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Abstract Researchers can assist in effective decision making by reducing uncertainty in
marine and groundwater inundation due to Sea-level Rise (SLR). A majority of studies
consider marine inundation, but only recently has groundwater inundation been incorporated
into the SLR mapping. However, the effect of including uncertainty in groundwater modeling
is still not well understood. In this study, we evaluate the effect of considering groundwater
modeling uncertainty in assessing land area inundated vulnerable to marine and groundwater
inundation in South Florida. Six Water Table Elevation Model (WTEM) techniques (Multiple
Linear Regression (MLR), Geographic Weighted Regression (GWR), Global Polynomial
Interpolation (GPI), Inverse Distance Weighted (IDW), Ordinary Kriging (OK), and Empirical
Bayesian Kriging (EBK)) are tested to identify the best approach. Simple inundation models
excluding uncertainty with and without WTEM are examined. Refined inundation models
using Monte Carlo simulation that include uncertainty in future SLR estimates, LiDAR
elevation, vertical datums and the transformations made between datums with and without
WTEM uncertainty are evaluated. GPI and EBK are recognized as the best for producing
WTEMs in two primary physiographic regions (the Southern Slope and Atlantic Coastal
Ridge). Excluding uncertainty without WTEM underestimates total land area by 14 %, while
including uncertainty without WTEM overestimates total vulnerable land area by 16 % at the
95 % probability threshold. It is significant to include WTEM uncertainty in SLR vulnerability
analysis for more effective adaptation decisions.

1 Introduction

South Florida is one of the most vulnerable regions to sea-level rise (SLR) due to low
elevations and gentle slopes characterizing coastal areas that support human populations and
natural ecosystems. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
Report Representative Concentration Pathway (RCP) 8.5 scenario predicts a median value of
74 cm global SLR by 2100 (Church et al. 2013). In order to adapt to these future conditions,
the spatial distribution of potential effects should be assessed through SLR vulnerability
mapping which serves as important decision-support tools (Cooper et al. 2013). It is preferable
to consider uncertainty in the underlying data to better ensure the reliability of these planning
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tools (e.g., Purvis et al. 2008; Gesch 2009). Researchers can assist in effective decision making
by reducing uncertainty in both types of flooding due to SLR: marine and groundwater
inundation.

SLR vulnerability applications frequently aim to reduce error in marine inundation using
Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs). LiDAR
elevation measurements are more accurate when they have a smaller measurement error (e.g.,
the distribution of error in the dataset is 6 cm σ opposed to 20 cm σ). Although the horizontal
error is important, LiDAR DEM is typically defined by vertical error quantified by Federal
Geographic Data Committee (FGDC) National Standards for Spatial Data Accuracy (NSSDA)
statistical procedures as Root Mean Square Error (RMSE) and Linear Error (LE) at 95 %
confidence interval (RMSE×1.96) (FGDC 1998). This led to the approach where the LE is
added to the inundation boundary to define an additional zone of uncertainty (e.g., Gesch
2009; Cooper et al. 2012). However, these efforts were limited by exclusion of other
quantifiable uncertainties related to LiDAR DEM. For example, there are errors in the datum
to which LiDAR DEM is vertically referenced (e.g., orthometric datum North American
Vertical Datum of 1988 (NAVD 88) and tidal datum Mean Higher High Water (MHHW)).
Additionally, there are errors in the process of transforming LiDAR DEMs from NAVD 88 to
MHHW. A number of efforts have been successful at combining errors in LiDAR DEM,
datums, and transformations made between datums using either the LE approach (e.g. Gesch
2013) or a modified z-score approach that subtracts the elevation at a grid cell from a specific
SLR scenario divided by all errors combined (e.g., Mitsova et al. 2012; Schmid et al. 2013;
Kane et al. 2014). These approaches are also known to have their challenges; they require
errors not to be correlated and follow a Gaussian distribution with zero bias. On the other hand,
this is not the case for a Monte Carlo approach where a random variable is sampled from an
array of probability distributions. Application of the Monte Carlo approach allows for the
range of uncertainty in future SLR estimates (not assumed Gaussian) to be incorporated into
the vulnerability mapping (Purvis et al. 2008) along with error in LiDAR DEM and vertical
datums (Cooper and Chen 2013). Another approach applied regression-kriging to model
elevation errors for input in Monte Carlo simulation (Leon et al. 2014). However, it is
important to note one major drawback to all these efforts: groundwater modeling is excluded.

