baseline and in the 2030,

Time
Baseline 2030 2050 2080

AP,HI

As,E

As,S

As,SE

Au

Ca

Eu,C

Eu,E

Eu,W

LA,C

LA,S

NA,HI
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Oc

SSA,C

SSA,E

SSA,S

SSA,W
0

>0-3

>3-10

>10-30

>30-100

>100-300

>300-1000

>1000-3000

>3000-10,000

>10,000-30,000

>30,000-100,000

Fig. 3 Estimates of regional-level1 average annual mortality ranges at baseline and in the 2030s, 2050s and 2080s
(running left to right in the figure, as per bottom axis) based onmedian exposure estimates2. For each region, there
are three coloured horizontal bars which, from top to bottom, are (i) a future without climate change or adaptation3,
(ii) a future with climate change but no adaptation, (iii) a future with climate change and adaptation. The colour of
the bar indicates the range of average annual mortality as indicated in the legend on the right
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2050 and 2080; regions are shown on the vertical axis, and time-slice on the horizontal axis.
For each region there are three bars. The upper bar shows mortality without climate change
and without sea-based strategies of adaptation. The central bar shows a future with climate
change but without (sea-based) adaptation; comparing it with the top bar gives an indication of
climate change-attributable mortality. The lower bar shows mortality in futures with climate
change and adaptation; comparing the middle and lower bars gives an indication of the
mortality burden avoidable via adaptation. (All futures include land-based strategies of
adaptation).

The results suggest that in East Asia, mortality will increase over time without climate
change (upper bar), but that climate change will increase mortality further by 2080 (central
bar). Sea-based strategies of adaptation may reduce future mortality to around baseline levels
(lower bar). Similar patterns are seen in the Caribbean, Oceania, and Eastern and Western Sub-
Saharan Africa. In these regions, adaptation reduces mortality to relatively low - although not
insignificant - levels. In contrast, South and South East Asia have high baseline mortality, and
it remains high regardless of the future scenario. While sea-based strategies of adaptation
reduce future mortality to around baseline levels, storm surge-associated mortality remains a
major threat.

6 Discussion

6.1 Mortality risk model

We developed a new global-level storm surge mortality risk model. Methodologically,
we made a number advances on the previous global-level work (McMichael et al.
2004; Dasgupta et al. 2009) which may provide the basis for further improvements
(Table 2).

We were unable to validate the model due to a lack of data. The fit of the log
mortality risk model suggested projections may be reliable, but mortality projections
are clearly unreliable. One reason for this is that the model was fitted in the log space
(see Online Resource, ESM, Appendix S7). Additionally, the particularities of any
given country may introduce significant errors when estimating national-level average
mortality using a global-level model. For instance, during the baseline period
Bangladesh was struck by three events with exceptionally high mortality (CRED
2011) meaning modelled average mortality was likely to be too low (which was the
case; see Online Resource, ESM, Table S7.1). Conversely, partly in response to these
events, significant actions have been taken to reduce risk (Cash et al. 2013) poten-
tially leading to overestimated average mortality. The former effect is due partly to
chance and the latter is partly a feedback response. Future modelling efforts should
attempt to address these influences.

This raises a more general issue related to the nature of surge deaths themselves: a few
infrequent large events that are relatively unpredictable over decadal time scales cause the vast
majority of mortality (CRED 2011). This means average annual mortality is subject to discon-
tinuities when a highmortality event occurs. In contrast, risk is a function of social and economic
change as well as potential exposure; thus it tends to change continuously. While alternative
discontinuous statistical approaches could be used to model mortality (e.g., Schoenberg 2003),
we suggest modeling risk is preferable. That is, the ultimate purpose of modeling the health
impacts of climate change is to avert them. To do this, risk – which is an evolving condition of
daily life - must be reduced and models that trace its trajectory will best guide adaptation.
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6.2 Future mortality risk and mortality under climate change

Our results are broadly consistent with previous assessments (McMichael et al. 2004). Climate
change is expected to increase surge mortality, with the impacts concentrated in regions such
as South and South-East Asia. Given the lack of model validation and the unreliability of the
mortality estimates, our projections are best interpreted in terms of factors that appear to be
important for impacts estimates, as this may provide guidance for future modelling.

