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Abstract Climate Impact Indices (CIIs) are being increasingly used in different socioe-
conomic sectors to transfer information about climate change impacts to stakeholders.
Typically, CIIs comprise into a single index several weather variables —such as tempera-
ture, wind speed, precipitation and humidity— which are relevant for a particular problem
of interest. Moreover, most of the CIIs require daily (or monthly) physical coherence
among these variables for their proper calculation. This constraints the number of statistical
downscaling techniques suitable for a component-wise approach to this problem. We test
the suitability of the alternative “direct” downscaling approach in which the downscaling
method is applied directly to the CII, thus circumventing the multi-variable problem and
allowing the use of a wider range of downscaling methods. For illustrative purposes, we
consider two popular CIIs —the Fire Weather Index (FWI) and the Physiological Equivalent
Temperature (PET), used in the wildfire and tourism sectors, respectively— and compare
the performance of the two approaches using the analog method, a simple and popular
method providing inter-variable dependence. The results obtained with ‘perfect’ reanaly-
sis predictors are comparable for both approaches, although smaller accuracy is obtained
in general with the direct approach. Moreover, similar climate change ‘deltas’ are obtained
with both approaches when applied to an illustrative future global projection using the
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ECHAM5 model. Overall, there is a trade-off between performance and simplicity which
needs to be balanced for each particular application.

1 Introduction

The assessment of climate change impacts on the different ecosystems and human activities
has become a major challenge in the last decades, especially for those regions that are partic-
ularly vulnerable to climate change. Several socioeconomic sectors of prime importance are
directly affected by climate impacts, and therefore the provision of adequate climate infor-
mation at regional/local scale is of paramount importance. Considerable efforts have been
devoted to the development of Climate Impact Indices (CIIs) for different sectors —such as
forest fires (Stocks et al. 1989; Willis et al. 2001) and tourism (Mieczkowski 1985; Morgan
et al. 2000; Freitas et al. 2008) among others,— summarizing in a single daily (or monthly)
index the information from the relevant meteorological variables (temperature, wind speed,
humidity, etc.) for the problem under study. Moreover, physical coherence among these
variables is required for the proper calculation of most of the CIIs. For instance, this is
the case for the two popular indices used in this work, the Fire Weather Index (FWI) and
the Physiological Equivalent Temperature (PET), from the forest fires and tourism sectors,
respectively.

The calculation of CIIs require high resolution data in many impact studies, far beyond
the large scale simulations of the state-of-the-art Global Climate Models (GCMs). Thus,
some sort of downscaling process is required to bridge this gap in practical applications.
Regional Climate Models (RCMs) provide a large number of physically consistent mete-
orological variables at a suitable spatial resolution (Giorgi 1990). However, the direct
application of RCM outputs in impact studies is hampered by model biases (see e.g.
Casanueva et al. 2013), thus making necessary the application of multi-variable bias correc-
tion techniques preserving this consistency (see Hempel et al. 2013; Wilcke et al. 2013, for
some advances on this).

Alternatively, Statistical Downscaling Methods (SDMs) render local scale information
using empirical relationships generally established between the large-scale synoptic vari-
ables from reanalyses (predictors) and the locally observed predictands, following the
so-called perfect prognosis approach (Maraun et al. 2010); these relationships are then
applied to the outputs of GCMs. SDMs are most often applied to derive local values of typi-
cal surface variables such as precipitation or temperature (Hewitson and Crane 1996; Timbal
and McAvaney 2001; Frı́as et al. 2010), and less often to others like wind (Curry et al.
2012) or snow occurrence (Pons et al. 2010). More recently, the application of the SDMs
has been extended to other non-standard (or “exotic” in the downscaling context) variables
such as wind power (Garcı́a-Bustamante et al. 2013) or river flows (Tisseuil et al. 2010)
with promising results, suggesting the possibility of applying SDMs directly to the CIIs.
However, many attempts to statistically downscale CIIs carried out to date are “component-
wise” approaches, where the downscaled CIIs are derived a posteriori from the downscaled
series of the corresponding weather component variables (see, e.g. Abatzoglou and Brown
2012; Bedia et al. 2013, for FWI).