Compared to marine inundation modeling, research in groundwater inundation modeling is
relatively scarce. Water Table Elevation Models (WTEMs) have recently been used to model
groundwater inundation by assuming a linear increase in groundwater with SLR (e.g., Rotzoll
and Fletcher 2012; Masterson et al. 2013; Manda et al. 2014). WTEMs are commonly
generated from observed Water Table Elevations (WTEs) through modeling techniques (e.g.,
Sepulveda 2003; Sun et al. 2009; Chung and Rogers 2012; Zhu et al. 2013; Rotzoll and
Fletcher 2012; Manda et al. 2014; Marrack 2014; Yao et al. 2014). The Multiple Linear
Regression (MLR) model assumes relationships being measured between a dependent variable
and independent variables is stationary (i.e., global parameter estimates are applied equally
over space) (Fotheringham et al. 1998). Some researchers used DEMs (e.g., Sepulveda 2003;
Chung and Rogers 2012) or distance of WTE from the ocean (Rotzoll and Fletcher 2012;
Marrack 2014) as auxiliary information in the models. The Geographic Weighted Regression
(GWR) approach assumes relationships being measured between a dependent variable and
independent variables exhibit non-stationary characteristics (local parameter estimates vary
over space) (Fotheringham et al. 1998), which may also be useful for WTEM generation. The
Global Polynomial Interpolation (GPI) method is a trend surface analysis where the distribu-
tion of observational data is described by two-dimensional polynomial equation of first, second
or higher degree (Yao et al. 2014). The Inverse Distance Weighted (IDW) approach estimates
elevations at unknown locations by using a distance-weighted sum of known elevations in a
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surrounding neighborhood (Sun et al. 2009). The widely used Kriging approach predicts
unknown elevations from observed data at known locations by employing a variogram (Sun
et al. 2009). Various Kriging procedures have been used such as Ordinary Kriging (OK) that
requires manual adjustments to parameters, and Empirical Bayesian Kriging (EBK) that
automates the process and considers uncertainty in the covariance function (Qian 1997). All
these modeling techniques have their specific pros and cons and there is no universal approach
used to generating WTEM. Therefore, we test various methods to determine which approach
provides WTEM with best vertical accuracy for use in groundwater inundation assessment for
our study area.

As it is preferable to consider uncertainty in future SLR estimates, LiDAR DEM, vertical
datums and transformations made between datums, the uncertainty in WTEM should also be
considered. Incorporating the uncertainty in WTEM would add to the integrity of SLR
mapping planning tools. However, no studies to date include uncertainty in groundwater
modeling. The objectives of this study are threefold: 1) to determine which approaches
produce WTEM with best vertical accuracy for the study area; 2) to evaluate the effect of
excluding uncertainty with and without WTEM to calculate land area vulnerable to marine and
groundwater inundation; and 3) to evaluate the effect of including uncertainty in future SLR
estimates, LiDAR DEM, vertical datums, transformations made between datums, with and
without WTEM uncertainty on calculating land area vulnerable to marine and groundwater
inundation. The following section introduces the study area and data. Section 3 first presents
methods to generating WTEM and accuracy assessment, and second to combining vertical
uncertainties and modeling inundation. Section 4 reports results and discussion. Section 5
presents conclusions and future research.