For mortality risk, Bangladesh and Mozambique show how ‘development’ may initially
increase risk. This behaviour was built into the model, but if it reflects reality, it reinforces the
importance of implementing disaster risk reduction strategies now (see also Patt et al. (2010)).
In the USA, change in risk is driven by improved coping capacity (operationalized using

Table 2 Methodological advances made in the mortality risk model and suggestions for further development

Aspect Advances and suggested ways forward

Baseline mortality data:
time-period covered

Previous work was based on models fit using mortality data selected on a
criterion of ‘completeness’. These data cover a relatively short time period
over which infrequent, high intensity events are effectively random. Yet
these events cause the majority of mortality.

We have addressed this using an ad hoc method. Formal methods, perhaps
Bayesian, should be developed to allow the utilization of longer time-
series. (For example, Reis and Stedinger (2005) use such a method to
generate flood frequency curves; this could be used as a basis for work in
health modelling). Additionally, when using long series of mortality data,
the associated population data should be standardized, as they were in this
paper.

Baseline mortality data:
surge-specific deaths

Previous work was based on models fit using mortality data selected on a
geographic- (i.e., ‘coastal’) rather than event-based (i.e., ‘storm surge’)
definition. Further, all deaths associated with a cyclone rather than only
those attributable to storm surge were included.

To assess the potential mortality impacts of future sea-level rise, we separated
surge-specific deaths from other deaths in a given event using an ad hoc
method. Further research is needed on the relation between vulnerability
and various causes of deaths in events, and/or, consideration should be
given to methods of including cause of death in event data.

Socioeconomic change:
representation

The distribution of almost all health outcomes is associated with
socioeconomic conditions. Previous work represented socioeconomic
change using GDP/capita. However, this may be a poor proxy for actual
living conditions of the vulnerable population.

In this paper, we used the HDI, which is a better proxy and can be derived
from existing scenario data. Variables such as life expectancy and fertility
are indicators of national living conditions and are implicit in already
available population projections. Further, fertility is influenced by
education levels; this data could also be made available. In the future, a
broader range of health-relevant socioeconomic projections are required.

Socioeconomic change:
distribution of benefits

Previous work assumed that as GDP increases, socioeconomic conditions
improve for all people. However, benefits may accrue to certain groups,
and evidence suggests vulnerability to disasters may initially worsen with
‘development’ for some populations.

We have attempted to model vulnerability in terms of both the benefits and
harms of ‘development’ by using a quadratic relation. As the negative
aspects of development may be experienced by the most vulnerable groups
in society, we suggest theoretically-grounded methods for improved
quantitative modelling should be developed.
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population). However, this operationalization may be questionable, particularly in low income
settings: conceivably, increased population may decrease coping capacity. The relation be-
tween population and risk, and how it varies with context, should be further investigated.
Additionally, in Eq. (1) there is potentially overlap between the assumed influence of popu-
lation on economies of scale in disaster management infrastructure (see 3.1) and land-based
adaptation represented by the HDI. The current model treats these effects separately, but future
work should investigate their interaction.

For mortality, the results suggest regions where climate change may significantly
increase future mortality in the absence of sea-based adaptation. Further, they suggest that
in some regions nationally-funded coastal defences could (if put in place) reduce mortality
to relatively low (but still important) levels, while other areas may require external
assistance to adapt. Given the long lead time required to put sea-based defences in place
(around 30 years (Nicholls et al. 2007)), action needs to be taken in the near future. We
suggest future health impact modelling should aim to assess the relation between mortality
risk reduction and adaptation, and identify areas where mortality may remain intolerably
high despite adaptation.

In sum, our results highlight the importance of considering climate change health impacts in
the context of social, economic and demographic factors, all of which could both increase and
decrease vulnerability to climate-related exposures.