In this paper we focus on CIIs built from several meteorological variables and assess
the performance of the direct-wise downscaling, as compared to the component-wise
one; to our knowledge there is not a previous comparison of both approaches —Table 1
summarizes previous studies, indicating the type of approach (direct- or component-wise)
followed in each case.— Note that the main advantage of the direct approach is the
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simplicity of dealing with a single predictand, thus circumventing the problem of physical
consistency (see Maraun et al. 2010, for a discussion of this problem in the context of sta-
tistical downscaling techniques). Another advantage is that the distribution of the CII might
be in some cases more suitable for statistical downscaling (e.g. more gaussian) than those
corresponding to some of its meteorological drivers —for instance, this is the particular
case of the two CIIs analyzed in this work.— These aspects widen the range of SDMs that
can be used for a particular index, allowing the choice of those attaining a better perfor-
mance, or which are more robust in climate change conditions (Gutiérrez et al. 2013). In
this study we use two alternative techniques of wide application in statistical downscaling
studies, the analog method and linear regression transfer functions, the latter being only suit-
able for the direct approach in this case —it does not provide physically consistent results
and, more important, the underlying assumption of normality does not hold for some of the
components, e.g precipitation and humidity.—

In Section 2 we describe the main characteristics of the FWI and PET, the data sets
considered for their calculation and the downscaling approaches used in this study. The main
results obtained are described in Section 3 and, finally, the main conclusions are summarized
in Section 4.

2 Data and methods

2.1 Description of the indices and calculation

For illustrative purposes, in this paper we consider two CIIs, the Fire Weather Index (FWI)
and the Physiological Equivalent Temperature (PET), which are popular in the wildfire and
tourism sectors, respectively. Due to the different data requirements and the observational
records available for the meteorological driving variables, FWI and PET are analyzed in
different regions (Spain and Croatia, respectively; see Fig. 1a, shaded areas).

FWI is one of the most popular fire danger indices worldwide (van Wagner 1987; Wotton
2009). In particular, its suitability for different Mediterranean ecosystems has been already
pointed-out by several authors (see, e.g. Viegas et al. 1999; Dimitrakopoulos et al. 2011).
For this reason, it is the official fire danger indicator used by the European Commission to
assess the current and future fire danger in Europe (see e.g. Camia et al. 2008). FWI has
been previously applied to the estimation of future regional fire danger scenarios in Europe
by several authors, considering both dynamical (Moriondo et al. 2006; Bedia et al. 2014)
and statistical downscaling methods (Bedia et al. 2013). FWI is a dimensionless daily indi-
cator of fire potential conditions based on four weather variables —instantaneous values of
temperature, relative humidity and wind velocity at noon local standard time, and accumu-
lated precipitation in the previous 24 hours— accounting for the effects of fuel moisture
and wind speed on fire behavior (see van Wagner and Pickett 1985, for details on the cal-
culation). In this work we analyze FWI considering 45 meteorological stations over Spain
—provided by the Spanish Meteorological Agency (AEMET), see Fig. 1b— with histori-
cal records of the required data for the period 1979-2003. This data set has been previously
used by Bedia et al. (2013), where a more detailed description of its characteristics is given.

PET is a thermal comfort index derived from the human energy balance which depends
on temperature, humidity (relative humidity or water vapour pressure), wind speed and radi-
ation or cloudiness. This index is well suited to the evaluation of the thermal component of
different climates (Matzarakis et al. 1999). It is equivalent to the air temperature at which,
in a typical indoor setting, the heat balance of the human body is maintained with core and
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Table 1 Previous studies on statistical downscaling of exotic indices using direct- or component-wise
approaches. The label “*” indicates that meteorological drivers are introduced in hydrological or phenological
models after the downscaling is performed

