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Abstract This paper presents a method for identifying a representative subset of global
climate models (GCMs) for use in large-scale climate impact research. Based on objective
criteria (GCM performance in reproducing the seasonal cycle of temperature and precipitation,
and a subset ability to represent future inter-GCM variability), two candidate subsets are
selected from a reference set of 16 GCMs. An additional subset based on subjective expert
judgement is also analysed. The representativeness of the three subsets is validated (with
respect to the reference set) and compared for future changes in temperature, precipitation and
Palmer drought index Z (direct validation), and occurrence of the European corn borer and
snow-cover characteristics implemented in the CLIMSAVE Integrated Assessment Platform
(indirect validation).

The direct validation indicates that one of the objective-based subsets (ECHAM5/MPI-OM,
CSIRO-Mk3.0, HadGEM1, GFDL-CM2.1 and IPSL-CM4 models) provides the best choice
for the Europe-wide climate change impact study. Its performance is balanced between
regions, seasons and validation statistics. However, the expert-judgement-based subset
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achieved slightly better results in the indirect validation. The differences between the subsets
and the reference set are generally much lower for the impact indices compared to their mean
(across all GCMs in the subset) changes due to projected climate change. The ranking of the
candidate subsets differs between regions, climatic characteristics and seasons, demonstrating
that the subset suitability for a specific impact study depends on the target region and the roles
of individual seasons and/or climatic variables on the processes being studied.

1 Introduction

Climate change impact analysis often uses an ensemble of climate scenarios to represent
some aspects of uncertainty (Holman et al. 2012). The scenario ensemble is usually
based on a set of global climate models (GCMs)—commonly taken from the CMIP3 or
CMIP5 datasets (Meehl et al. 2007; Taylor et al. 2012) related to the 4th and 5th IPCC’s
Assessment Reports; IPCC 2007, 2013—or regional climate models (RCMs; usually
taken from datasets created within the frame of the PRUDENCE, ENSEMBLES, and
CORDEX projects), which are run for one or more emissions scenarios. The choice of
climate models involved in a given impact study is based on one of the following
approaches: using (1) all available models or all those which provide the climate
variables required for a given experiment (e.g. Semenov and Stratonovitch 2010), (2) a
subset based on some quality criteria (e.g., Trnka et al. 2004), (3) ensembles of
opportunity, when authors use a smaller-sized subset of models and often do not
explicitly explain why the selected models were employed (Iglesias et al. 2010; Fronzek
et al. 2012).

Having a large number of available climate models, the legitimate question arises as to how
to reduce their number for a given study, so that the resultant ensemble of scenarios reasonably
represents the inter-model uncertainties. This requirement was faced in the CLIMSAVE project
(www.climsave.eu), whose main product is an interactive web-accessible “Integrated Assess-
ment Platform” (IAP), which simulates climate change impacts, vulnerability and adaptation
responses based on a series of linked metamodels which are run with climatic data representing
present and/or future climates (Harrison et al. 2013, 2014; Holman et al. 2014). The require-
ment was motivated by the necessity to both reduce the number of GCMs on the user interface
so as not to confuse users with excessive GCM choice, and to reduce the runtime for
uncertainty analyses of the metamodels across the European target area.

This paper presents a methodology for identifying a representative subset of GCMs that
adequately capture GCM uncertainty for use in large-domain climate impact assessments
where it is impractical or impossible to include all GCMs. We apply the methodology in the
context of creating climate change scenarios for the CLIMSAVE project (see section ‘Con-
struction of the climate change scenarios’). The candidate subsets are created by two ap-
proaches. The first (see section ‘An expert judgement approach to identifying a repre-
sentative GCM subset’) is based on expert judgment, which was employed to create a
representative subset in the first stage of the project. Later, a methodology based on the
quality of a GCM and the ability of the subset to represent the inter-GCM variability was
developed to create two objective-based subsets (see section ‘An objective approach to
identifying representative GCM subsets’). The representativeness of the candidate GCM
subsets is validated in terms of selected climatic characteristics in section ‘Direct
validation of the GCM subsets’ and impact indices implemented in the IAP in section
‘Indirect validation of the GCM subsets’. The indirect validation tests focus on climate
change impacts for pest occurrence and snow cover in the 2055.
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2 Data