6.3 Limitations of the mortality risk model

The major limitation of the model is the unreliability of the mortality estimates. This is partly
due to the model being fit in the log space, ‘outlier’ countries, and the nature of surge mortality.
An additional limitation is that the model was (necessarily) fit cross-sectionally but used to
make estimates over time. This follows Patt et al. (2010) method and has precedent in previous
climate-health modelling (e.g., McMichael et al. 2004). The underlying assumption is that
statistical relations are causal, or at least stable over time. It is however plausible, for example,
that the relation between land-based adaptation and the HDI will change with time.

Two further limitations arise from assumptions regarding the baseline mortality data.
Firstly, by standardizing mortality to national population in the year 2000 we account for
population changes, but implicitly assume that change within a country is spatially uniform.
As urban and coastal areas are growing more rapidly than rural areas, standardization may
result in underestimates of mortality. While this assumption is consistent with DIVA, future
work should attempt to account for spatial differentials.

Secondly, a time-series of mortality data was used to generate average annual mortality for
a baseline time-slice, but this was regressed against the HDI specific to the year 2000 in the
mortality risk model. This implicitly assumes current land-based strategies have been in place
over the time period covered by mortality dataset and may underestimate their benefits.
However, this effect is partially off-set because the long time-series of data included only
‘big’ events: observations suggest that socioeconomic improvements have a smaller benefit for
high intensity compared to low intensity events (UNISDR 2011).

Additional limitations are associated with factors not included in themodel. For climate change,
the model only considers sea-level rise. Future work should also consider changes in cyclone
characteristics, particularly as intense events cause the majority of health impacts. This would
involve closer integration of coastal flood and health models, data for exposure by event intensity,
and development of quantitative knowledge of the lethality of surges of different intensities.

For health impacts, we only considered mortality. Coastal floods, however, also impact on
morbidity, including injuries, infections, and mental health (Ahern et al. 2005). These impacts
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may be direct or indirect (e.g., via crop loss or damage to infrastructure), and immediate or
delayed. Such complexities make the full recording and attribution of impacts difficult, and
quantitative knowledge on which to base models is lacking. It may be possible to develop
general quantitative relations linking surge, vulnerability, and morbidity risk for various
outcomes, building on the limited attempts to date (Li et al. 2007; Fewtrell and Kay 2008).

7 Conclusions

Climate change is expected to worsen storm surge events and, in interaction with population
vulnerability, this may have significant health impacts. While our model does not provide
reliable mortality estimates we have made methodological innovations and recommendations
for future model development. Further, we have illustrated the importance of socioeconomic
factors in conditioning risk. In general, climate change health impacts work has tended to
model physical aspects robustly but – partly due to data limitations – to model social and
economic factors with considerably less rigour. To develop a stronger knowledge base for
averting the health impacts of storm surge, as well climate change in general, conceptual and
methodological innovations that robustly capture both physical and social factors are essential.

Acknowledgments This project was funded by the Natural Environment Research Council under the QUEST
(Quantifying and Understanding the Earth System) project: contract numbers NE/E001874/1 and NE/E001882/1.
For the sea level rise projections, we thank the international modelling groups for providing their data for
analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving
the model data, the JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled Model
Intercomparison Project (CMIP) and Climate Simulation Panel for organising the model data analysis activity,
and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National
Laboratory is supported by the Office of Science, US Department of Energy. For the flood disaster data, we thank
EM-DAT: The OFDA/CRED International Disaster Database at the Université Catholique de Louvain, Brussels,
Belgium (www.emdat.be).