Reference Exotic Index (meteorological drivers) SD approach

Li et al. (2012) Reference evapotranspiration Direct

Guo et al. (2014) Evapotranspiration Direct

Fealy and Sweeney (2008) Radiation and potential Direct

evapotranspiration

Tian et al. (2014) Reference evapotranspiration Component

(maximum, minimum and mean temperature,

solar radiation and wind speed)

Rehana and Mujumdar (2013) Reference evapotranspiration (rainfall, Component

relative humidity, wind speed, radiation,

maximum and minimum temperatures)

Tukimat et al. (2012) Evapotranspiration Component

Zuo et al. (2011) Potential evapotranspiration Component

Bourqui et al. (2011) Potential evapotranspiration, Component*

snow water equivalent and streamflows

Hamlet et al. (2013) Potential evapotranspiration Component*

Sultana and Coulibaly (2011) Streamflows, snow storage, and Component*

evapotranspiration

Krause and Hanisch (2009) Evapotranspiration, runoff generation, Component*

and groundwater recharge

Chu et al. (2010) Evaporation Direct

Charles et al. (2007) Runoff Component*

Ouyang et al. (2014) Runoff Component*

Samadi et al. (2013) Runoff Component*

Fu et al. (2013) Runoff Component*

Huang et al. (2010) Water dynamics and river discharge Component*

Cheung and Hart (2014) Thermal comfort index (air Component

temperature, wind speed, relative

humidity and solar radiation)

Anandhi et al. (2014) Solar radiation (temperatures Component

and cloud cover)

Hoffmann et al. (2012) Urban heat island Direct

Wilby (2008) Urban heat island and Component

peak ozone concentrations

Dehn et al. (2000) Displacement rates of the Component*

mudslide (precipitation

and temperatures)

Dehn (1999) Landslide activity Component*

Maak and Von Storch (1997) First-flowering date Direct

Hur and Ahn (2014) First-flowering date (temperatures) Component*

Hur et al. (2014) First-flowering date (temperatures) Component*
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Table 1 (continued)

Reference Exotic Index (meteorological drivers) SD approach

Garcı́a-Bustamante et al. (2013) Wind power Direct

Abatzoglou and Brown (2012) Energy Release Component Component

(temperature, precipitation and humidity) and

the Fosberg Fire Danger Index

(temperature, wind speed and

relative humidity)

Bedia et al. (2013) Fire Weather Index Component

skin temperatures equal to those under the conditions being assessed (Höppe 1999). In this
work we analyze PET using the observed values of temperature, relative humidity, wind
speed and cloudiness at 2pm for 21 meteorological stations in Croatia —provided by the
Meteorological and Hydrological Service of Croatia, see Fig. 1c— covering from 1981 to
2010. We used the freely available RayMan software (http://www.urbanclimate.net/rayman)
developed by Matzarakis et al. (2007, 2010) to estimate this index.

We focused our study in the warmest months, June to September (JJAS), since this is
the season of critical fire danger over Spain and it is of particular interest for tourism in
Croatia. FWI and PET were tested for normality and passed this requirement for the linear
regression methods.

2.2 Reanalysis and global climate model projections

The predictor variables used in this study for the statistical downscaling methods are Sea
Level Pressure (SLP), Temperature at 2 meters (T2m), relative and specific humidity, tem-
perature and U and V wind components for 850 mb (R850, Q850, T850, U850 and V850,
respectively) and geopotential height at 500mb (Z500). We consider daily predictor val-
ues at 12 UTC in order to better match the observation times (at noon for FWI and 2pm
for PET). On the one hand, predictors are taken from ERA-Interim reanalysis (Dee et al.
2011), covering the observation periods. This reanalysis has proven to be suitable for FWI
calculation over Spain (Bedia et al. 2012). On the other hand, the same predictor variables
are also taken from the CMIP3 ECHAM5 model (run 3) for the control 20C3M scenario
(1971-2000) and for the transient A1B scenario (2011-2100). Due to their different native
horizontal resolutions, both data sets are re-gridded —using bilinear interpolation— to a
regular 2.5◦ grid considering the gridded domains shown in Fig. 1a. Moreover, in order to
correct systematic biases in the mean, the ECHAM5 data are preprocessed removing the
mean bias for each predictor variable with respect to ERA-Interim at a monthly basis (the
GCM monthly mean is replaced by the reanalysis counterpart for each predictor variable at
a gridbox level). In particular we considered two windows with coordinates 45◦N, 35◦N,
10◦W and 5◦E (centered on the Iberian peninsula) and 39.5◦N-49.5◦N, 9◦E-24◦E (centered
on Croatia) as geographical domains.