The objective methodology for choosing the representative GCM subsets started to be
developed at the beginning of CLIMSAVE project (before the IAP was finalised) and it was
also anticipated to be valuable in other projects. This gave rise to some differences between the
direct validation, which was based on the data configuration used for the GCM selection, and
the indirect validation, which was based on the configuration of the IAP that was finalised later
during the CLIMSAVE project. Specifically, the target region for the direct validation includes
only regions south of 60°N and west of 40°E (focusing on the main European agricultural
regions), the climate characteristics relate to 2070–2099 vs 1961–1990 and SRES-A2 emis-
sions, and the 0.5° grid corresponds to the CRU TS 2.1 dataset (Mitchell and Jones 2005) that
was used as a reference in validating the GCMs in terms of the seasonal cycle of temperature
and precipitation. On the other hand, the indirect validation of the GCM subsets was based on
metamodels implemented in the IAP, which uses the CRU CL 2.0 dataset (10′×10′ grid; New
et al. 2002) as a reference climate; the tests were performed for only those countries included in
the IAP (EU27 plus Norway and Switzerland) and relate to climate change scenarios (for 2055
and SRES-A1B emissions) prepared specifically for the CLIMSAVE project. Despite these
differences, the two validation experiments provide complementary information on the repre-
sentativeness of the GCM subsets.

The analysis is based on GCM simulations made within the frame of the CMIP3 project
(Meehl et al. 2007) and applied in the IPCC’s Fourth Assessment Report (IPCC 2007). The
initial GCM set (Table 1) includes 16 models which had been run for the SRES-A2 emission
scenario and have available monthly time series of daily average (TAVG), minimum and
maximum temperature, precipitation (PREC) and global solar radiation (SRAD) for the 1961–
2099 period. The SRES-A2 simulations were preferred to SRES-A1B (for which more
simulations are available), as they provide a larger signal-to-noise ratio allowing for more
precise determination of the standardised scenarios. Where multiple runs were available from a
given GCM, we used only the first run. The longitudinal and latitudinal resolutions of the
GCMs ranges from 1.4 to 5° and 1.25 to 4°, respectively. For creating the subset using the
objective algorithm, the GCM data were regridded (using bilinear interpolation) into the
common 0.5°×0.5° grid of the reference CRU TS 2.1 data. The objective algorithm was then
applied on grid cells found in a region bordered by the 11°W (western border) and 40°E
meridians and the 34°N and 60°N parallels, which covers the majority of Europe and includes
3,799 “land” grid cells of the CRU TS 2.1 dataset. In addition to monthly mean climatologies
of precipitation and daily maximum and minimum temperatures required by the metamodels,
monthly means of global solar radiation that were not available in the CRU dataset were
determined from sunshine duration (based on information in Rietveld 1978) and added to the
CLIMSAVE datasets.

3 Selection of representative GCM subsets

3.1 Construction of the climate change scenarios

To account for multiple uncertainties, as well as to provide the GCM-based climate change
scenarios for those GCM-emissions combinations not available in the source GCM database,
the climate change scenarios for the CLIMSAVE project were determined using a pattern
scaling approach (Santer et al. 1990; Mitchell 2003), in which the scenario is defined as the
product of a standardised scenario and a change in global mean temperature, ΔTG. The
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standardised scenarios, which are given in terms of the changes in climatic characteristics per
1 °C global warming, are derived from 1961 to 2099 GCM-simulated monthly series using a
linear regression approach (Dubrovsky et al. 2005), in which the GCM-simulated change in
global mean temperature is an independent variable, and the simulated grid cell-specific
change in a given climatic variable is a dependent variable. The standardised temperature
and precipitation changes combined across the five GCMs selected for CLIMSAVE are
presented later (see section ‘Direct validation of the GMC subsets’). The change in global
mean temperature is determined by the MAGICC (version 5.3) model (Harvey et al. 1997;
Hulme et al. 2000) run for a given emission scenario and climate sensitivity. The final set of
scenarios for CLIMSAVE is obtained by combining multiple ΔTG values (changes with
respect to 1975 are assumed here) with a selected GCM subset. The applied set of ΔTG
values—Table 1 of the electronic supplementary material (ESM)—is based on combining
three climate sensitivities (low = 1.5 °C, medium = 3.0 °C, high = 4.5 °C), four emission
scenarios (SRES-A1B, SRES-A2, SRES-B1, SRES-B2), and two target periods (2025 and
2055).