2 Study area and data

2.1 Study area

Our study site is located in southeast Miami-Dade County, Florida with an area of approximate
925 km2, where WTEMs are required for groundwater inundation modeling (Fig. 1). The area
consists of wetlands, estuaries, and coastal ecosystems including a portion of Everglades
National Park, agricultural and urban areas. This study is limited to current water management
practices that include a highly managed system of canals, operational structures, and levees
that modify the natural environment (marshlands) to meet human needs. The canal system is
gravity flow based and consists of primary and secondary canals. The primary canals include
natural water courses providing drainage basin flows to the ocean or major water bodies
inland, and the secondary canals control surface and groundwater levels and runoff that
discharge into primary canals and natural waterways (Giddings et al. 2006). The stage in a
canal highly determines groundwater elevation (SFWMD 2014). The Biscayne aquifer, an
unconfined aquifer dominantly limestone and highly permeable (e.g., Giddings et al. 2006),
underlies the study area. The nearest weather station is Miami International Airport. Monthly
precipitation averaged from 1995 to 2005 during the wet season (May – October) demon-
strated the best indicator of peak groundwater levels was September (28 cm). Therefore, we
produced WTEMs using September water level data. Groundwater and surface water levels
range −0.13 m to 1.59 m above NAVD 88, as identified fromWTE observations (Fig. 1). Land
elevation ranges −2.4 m below to 45.7 m above NAVD 88, as identified from the LiDAR
DEM. Within the study area, Florida’s two most southern mainland cities, Homestead and
Florida City, are chosen to model potential marine and groundwater inundation due to SLR.
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2.2 Data

Data used in this study include physiographic region boundaries, LiDAR DEM, and time
series of WTE observations. First, physiographic regions defined by White (1970) were
obtained from Southwest Florida Water Management District. Physiographic regions are
useful for defining WTEM boundaries because they often distinguish hydrologic regions
within low elevations such as in Florida (Sepulveda 2003). The two primary physiographic
regions within the study area include the Atlantic Coastal Ridge and Southern Slope (see
Fig. 1). The LiDAR DEM was obtained from South Florida Water Management District
(SFWMD). The State of Florida Division of Emergency Management collected the topograph-
ic LiDAR data in August 2007 for the study area. The vendor post-processed the LiDAR into
ground and non-ground returns using proprietary software. The maximum post spacing
reported is 1.2 m for unobscured areas. Ground returns and hydrographic breaklines were
used by SFWMD to generate the 3 m resolution LiDAR DEM. SFWMD followed National
Digital Elevation Program (NDEP 2004) guidelines to test Fundamental Vertical Accuracy
(FVA) of the LiDAR DEM using 308 GPS-derived ground control points collected by the
vendor. The RMSE of 6.5 cm is limited to FVA, which likely underestimates LiDAR error in
some areas of this study because LiDAR errors are noted to be larger over marsh areas
(Schmid et al. 2011).

Fig. 1 Location of study area in southeast Miami-Dade County, Florida. WTE = Water Table elevation;
physiographic boundary divides Atlantic coastal ridge to north, and Southern slope to south
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WTE observations were obtained from the hydrometeorologic, water quality, and
hydrogeologic data storage and retrieval system produced by SFWMD in collaboration with
agencies such as U.S. Geological Survey (USGS) and Everglades National Park (http://www.
sfwmd.gov/dbhydro). A total of 65 observations of daily mean time-series data averaged as
monthly values for September from 1995 to 2005 were obtained for generating WTEM and
accuracy assessment. WTEs were vertically referenced to National Geodetic Vertical Datum of
1929 (NGVD 29). Transformations from NGVD 29 to NAVD 88 were made for this study
using NOAA and National Geodetic Survey datum transformation model VERTCON (http://
www.ngs.noaa.gov/PC_PROD/VERTCON/), which computes the modeled difference in
orthometric height between NAVD 88 and NGVD 29 for a given x, y coordinate. The
uncertainties in NGVD 29, NAVD 88 and the transformation made between them were
included in this study. WTEs referenced to NGVD 29 were found on average 47 cm below
NAVD 88. Once WTE values were obtained, several approaches were tested to determine the
best model in producing WTEM for the study site.

3 Methods

3.1 Water Table Elevation Model (WTEM) generation

Not all 65WTE observations were considered when generatingWTEMs. In order to reflect the
distribution of error in a dataset, a minimum of 20 check points is recommended (FGDC
1998). In this study a total of 30 WTEs were randomly selected from the 65 monitoring points
for accuracy assessment. The remaining 35WTEs were used to create WTEMs: 20 for Atlantic
Coastal Ridge and 15 for Southern Slope, respectively.