References

Ahern M, Kovats RS, Wilkinson P, Few R, Matthies F (2005) Global health impacts of floods: epidemiologic
evidence. Epidemiol Rev 27:36–46

Barro RJ, Lee J-W (2000) International data on educational attainment. Centre for International Development at
Harvard University, Cambridge

Brown S, Nicholls RJ, Lowe JA & Hinkel J (2013) Spatial variations of sea-level rise and impacts: an application
of DIVA. Clim Chang. doi:10.1007/s10584-013-0925-y

Cash RA, Halder SR, Husain M, Islam MS, Mallick FH, May MA, Rahman M, Rahman MA (2013) Reducing
the health effect of natural hazards in Bangladesh. Lancet 382:2094–2103

CRED (2011) Emergency events database (EM-DAT) [Online]. Louvain. Available: http://www.emdat.be/
[Accessed 11 May 2011]

Dasgupta S, Laplante B, Murray S, Wheeler D (2009) Climate change and the future impacts of storm-surge
disasters in developing countries. Centre for Global Development, Washington

DE Haen H, Hemrich G (2007) The economics of natural disasters: implications and challenges for food security.
Agric Econ 37:31–45

Donaldson LJ, Donaldson RJ (2003) Essential public health. 2nd Edn. Petroc Press, Newbury
Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688
Fewtrell L, Kay D (2008) An attempt to quantify the health impacts of flooding in the UK using an urban case

study. Public Health 122:446–451
Fritz HM, Blount CD, Thwin S, Thu MK, Chan N (2009) Cyclone Nargis storm surge in Myanmar. Nat Geosci

2:448–449

454 Climatic Change (2016) 134:441–455

http://www.emdat.be/
http://dx.doi.org/10.1007/s10584-013-0925-y
http://www.emdat.be/


Hinkel J, Klein RJT (2009) Integrating knowledge to assess coastal vulnerability to sea-level rise: the develop-
ment of the DIVA tool. Glob Environ Chang 19:384–395

IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL,
MastrandreaMD,Mach KJ, Plattner GK, Allen SK, TignorM,Midgley PM (eds) A special report of working
groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

Jonkman SN (2005) Global perspectives on loss of human life caused by floods. Nat Hazards 342:151–175
Jonkman SN, Vrijling JK, Vrouwenvelder ACWM (2008) Methods for the estimation of loss of life due to

floods: a literature review and a proposal for a new method. Nat Hazards 46:353–389
Jonkman SN, Maaskant B, Boyd E, Levitan ML (2009) Loss of life caused by the flooding of New Orleans after

HurricaneKatrina: analysis of the relationship between flood characteristics andmortality. RiskAnal 29(5):676–698
Kellenberg DK, Mobarak AM (2008) Does rising income increase or decrease damage risk from natural

disasters? J Urban Econ 63:1315–1337
Knabb RD, Rhome JR, Brown DP (2006) Tropical cyclone report: hurricane katrina, 23-30 August 2005.

National Hurricane Centre, Miami
Li X, Tan H, Li S, Zhou J, Liu A, Yang T, Wen SW, Sun Z (2007) Years of potential life lost in residents affected

by floods in Hunan, China. Trans R Soc Trop Med Hyg 101:299–304
Maaskant B, Jonkman SN, Bouwer LM (2009) Future risk of flooding: an analysis of changes in potential loss of

life in South Holland (The Netherlands). Environ Sci Pol 12:157–169
McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human

settlements in low elevation coastal zones. Environ Urban 19:17–37
McMichael AJ, Campbell-Lendrum D, Kovats RS, Edwards S, Wilkinson P, Wilson T, Nicolls RJ, Hales S,

Tanser F, Le Suer D, Schlesinger M, Andronova N (2004) Global climate change. In: Ezzati M, Lopez AD,
Rodgers A, Murray CJ (eds) Comparative quantification of health risks. WHO, Geneva

Nakicenovic N, Swart R (eds) (2000) Special report on emission scenarios. Cambridge University Press,
Cambridge

Nicholls RJ, Hanson S, Herwiejer C, Patmore N, Hallegatte S, Corfee-Morlot J, Chateau J, Muir-Wood R (2007)
Ranking of the world’s cities most exposed to coastal flooding today and in the future. OECD, Paris