The climate change scenarios within the IAP consist of percentage changes in daily sums of
precipitation and solar radiation, and additive changes in daily averages, minima and maxima
of temperature. The changes are defined for 12 months and four seasons of the year, and for
23,871 grid cells taken from the reference CRU CL 2.0 dataset (10′×10′ grid). In downscaling
the coarse-resolution GCM-based scenarios to the 10′ grid, we used a simple linear interpo-
lation assuming that the changes in individual climate characteristics have much smaller spatial
variability than that of their absolute values. When defining the future-climate values of the
relevant climatic characteristics for individual grid cells, the reference-climate (based on CRU
CL 2.0 data for 1961–1990) temperature characteristics are modified additively, and the
precipitation and solar radiation characteristics are modified multiplicatively. In applying the
multiplication modification, we used an approach (illustrated in Figure 1 of the ESM), in
which the scaling of the standardised change towards lower values (when ΔSX < 0) is
exponential and the scaling towards higher values (when ΔSX > 0) is exponential until a
1 °C rise after which the scaling is linear with the slope equalling the derivative of the
exponential rise at ΔTG = 1 °C. This approach helps to avoid excessive decreases (if ΔSX is
negative) or increases (if ΔSX is positive) for higher ΔTG values.

To prevent overloading the IAP users with excessive GCM choices, we reduced the number
of GCMs included in the IAP to five, which we subjectively considered to be a reasonable
number to represent the inter-GCM uncertainty. Two approaches to selecting a GCM subset
based on the standardised scenarios derived from the SRES-A2 simulations by 16 GCMs are
described in the following sections.

3.2 An expert judgement approach to identifying a representative GCM subset

A subset of five GCMs was identified based on expert judgement, through an iterative process
that focused on GCM-based climate change scenarios. Three experts from the CLIMSAVE
project team independently assessed maps of annual and seasonal standardised changes in
temperature and precipitation from the available GCMs (changes related to summer and winter
are shown in Figure 2 of the ESM), subjectively choosing a subset which each believed to best
capture the range of variability (magnitude and spatial patterns) across these two variables. No
quantitative criterions were employed in this procedure. After this first stage, all three experts
agreed on three GCMs (HadGEM1, NCAR-CCSM3 and GFDL-CM2.1). After discussion, it
was agreed to add MIROC3.2(medres), which got two votes in the first round, due to it being a
relatively wet and hot model with a strong northeast to southwest gradient. Finally, in order to
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complete the set, the ECHAM5/MPI-OMmodel (no votes in the first round) was selected, as a
less extreme central model from a leading European modelling centre. The final selection,
consisting of HadGEM1, NCAR-CCSM3, GFDL-CM2.1, MIROC3.2(medres) and
ECHAM5/MPI-OM (hereafter referred to as EXP5 subset) combined broad representation of
model variability and leading modelling centres from different parts of the world.

3.3 An objective approach to identifying representative GCM subsets

In the first stage of the screening procedure, a subset of five GCMs was identified for each
European 0.5×0.5° grid cell in three steps, consisting of: (1) the “best” GCM at reproducing
the observed seasonal cycle of temperature and precipitation, (2) the “central” GCM which is
closest to the multi-GCM mean climate change scenario, and (3) the most diverse GCM triplet
which, together with the “best” and “central” GCMs, would best represent the inter-GCM
climate change scenario variability. The three steps were motivated by the most common
requirements coming from climate change impact researchers, who require scenarios based on
the “best” model and/or an “average” scenario and/or a reasonably-sized set of scenarios.