A total of six approaches were employed in ESRI’s ArcGIS and tested to determine which
could provide WTEMs with best vertical accuracy. It is important to note all parameters were
chosen based on trial and error that gave best results for our particular datasets and study area.
First, the MLR approach by Sepulveda (2003) was utilized and extended to GWR in this study.
The MLR approach accounted for when the water table is not mimicked by land elevation such
as areas of high hydraulic conductivity (e.g., Biscayne aquifer; Fish and Stewart 1991) by
creating a Minimum Water Table Elevation (MINWTE) surface from elevations of lakes and
linearly interpolated river stages. Due to South Florida’s unique system of canals, canal stage
was computed by interpolating linearly between measured z or elevation values of canal heads
and tails using the following equation:

Canal ¼ Canaltail;z−Canalhead;z
dtail

� �
dx;y þ Canalhead;z ð1Þ

where Canaltail,z is the measured z at the tail, Canalhead,z is the measured z at the head,
dtail is the tail distance from the head, and dx,y is the distance of a grid cell at x, y location
from the head. This resulted in a total of 1,969 linearly interpolated canal point values
spaced roughly every 30 m. The estimated canal values were then used with GPI
(second-order polynomial equation) to generate MINWTE at 3 m resolution to match
the cell alignment of LiDAR DEM. The depth to MINWTE was also created by
subtracting MINWTE from LiDAR DEM. The MINWTE and difference between
MINWTE and LiDAR DEM were distinguished by physiographic region. With response
variable WTE, MINWTE and the difference between MINWTE and LiDAR DEM (depth
to MINWTE) were utilized as explanatory variables in both MLR and GWR (adaptive
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kernel bandwith using Alkaike Information Criterion) to generate WTEMs for each
physiographic region.

Two deterministic approaches (GPI and IDW) and two geostatistical approaches (OK and
EBK) were also examined for generating WTEMs. The 35 WTEs and 1,969 canal values were
merged and distinguished by physiographic region first. These two datasets were interpolated
using the GPI (second-order polynomial equation), IDW (power value of 2), OK (a second
order trend was removed before utilizing an anisotropic spherical covariogram model), and
EBK (automated adjustments to parameters), respectively. Similarly, 3-m resolutions of
WTEMs were generated from these approaches to match the cell alignment of the LiDAR
DEM.

The accuracy of the WTEMs derived from the above six approaches was assessed using the
randomly selected 30 monitoring points (17 in the Atlantic Coastal Ridge, and 13 in the
Southern Slope). The RMSE calculated by the following formula was used to assess the
accuracy and determine the best WTEM for the study site:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zdata; i−Zcheck; i

� �2.
n

r
ð2Þ

where Zdata,i is the estimated water level value, and Zcheck,i is the observed water level, and n is
the number of check points. Once the approach with the best RMSE was identified for each
physiographic region, inundation was modeled.

3.2 Modeling groundwater and marine inundation

To model the probability of potential groundwater and marine inundation based on the
uncertainty of the underlying data, we considered vertical errors in LiDAR DEM, WTEMs,
SLR estimates, transformations, tidal and orthometric datums, and determined their probability
distributions. For the LiDAR DEM, we assumed the RMSE of 6.5 cm corresponds to the
standard deviation (σ; data follow Gaussian distribution with zero bias). For WTEMs, error
statistics were calculated to identify data departures from Gaussian distributions by physio-
graphic region (Table 1). The Atlantic Coastal Ridge data have −2 cm bias, which was
corrected by adding 2 cm to the WTEM. However, the skew exceeds ±0.5 indicating errors
depart from a Gaussian distribution and are negatively skewed to the left (Table 1). The
Southern Slope data have −3 cm bias, which was corrected by adding 3 cm to the WTEM.
Additionally, the skew does not exceed ±0.5 indicating errors follow a Gaussian distribution
(Table 1). Next, errors in datums, transformations, and future SLR estimates were considered.