Patt AG, Tadross M, Nussbaumer P, Asante K, Metzger M, Rafael J, Goujon A, Brundrit G (2010) Estimating
least-developed countries’ vulnerability to climate-related extreme events over the next 50 years. Proc Natl
Acad Sci 107:1333–1337

Peduzzi P, Chatenoux B, Dao H, De Bono A, Herold C, Kossin J, Mouton F, Nordbeck O (2012) Global trends in
tropical cyclone risk. Nat Clim Chang 2:289–294

Peltier WR (2000a) Global glacial isostatic adjustment and modern instrumental records of relative sea level
history. In: Douglas BC, Kearny MS, Leatherman SP (eds) Sea level rise: history and consequences.
Academic, San Diego

Peltier WR (2000b) ICE4G (VM2) glacial isostatic adjustment corrections. In: Douglas BC, Kearny MS,
Leatherman SP (eds) Sea level rise: history and consequences. Academic, San Diego

Penning-Roswell E, Floyd P, Ramsbottom D, Surendran S (2005) Estimating injury and loss of life in floods: a
deterministic framework. Nat Hazards 36:43–64

Rappaport EN (2000) Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull Am
Meteorol Soc 81:2065–2073

Reis JDS, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with historical information. J Hydrol
313:97–116

Schoenberg FP (2003) Multidimensional residual analysis of point process models for earthquake occurrences. J
Am Stat Assoc 98:789–795

Shultz JM, Russell J, Espinel Z (2005) Epidemiology of tropical cyclones: the dynamics of disaster, disease, and
development. Epidemiol Rev 27:21–35

UNDP (2010) The human development index [Online]. New York. Available: http://hdr.undp.org/en/statistics/
hdi/ [Accessed 11 May 2011]

UNISDR (2011) GAR 2011: revealing risk, redefining development. United Nations International Stratety for
Disaster Reduction, Geneva

United Nations, Department of Economic and Social Affairs, Population Division (2013) World population
prospects: the 2012 revision, Volume I: Comprehensive Tables [Online]. New York. Available: http://esa.un.
org/unpd/wpp/Documentation/pdf/WPP2012_Volume-I_Comprehensive-Tables.pdf. Accessed 4 Apr 2015

Vafeidis AT, Nicholls RJ, McFadden L, Tol RSJ, Hinkel J, Spencer T, Grashoff PS, Boot G, Klein RJT (2008) A
new global coastal database for impact and vulnerability analysis to sea-level rise. J Coast Res 24:917–924

Van Vuuren DP, Lucas PL, Hilderink H (2007) Downscaling drivers of global environmental change: enabling
use of global SRES scenarios at the national and grid levels. Glob Environ Chang 17:114–130

World Bank (2012) World bank development indicators [Online]. Available: http://www.worldbank.org/
[Accessed October 25th 2012]

Climatic Change (2016) 134:441–455 455

http://hdr.undp.org/en/statistics/hdi/
http://hdr.undp.org/en/statistics/hdi/
http://esa.un.org/unpd/wpp/Documentation/pdf/WPP2012_Volume-I_Comprehensive-Tables.pdf/
http://esa.un.org/unpd/wpp/Documentation/pdf/WPP2012_Volume-I_Comprehensive-Tables.pdf/
http://www.worldbank.org/

	Modelling...
	Abstract
	Introduction
	Coastal flood model
	Mortality risk model
	Form of the model
	Extraction of future mortality estimates

	Model calibration
	Data for fitting the model
	Baseline storm surge exposure (Xi,2000)
	Baseline storm surge-attributable mortality (Mi,2000)
	Mortality risk model input variables (Ei,&newnbsp;Pi,2000,&newnbsp;Hi,2000)

	Calibration

	Future projections
	Scenarios and future exposure estimates
	Scenarios
	Future exposure estimates (Xi,j)

	Results
	Log mortality risk
	Mortality


	Discussion
	Mortality risk model
	Future mortality risk and mortality under climate change
	Limitations of the mortality risk model

	Conclusions
	References

	Untitled