The “best” GCM For the purpose of the CLIMSAVE project, where input climatological data
consist of surface weather characteristics, the GCM quality metric is based on the ability of the
GCM to reproduce the reference (1961–90) seasonal cycles of temperature and precipitation
derived from the CRU TS 2.1 dataset. The metric is defined by a Q score, which is based on
the RV scores (reduction of variance) determined separately for temperature and precipitation:

Q GCMð Þ ¼ ∑X ∈ T ;Pf g
RVGCM Xð Þ− < RV Xð Þ >½ � � RVGCM Xð Þ− < RV Xð Þ >j j

var RV Xð Þ½ �

where RVGCM(X) =1−∑m=1…12(X*GCM,m−XCRU,m)2/∑m=1…12(<XCRU,m>−XCRU,m)2), X
relates to temperature and precipitation, X*GCM,m are the debiased GCM simulated monthly
mean temperature and monthly precipitation sum, XCRU,m are monthly means derived from the
CRU data, and <•> and var[•] are the average and variance over all GCMs. The highest Q-
score indicates the “best” GCM in each grid cell. Figure 1 shows a map of the “best” grid cell-
specific GCMs, whilst Table 1 (3 columns in section A) shows the frequencies of individual
GCMs being selected as among the best models.

The “central”GCM To find the GCMwhich is closest to the multi-GCMmean climate change
scenario, each GCM is represented by an eight-dimensional position vector RGCM, whose co-
ordinates are normalised (using grid cell-specific average and standard deviation over all
GCMs) GCM-simulated standardised changes in seasonal means of temperature and precip-
itation. Euclidean distance is then calculated between two GCMs: d(GCM1, GCM2) =
∑i = 1,…,8(r1i−r2i)2, where r1i and r2i are components of the GCMs position vectors. The
“central” GCM is selected as a GCM which has the smallest distance from the centroid of all
GCMs (Rcentroid = ∑{all GCMs} (RGCM)/n, where n=16 is a number of all GCMs). Figure 1
shows a map of the grid cell-specific “central” GCMs, and Table 1 (3 columns in section B)
shows the number of grid cells in which each individual GCM is among the one (2, 3) GCMs
closest to the centroid.

The most diverse GCM triplet consists of the three GCMs which maximise the sum of
distances between the three GCMs [SUMijk = d(GCMi, GCMj) + d(GCMi, GCMk) +
d(GCMj,GCMk] over all possible triplets. Figure 3 of the ESM shows the grid cell-specific
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triplets for the whole of Europe, and Table 1 (columns in section C) shows the frequency
(number of grid cells) of the four most frequently chosen GCM triplets in Europe. As a
consequence of its definition, the most diverse triplet (if applied as a representative GCM
subset on its own) would seemingly overestimate inter-GCM variability, but this overestima-
tion is suppressed by adding the “best” and “central” GCMs into the overall representative
GCM subset.

Note that the GCMs selected in the preceding three categories relate to the metrics used to
define the GCM quality and the distance between GCMs, both of which may be defined
differently by other authors.

As a result of the screening procedure, the selected grid cell-specific subset consists of five
GCMs in most grid cells. Occasionally, when the “best” GCM is the same as the “central”
GCM or one of the most diverse triplet, it consists only of four GCMs. In the second stage of
the procedure, we analysed the frequency of occurrence (across all 3,799 land grid cells) of the

Fig. 1 Maps of the grid cell-specific “best” GCM [model with the highest Q-score (Eq. 1); top] and “central”
GCM (model with the lowest distance from the all-GCM centroid; bottom)

Climatic Change (2015) 128:169–186 175



individual GCMs selected in the “best”, “central” and “the most diverse triplet” categories
(Table 1) and defined the set of five GCMs that were most representative for the whole of
Europe:

1. ECHAM5/MPI-OM is selected as the “best” GCM because it is found to be the “best”
GCM in the largest number of grid cells (it is among the 3 “best” GCMs in about half of
all grid cells).