It is common in SLR assessment to vertically transfer elevation data to MHHW. However,
the study area extends a good length inland from the coast (as much as 25 km). Since the

Table 1 Error statistics for predicted vs. independent water levels used in accuracy assessment

Δ water level observations and predicted

Physiographic region RMSE (cm) μ (cm) Median (cm) Skew σ (cm) n Min (cm) Max (cm)

Consolidated 13 1 −1 0.59 13 30 −26 36

Atlantic Coastal Ridge 16 −2 3 −0.7 17 17 −39 20

Southern Slope 6 −3 −4 0.42 6 13 −11 8

WhereΔ = difference, RMSE = Root Mean Square Error, n = number of points, σ = standard deviation, and μ =
mean
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saltwater intrusion boundary hydraulically connects groundwater and seawater, we assumed
areas west of the saltwater intrusion line were not tidally influenced, thus they should not be
referenced to a tidal datum. The 250 mg per liter (mg/L) saltwater intrusion line from 1996
obtained from South Florida Information Access (SOFIA) (http://sofia.usgs.gov/exchange/gis/;
see Fig. 1) was used to determine whether to vertically reference the LiDAR DEM and
WTEMs to NAVD 88 or MHHW. WTEMs and LiDAR DEM west of the saltwater
intrusion were kept referenced to NAVD 88 with no transformation. WTEMs and LiDAR
DEM east of the saltwater intrusion line were converted to MHHW using VDatum (http://
vdatum.noaa.gov/welcome.html) through a process similar to Gesch (2013). The errors
associated with each vertical datum and transformation made between them were obtained
from NOAA (2013), and shown in Fig. 2. The Cumulative Vertical Uncertainty standard
deviation (CVUσ) is calculated using root sum of squares:

CVUσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1 þ σ2

2 þ…σ2N

q
ð3Þ

for all LiDAR and WTEMs (see Table 2) with one exception. Atlantic Coastal Ridge
WTEMs σ were excluded because errors do not follow a Gaussian distribution (see Table 1),
thus uncertainty values for these WTEMs were accounted for separately from the CVUσ. For
future SLR estimates, the IPCC AR5 RCP 8.5 scenario median value of 74 cm with likely
range (52 to 98) of global SLR by 2100 (Church et al. 2013) was considered. The unknown
real distribution of these estimates was formalized in terms of a triangular distribution (Purvis
et al. 2008; Cooper and Chen 2013). After determining the vertical errors and probability
distributions, inundation was modeled.

Two approaches were employed in Mathworks’MATLAB for mapping inundation. First, a
conventional assessment (without WTEM) was utilized to produce a raster that considers no
uncertainty in LiDAR and SLR estimates using the following equation:

Inundationx;y ¼ SLR > LiDARx;y ð4Þ
where Inundationx,y is a grid cell at x, y location as either 0 (not inundated) or 1 (inundated),
SLR is the SLR median of 74 cm, and LiDARx,y is an elevation value of a grid cell at x,y
location. Second, a proposed assessment (with WTEM) was utilized to produce a second raster

Fig. 2 VDatum vertical errors calculated as standard deviation values for South Florida modified from NOAA
(2013). Arrows denote transformation processes, and ovals denote source data
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that considers no uncertainty using the following equation:

Inundationx;y ¼ WTEMx;y þ SLR > LiDARx;y ð5Þ
where the only difference from Eq. 4 is the addition of WTEMx,y, or water table z value of a
grid cell at x,y location. Second, Monte Carlo simulation was used to propagate probability
distributions through our following three inundation models that consider uncertainty (Eq. 6, 7,
8). First, closely following Cooper and Chen (2013) uncertainty was considered in future SLR
estimates, LiDAR DEM, datums and transformation errors for all areas using the following
equation:

Px;y ¼ SLRε > LiDARCVUσ þ LiDARx;y

� �.
n ð6Þ

where Px,y is the probability of a grid cell at x,y location of being inundated taking a value
anywhere from 0 to 1, SLRε is a random variable sampled from triangle distribution with a
range between 52 and 98 cm and most probable value of 74 cm, LiDARCVUσ is a random
variable sampled from either Gaussian distribution (0, 8.2) for LiDAR referenced to NAVD 88
or (0, 9.7) for LiDAR referenced to MHHW (see Table 2), LiDARx,y is a constant elevation
value of a grid cell at x ,y location, and n is the number of cases we specify. The sampling
procedure was repeated 10,000 times for each grid cell, respectively. The following equation
was used to consider uncertainty in future SLR estimates, LiDAR DEM, WTEM, datum and
transformation errors for the Southern Slope:

Px;y ¼ WTEMCVUσ þ WTEMx; y þ SLRε > LiDARCVUσ þ LiDARx; yð Þ
.
n ð7Þ

where the difference from Eq. 6 is thatWTEMCVUσ is a random variable sampled from either
Gaussian distribution (0, 19.7) for WTEM referenced to NAVD 88 or (0, 20.4) for WTEM
referenced to MHHW (see Table 2), and WTEMx,y is a constant water table z value of a grid
cell at x,y location. The following equation was used to consider uncertainty in future SLR
estimates, LiDAR DEM, WTEM, datum and transformation errors for the Atlantic Coastal

Table 2 Errors from Water Table Elevation (WTEM), LiDAR elevation, datums and transformations between
them all expressed as standard deviation (σ) and used to calculate Cumulative Vertical Uncertainty (CVUσ) for
each physiographic region using Eq. 3

Errors

Elevation type σ (cm) Datum/s σ (cm) Datum Transformation σ (cm) CVUσ (cm)

Southern Slope WTEMMHHW 6.0 18.9 4.9 20.4

Southern Slope LiDARMHHW 6.5 5.6 4.5 9.7

Southern Slope WTEMNAVD88 6.0 18.7 2.0 19.7

Southern Slope LiDARNAVD88 6.5 5.0 – 8.2

Atlantic Coastal Ridge WTEMMHHW – 18.9 4.9 19.5

Atlantic Coastal Ridge LiDARMHHW 6.5 5.6 4.5 9.7

Atlantic Coastal Ridge WTEMNAVD88 – 18.7 2 18.8

Atlantic Coastal Ridge LiDARNAVD88 6.5 5.0 – 8.2

Where MHHW Mean Higher High Water, and NAVD 88 North American Vertical Datum of 1988
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Ridge because WTEM errors do not follow Gaussian distribution:

Px;y ¼ WTEM ε þ WTEMCVUσ þ WTEMx; y þ SLRε > LiDARCVUσ þ LiDARx; yð Þ
.
n

ð8Þ
where the difference from Eq. 7 is the addition ofWTEMε, where a random variable is sampled
from Gumbel minima (enabling us to model left skewed data) distribution (0, 17) (see Table 1),
andWTEMCVUσ is a random variable sampled from either Gaussian distribution (0, 18.8) for
WTEM referenced to NAVD 88 or (0, 19.5) for WTEM referenced to MHHW (see Table 2).
The outputs were six new 3 m resolution rasters where each grid cell contains a probability
value anywhere between 0 and 1 of being inundated based on the uncertainty in the underlying
data.

The two rasters that did not consider any uncertainty with and without WTEM, and the six
probability rasters were used to calculate vulnerable land area. Probability rasters were
reclassified using the following ranking scheme: the range of probability values 0.94–1 were
reclassified as high probability (>95 %). Areas hydrologically connected to the ocean (ground-
water and direct marine inundation) were not distinguished differently from areas not hydro-
logically connected to the ocean (groundwater inundation). The eight polygon layers were then
used to calculate vulnerable land area to determine the effect of considering WTEM with and
without uncertainty.

4 Results and discussion

4.1 Water Table Elevation Model (WTEM) vertical accuracy

The evaluation of several deterministic and geostatistical methods used for generating WTEM
found that IDW gave the best result (e.g., Varouchakis and Hristopulos 2012). However, for
our study site IDW presented a poor result in producing the WTEM (Table 3). Kriging was
widely used to estimate groundwater levels (e.g., Desbarats et al. 2001; Zhu et al. 2013).
Compared to IDW, Kriging produced a better RMSE, which is consistent with the result from
Yao et al. (2014). OK and EBK reduced the RMSE slightly compared to the IDW for Atlantic
Coastal Ridge, and EBK resulted in the best RMSE for Southern Slope in this study (Table 3).
The use of statistical methods such as MLR was also employed to estimate WTEM (Sepulveda
2003). In this study, MLR provided the worst RMSE for both physiographic regions (Table 3).