2 CSIRO-Mk3.0 is selected as the “central” GCM because it is found to be the “central”
GCM in the largest number of grid cells (and is among the three most central GCMs in
about half of all grid cells). Interestingly, our “best” model (ECHAM5/MPI-OM) is also
among the three most central GCMs. This fact corresponds well to the earlier finding
(Gleckler et al. 2008) that the “mean model” consistently outperforms other models.

3. Two versions of the most diverse triplet were selected for further tests. The first one,
consisting of HadGEM1, GFDL-CM2.1 and IPCM4, is the most frequently selected
triplet, and is based strictly on maximising the diversity among GCMs. The second triplet
(HadGEM1, MRI-CGCM2.3.2, BCM2.0) also accounts for the quality of the GCMs. It
consists of GCMs which together exhibit the best quality among the ten most frequently
selected triplets (in terms of the sum of their frequencies of being selected as the “best”
grid cell-specific GCM).

As a result of the aforementioned procedure, two candidate subsets emerge: OBJ5a =
(ECHAM5/MPI-OM, CSIRO-Mk3.0, HadGEM1, GFDL-CM2.1, IPCM4) and OBJ5b =
(ECHAM5/MPI-OM, CSIRO-Mk3.0, HadGEM1, MRI-CGCM2.3.2, BCM2.0). Note the
relatively small differences between individual subsets: OBJ5a differs from both OBJ5b
and EXP5 only by two GCMs.

4 Direct validation of the GCM subsets

The “direct” validation of the candidate subsets examined their ability to reproduce the multi-
model means and standard deviations (using all 16 GCMs as the reference set, which will be
referred to as ALL16) of projected changes (2070–2099 vs. 1961–1990) in temperature
(ΔTAVG), precipitation (ΔPREC) and drought in individual grid cells as well as for Europe
as a whole. Drought is represented by the relative Z-index (rZ), which is an intermediate
product of the relative Palmer Drought Severity Index (PDSI) model obtained by minor
modification (Dubrovsky et al. 2009) of the self-calibrated PDSI (Wells et al. 2004). To
characterise the change in drought conditions, the underlying PDSI model is first calibrated
using the reference climate data, and then applied to future climate data. As a result, the rZ
value characterises the future (2070–2099) soil moisture content anomalies with respect to the
reference (1961–1990) normal conditions. The values above/below zero indicate wetter/drier
conditions compared to the reference normal conditions, the <−2.7, 2.7> interval encompasses
about 96 % of rZ values. The rZ index was chosen as it accounts for both temperature and
precipitation changes and allows validation of the subsets for more complex climatic charac-
teristic which are dependent on multiple climatic variables.

The validation tests focus on the multi-GCM means and standard deviations of ΔTAVG,
ΔPREC and rZ related to individual seasons. Reproduction of the multi-GCM means is
quantified by the mean subset bias (defined as a difference between the means of the subset
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vs. ALL16; B = Asubset − AALL16), and the percentage of grid cells where B is higher (lower)
than BT (−BT) threshold, where BT =0.5×SALL16 and SALL16 is the multi-GCM standard
deviation of the climatic characteristic based on all 16 GCMs. Similarly, validation of the
inter-GCM variability is based on comparing the multi-GCM standard deviations derived from
the subset, Ssubset, with SALL16: we count the percentage of grid cells where the ratio of the
subset-to-ALL16 standard deviations, R = Ssubset/SALL16, is higher (lower) than 3/2 (2/3). The
preceding thresholds subjectively represent a significant degree of mismatch that simulta-
neously provides sufficient frequency of exceedance to enable an efficient comparison of
performances of individual subsets.

The quality of the GCM subsets in terms of their ability to reproduce the means and
variability of ΔPREC, ΔTAVG and rZ is shown in the top half of Table 2 and Table 2 of the
ESM and Fig. 2 and Figure 4 of the ESM. The spatial patterns of standardised changes in
PREC and TAVG for summer and winter based on the OBJ5a subset (the subset, which was
finally selected for use in CLIMSAVE) and the biases with respect to the ALL16 set are shown
in Fig. 3.