Table 3 The Root Mean Square Errors (RMSEs) of six tested approaches for generating Water Table Elevation
Model (WTEM) in two physiographic regions. Two identified approaches are in bold

Approach Atlantic Coastal Ridge Southern Slope

RMSE (cm) R2 RMSE (cm) R2

Global Polynomial Interpolation (GPI) 16 10

Empirical Bayesian Kriging (EBK) 18 6

Ordinary Kriging (OK) 18 7

Inverse Distance Weighting (IDW) 19 8

Geographic Weighted Regression (GWR) 18 0.93 8 0.72

Multiple Linear Regression (MLR) 20 0.90 11 0.66
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In comparing MLR to GWR, GWR provided a better RMSE and higher coefficient of multiple
determinations (R2) for both physiographic regions (Table 3). In another study, a WTEM
derived from GPI gave a better RMSE when compared to Kriging (Yao et al. 2014). In this
study, GPI yielded the best result with the lowest RMSE for Atlantic Coastal Ridge (Table 3).
Therefore, WTEM generated from GPI was used for Atlantic Coastal Ridge, and WTEM
derived from EBK was used for Southern Slope. These results show the importance to testing
different approaches used for generating WTEM in order to reduce uncertainty.

4.2 Effect of no uncertainty with WTEM on vulnerable land area

Direct marine inundation was often mapped in a GIS by identifying areas hydrologically
connected to the ocean because it was assumed that inland areas will not flood (e.g., Poulter
and Halpin 2008). On the other hand, areas hydrologically disconnected from the ocean were
also mapped in previous studies because it was assumed these areas will experience ground-
water inundation (although WTEMwas excluded; Cooper et al. 2012; Cooper and Chen 2013;
Kane et al. 2014). In this study, models that excluded uncertainty without WTEM resulted in
land area for both types of inundation to be consistently underestimated regardless of phys-
iographic region and vertical reference system (Table 4). Total land area flooded was 51.3 % of
the SLR study area when excluding uncertainty without WTEM and 58.9 % when excluding
uncertainty with WTEM (Table 4). Thus, excluding uncertainty without WTEM resulted in a
difference of −14 % in total land area inundated. If WTEM and uncertainty are going to be
excluded, it is better to map both areas connected to and disconnected from the ocean to
prevent further potential underestimation of vulnerable land area. However, these results
together with Rotzoll and Fletcher (2012) and Marrack (2014) show it is best to include
WTEM when excluding uncertainty.

Table 4 Vulnerable area to sea-level rise (SLR) with and without uncertainty

Uncertainty
excluded:
LiDAR, SLR
estimates

Uncertainty
excluded:
LiDAR, SLR
estimates,
WTEM

Uncertainty
included: LiDAR,
SLR estimates,
datums & their
transformations

Uncertainty
included: LiDAR,
SLR estimates,
datums & their
transformations,
WTEM

High confidence (P>95 %)

Physiographic
region

Area
(km2)

%
study
area

Area
(km2)

%
study
area

Area
(km2)

%
study
area

Area
(km2)

%
study
area

Area
(km2)

%
study
area

Atlantic Coastal
RidgeNAVD88

61.12 37.70 7.04 4.34 12.73 7.85 5.18 3.19 4.77 2.94

Atlantic Coastal
RidgeMHHW

8.88 5.48 4.52 2.79 4.75 2.93 3.65 2.25 0.97 0.60

Southern
SlopeNAVD88

35.18 21.70 19.75 12.18 24.89 15.35 16.24 10.02 11.36 7.01

Southern
SlopeMHHW

56.96 35.13 51.94 32.03 53.13 32.77 48.27 29.77 45.39 27.99

Σ 162.14 100.00 83.25 51.34 95.50 58.90 73.34 45.23 62.49 38.54

Where WTEM = Water Table Elevation Model, and Σ = sum
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4.3 Effect of uncertainty with WTEM on vulnerable land area

Recently, studies are incorporating WTEM into the inundation modeling because it is under-
stood land area is underestimated when excluding WTEM (e.g., Rotzoll and Fletcher 2012;
Manda et al. 2014) and as also demonstrated in section 4.2 of this study. However, the effect of
excluding uncertainty in WTEM is still not well understood. In this study, excluding WTEM
with uncertainty at the 95 % probability threshold resulted in total land area consistently
overestimated regardless of physiographic region, vertical reference system, and probability
density function used to include error in WTEM (Table 4). Total land area flooded was
45.23 % of the SLR study area when excluding WTEM with uncertainty and 38.54 % when
including WTEM with uncertainty (Table 4). Thus, excluding WTEM with uncertainty
resulted in a difference of +16 % in total land area inundated at the 95 % probability threshold.
We note how the probability threshold is defined determines the magnitude in difference
between vulnerable land areas. For this reason, we did not compare vulnerable land area
between models that either exclude or include uncertainty from section 3.2 and in Table 4.
Overall, in order to reduce error in the marine and groundwater inundation modeling, these
results show the uncertainty in the WTEM should be considered.

The SLR vulnerability map that considers uncertainty in future SLR estimates, LiDAR
elevation, tidal and orthometric datums, transformations, and groundwater modeling derived
from EBK for Southern Slope (using Eq. 7) and GPI for Atlantic Coastal Ridge (using Eq. 8) is
shown in Fig. 3. Homestead Air Reserve Base will be adversely impacted by inundation and
drainage problems accompanied by rise of the water table. Turkey Point Nuclear Generating
Station facility will be flooded affecting South Florida’s energy and electricity users if no
adaptation strategies are taken. Open water areas in both Homestead and Florida City will
expand due to rise of the water table, which is accompanied by saltwater intrusion through the
ground. The majority of inundated area is estuarine and palustrine wetland, where palustrine
wetlands will likely change to estuarine depending on the capacity of mangrove soils to increase
in elevation with the rate of SLR. Although the collection of sediment cores for measuring

Fig. 3 SLR vulnerability map including uncertainty in SLR estimates, LiDAR, vertical datums, transformations,
and groundwater modeling highlighting lands vulnerable under SLR of 74 cm with range between 52 and 98 by
year 2100 for the two most southern cities in mainland Florida
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marsh accretion rates is beyond the scope of this study, it is likely that marsh areas are slightly
overestimated because we do not consider accretion rates along with their uncertainty.

5 Conclusions

In this study we evaluated the effects of four scenarios when assessing land area vulnerable to
marine and groundwater inundation in South Florida. First, we examined different approaches
to generating Water Table Elevation Model (WTEM) and identified models with the best
vertical accuracy. Second, we compared vulnerable land area assessed from two simple
inundation models that consider no uncertainty with and without Water Table Elevation Model
(WTEM). Third, we compared vulnerable land area at >95 % confidence assessed from two
refined inundation models using the Monte Carlo approach that considers uncertainty in future
SLR estimates, LiDAR DEM, vertical datums and transformations made between them with
and without WTEM uncertainty. We identified the following:

& Empirical Bayesian Kriging (EBK) resulted in the best RMSE for Southern Slope, while
Global Polynomial Interpolation (GPI) yielded the best RMSE for Atlantic Coastal Ridge.
It is important to test different approaches in order to reduce uncertainty in WTEM.

& Excluding uncertainty without WTEM resulted in total land area inundated to be
underestimated by 14 % when compared to excluding uncertainty with WTEM. If WTEM
and uncertainty are going to be excluded, it is better to map both areas connected to and
disconnected from the ocean to prevent further potential underestimation of vulnerable
land area. However, it is best to incorporate the WTEM when not considering uncertainty.

& Including uncertainty in SLR estimates, LiDAR DEM, vertical datums and transformations
made between themwhen excludingWTEMwith uncertainty at >95% confidence resulted
in total land area to be overestimated by 16 % when compared to including WTEM with
uncertainty. Including WTEM with uncertainty adds to the integrity of the SLR mapping
tools and should be considered so that more effective adaptation decisions can be made.

This paper is expected to extend vulnerability mapping to include uncertainty in ground-
water modeling. Continuing research includes the error in models that use three-dimensional
finite difference groundwater models such as the USGS MODFLOW (McDonald and
Harbaugh 1988) to simulate groundwater levels in response to SLR. This would allow for
the comparison of how well including error in WTEM is used to assess vulnerability to
groundwater inundation. Including uncertainty in marsh migration and accretion is also
important to compare with WTEM’s ability to capture (or not capture) groundwater inunda-
tion. Overall, Monte Carlo simulation is a valuable approach to addressing uncertainty in
vulnerability mapping regardless of error distribution.
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