The results of the direct validation (see section 2 of the ESM for details) show that the
subsets determined using the objective criteria perform better than those based on expert
judgement. The OBJ5a subset is the best when we require a Europe-wide performance that is
balanced between regions, seasons, climate change characteristics and statistics (multi-GCM
means and standard deviation). When summed over ΔTAVG, ΔPREC and rZ, OBJ5a shows
the lowest percentage of seasonal exceedances across Europe for both the subset mean and
inter-GCM variability. The spatial pattern of its performance is similar over the whole of
Europe, albeit with possible weaknesses in regions to the north of the Black Sea and the
Iberian Peninsula. However, the results also show that the optimal subset may be different if
the stress is put on a specific climate characteristic, region, and/or season. The performance of
the EXP5 subset is most significantly affected by underestimating temperature variability in
summer and autumn. However, its performance is almost as good as the best (OBJ5a) of the
objective-based candidate subsets, due to the two subsets having three common GCMs.
Furthermore, the EXP5 subset was found to be the best in terms of some partial criteria, as
well as the best subset for the winter season.

5 Indirect validation of the GCM subsets

The indirect validation shows how imperfections in the subsets representation of the inter-
GCM variability ofΔPREC andΔTAVG affect the ability of the subsets to capture the ALL16
central value and variability of changes in the impact indices in each 10′ grid cell. Four indices
from two climatically driven metamodels implemented in the IAP were selected: (1) ONEI
(ecoclimatic index) describes the overall suitability of climate conditions for the establishment
and long-term presence of a pest population (the European corn borer, O. nubilalis) in a given
grid cell. ONEI ranges from 0 to 100, where ONEI ≥25 indicates very favourable climate
conditions for species occurrence, 10≤ONEI <25 as favourable and ONEI <10 as limiting for
species survival (Hoddle 2003). (2) ONNG is the number of generations of the corn borer that
can be completed within a year. (3–4) SNOW3 and SKI10 are the average number of days in a
year with more than 3 and 10 cm of snow (corresponding to 3 and 10 mm, respectively, of
snow water equivalent), which would provide frost protection for crops and allow skiing
activities, respectively. While the response of the pest metamodel is driven primarily by
temperature changes, the snow cover model is driven by a combination of changes in
precipitation and temperature in the cold part of the year. More details on the two metamodels
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are given in SM1. The metamodels were run for the baseline and 2055 target period assuming
SRES-A1B emissions and 3.0 °C climate sensitivity.

The statistics (analogous to those used in the direct validation) quantifying the reproduction
of the grid cell-specific multi-GCM means and standard deviations of changes in the four
impact indices are summarised in the lower half of Table 2, the spatial patterns of the impact
indices for reference and future (ALL16 mean) climates and subset vs. ALL16 biases are
shown in Fig. 4 and Figure 5 of the ESM, whilst the significant subset vs. ALL16 deviations
(aggregated over changes in all four indices) are shown in Fig. 5.

OBJ5a OBJ5b EXP5

Fig. 2 Comparison of the three subsets vs. ALL16 set in terms of the multi-GCM mean and standard deviation
of future temperature (top three rows) and precipitation (bottom three rows) changes. First rows in the top and
bottom blocks: number of seasonal exceedances of the subset mean outside <AALL16 ± 0.5 × SALL16> interval;
middle rows in each block: number of seasonal exceedances of the subset standard deviation outside <2/
3 × SALL16, 3/2 × SALL16> interval; bottom rows in each block: sum of the first and second rows. Colours in
the first and second rows show the number of exceedances are of the same sign (positive: yellow to red; negative:
green to blue), whilst the grey scale indicates that the given number of exceedances are not all of the same sign
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The results of the indirect validation (see section 5 of the ESM for details) show EXP5 to be
the best-performing subset (based on the statistics in the lower half of Table 2). The OBJ5a
subset exhibits a slightly poorer performance, and OBJ5b shows the largest portion of grid
cells in which the subset-based results significantly differ from the reference ALL16 set. Of the

OBJ5a bias(OBJ5a vs. ALL16)

Fig. 3 The standardised climate change scenario (regridded into 1 × 1° resolution) based on OBJ5a subset (left)
and the subset bias with respect to the ALL16 set (right). The maps relate (from top to bottom) to the changes in
summer precipitation sum, winter precipitation sum, summer mean temperature and winter mean temperature. In
the left hand column, the shape of the grid cell-specific symbols relate to the inter-GCM variability (represented
by STD/AVG ratio, where AVG and STD are average and standard deviation across the five GCMs of OBJ5a) of
the displayed characteristic. In the right hand column, the shape of the symbols represents the ratio of the multi-
GCM standard deviations of the displayed characteristic based on the subset vs. ALL16 set
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two better subsets, both EXP5 and OBJ5a show some regions of weakness: EXP5 underes-
timates the reduction in snow cover in Central Europe and underestimates changes in pest
indices in the rest of the continental Europe, OBJ5a shows more pronounced (compared to
ALL16) decreases in snow cover in the Alps and Balkan Peninsula along with major increases
in the UK. Considering the superiority of OBJ5a in the direct validation, the superiority of
EXP5 in the indirect validation may be related to the following reasons. Firstly, different
regions were involved in the direct and indirect validation: e.g. Turkey and parts of the former
Soviet Union, where EXP5 performed worse in the direct validation, were not included in the
indirect validation (as they are outside of the CLIMSAVE study area). On the other hand, the
direct validation tests did not include Europe north of 60°N latitude, where EXP5 outperforms
OBJ5a. Secondly, OBJ5a’s performance is partly reduced by the grid cells in Scandinavia,
where the ONEI values are identified as significantly different as a result of one GCM outlier
(with respect to the other members of the subset).

6 Summary and conclusions

This paper presented two methodologies for identifying a representative subset of GCMs for
use in climate change impact studies. One candidate subset (EXP5) was selected using expert
judgment, whilst two other subsets were selected based on quantitative criteria: GCMs perfor-
mance in reproducing the reference seasonal cycle of temperature and precipitation, and an
ability of the subset to represent future inter-GCM variability. The three candidate subsets were
validated and mutually compared in terms of future changes in climatic characteristics (direct
validation) and impact indices (indirect validation). As a part of the indirect validation, climate
change impacts on the European corn borer and snow cover have been briefly assessed. The
main results of the present experiments may be summarised in the following points.

base change B*(OBJ5a) B*(OBJ5b) B*(EXP5)

Fig. 4 The spatial pattern of the two impact indices. The top row relates to ONEI [dimensionless index] and the
bottom row to SNOW3 [days]. From left to right, the maps show: “base” = the reference climate values; “change”
= changes due to climate change (2055 vs 1961–1990, SRES-A2, middle climate sensitivity, mean over 16
GCMs); B*(OBJ5a), B*(OBJ5b) and B*(EXP5) = the significance of a subset’s climate change impact bias
defined as a B/SALL16 ratio, where B is the subset mean bias (the difference between mean changes in impact
indices averaged over the subset vs. ALL16 set) and SALL16 is the standard deviation of the future-climate impact
index based on all 16 GCMs in the reference set; the values outside ±0.55 approximately indicate statistically
insignificant (0.05 level) biases
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The results of the direct validation tests, which focused on the ability of the subsets to
reproduce the multi-GCM variability of changes in seasonal means of precipitation, temper-
ature, and drought conditions, indicated the objective criteria-based OBJ5a subset to be the
best choice. The performance of this subset, which produced slightly better results than the
other two subsets, is balanced between regions, seasons, climate variables (ΔTAVG and
ΔPREC) and statistics (multi-GCM means and standard deviation). However, the results also
show that the ranking of the three candidate subsets differs between climatic characteristics,
seasons and region, so that the suitability of a given subset for a specific impact study would
depend on the choice of the target region and the roles of individual seasons and/or climatic
variables on the processes being studied.

This expectation was confirmed in the indirect validation tests, in which the performance of
the subsets was assessed in terms of the changes in impact indices derived from the outputs of
metamodels fed by the GCM-based climate scenarios: the EXP5 subset achieved slightly

OBJ5a OBJ5b EXP5

Fig. 5 Comparison of the three subsets vs ALL16 set in terms of the multi-GCMmean and standard deviation of
changes in the four impact indices. Top row: number of exceedances of the subset mean outside
<AALL16 ± 0.5 × SALL16> interval; middle row: number of exceedances of the subset-based standard deviation
outside <2/3 × SALL16, 3/2 × SALL16> interval; bottom row: total number of exceedances (= sum of the top and
middle rows)
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better ranking compared to the OBJ5a subset. However, the OBJ5a’s score was partly reduced
by the rather random significant differences between the subset vs ALL16 values of the pest
indices in Scandinavia, and by the different domains involved in the direct and indirect
validation tests. Nevertheless, the differences between the subsets and the reference ALL16
set were generally much lower compared to the mean (across all GCMs in the subset) changes
in impact indices due to projected climate change.

Though the results of the direct validation favoured the subset based on an objective
methodology, the performance of the expert-judgment-based subset was found to be similar
to OBJ5a in several aspects. The main problem with the EXP5 subset related to its underes-
timation of inter-GCM variability in ΔTAVG, especially in autumn. Despite the results of the
direct validation, the EXP5 exhibited the best results if summarised across the whole of Europe
and the four impact indices. Though based on given quantitative criteria, the objective
methodology provided outputs (in terms of the selected subsets and their biases) which may
differ according to the strategies employed to select the GCMs based on their frequencies of
being among the best, central, and/or most diverse models. This is demonstrated by the
differences between OBJ5a and OBJ5b, which imply mutually different spatial patterns of
the subset biases.

It should be born in mind that our objective methodology involves several features which
could be specified differently and imply different GCM subsets. These features include, firstly,
the number of GCMs in a subset, where we chose five to partly cover the most common
demands of users for having scenarios which are based on the best model, mean model and the
representation of modelling uncertainty. Secondly, our choice to quantify the GCM quality by
its ability to represent seasonal means of precipitation and temperature (which are the most
common climatic characteristics used as an input to impact models), whereas other approaches
to quantify the GCM performance may be used. For example, Evans et al. (2014) ranked
GCMs using the fractional demerit score, which was based on 11 validation statistics used in
experiments made by other authors; obviously, this score, or any single validation statistic (see
also Gleckler et al. 2008) could serve to identify the “best” GCM. Thirdly, the metrics used to
quantify the between-GCM distance, which we based on future changes in temperature and
precipitation, could be defined differently using other climatic characteristics such as Bishop
and Abramowitz (2012) measure based on the covariance in model errors to select the subset
of the most independent models. Fourthly, a different strategy might be used instead of our
procedure based on choosing the “best”, the “central” and “the most diverse GCM triplet” in
three successive steps; for example, the worst performing models might be excluded in the first
step (e.g. Evans et al. 2014).

To summarise, there is a need to represent GCM uncertainty in impact studies, but the
computational costs of applying impact models at detailed spatial resolutions across large
domains such as Europe means that it is often not possible to run all climate models; hence,
there is a need to identify representative subsets. We have developed, applied and tested a novel
objective approach to solving this problem, which we have implemented in the CLIMSAVE IAP
(www.climsave.eu/iap). Our objective approach has been compared with the results of a
subjective, expert-judgement driven approach. Nomethod is uniformly superior, but our objective
method has the strong advantage of being transparent and repeatable, and will be applicable to
new impact studies using updated GCM/RCM ensembles, possibly with some modifications
related to the settings of the specific impact study such as the number of GCMs in a subset,
metrics for model quality and inter-model distance, and the strategy of selecting the subset.
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