It is worth to remark that the predictors considered in this work include “signal-bearing”
variables (e.g. temperature) in order to capture a potential climate change signal. Moreover,
they are well reproduced in southwestern Europe —after bias removal— by the ECHAM5
model (Brands et al. 2011).

http://www.urbanclimate.net/rayman
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Fig. 1 a Case study regions
(gray shaded) and the
corresponding geographical
domains/grids used in the
downscaling process. Panels b
and c show the stations/locations
considered over the two regions,
Spain and Croatia, respectively

(b)

(c)

(a)

2.3 Statistical downscaling methods

Statistical (perfect prog) downscaling is applied following two different approaches: 1)
the required weather variables are downscaled and the CII series are computed afterwards
(component-wise: the weather variables are the predictands), 2) the CIIs are downscaled
directly (direct-wise: the CII is the predictand). In the former case the downscaling method
must be generic —applicable to a number of different variables— and must preserve the
physical consistency among the variables; this poses a serious limitation on the number of
feasible downscaling methods (Maraun et al. 2010). The analogs method (Zorita and von
Storch 1999; Frı́as et al. 2010) is a popular and simple generic downscaling technique which
meets this requirement. Other statistical downscaling methods attempt to model the rela-
tionships between relevant variables by regressing other variables on the generated values
of key variables (e.g. precipitation; see Kilsby and Wilby 2007), thus requiring different
configurations for different CIIs.
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In this work, the component-wise approach is applied considering the analog method to
jointly downscale each of the input meteorological variables driving FWI and PET. Given
an atmospheric state (as represented by a number of predictors defined on a particular
geographical pattern) to be downscaled, this technique finds the most similar historical
atmospheric state —the “analog” day, or nearest neighbor in terms of some metric, e.g. the
Euclidean distance in this study— in a pool of historical states provided by a reanalysis data
set. Then, the downscaled values for the predictands are computed as the corresponding his-
torical outcomes for the analog date, thus preserving the physical consistency among the
predictands. This analog methodology is also applied directly to the CIIs (considering the
historical values of the CII) in order to compare the performance of both component- and
direct-wise approaches.

In a previous study by Bedia et al. (2013), the performance of the analog method
to downscale FWI over Spain was already validated following the component-wise
approach. Several geographical domains over Spain and different sets of predictors
were tested in that study (see e.g. Gutiérrez et al. 2013, and references therein). In
the present work we build from that study and consider the same geographical win-
dow (see Fig. 1a) and predictors (T2m, R850, T850, U850, V850) for both component-
and direct-wise FWI downscaling in Spain. For downscaling PET in Croatia we con-
sider a similar geographical domain (see Fig. 1a). In this case we tested alternative
predictor sets —SLP, T2m, T850, Q850, Z500— with similar results so, for the sake
of consistency between the two case studies, we consider the same predictor set used
for FWI. Note that by accepting a common set of predictors, some local skill will be
sacrificed since the optimum combination of predictors is predictand, site and season
specific.

For direct downscaling we consider an additional statistical downscaling method based
on the popular linear regression model. In this case a Principal Component (PC) analysis
is first applied to the atmospheric states retaining the first 10 principal components (PCs)
of all the predictor variables altogether —that yield a fraction of explained variance around
90 % in the two regions considered in this work— as predictors for the linear model. Two
alternative statistical downscaling methods based on linear regression were also tested —
one method considering 30 PCs instead of 10 and a second one including the local predictor
values for the nearest grid box— but similar results were obtained. For a detailed description
of these methods we refer the reader to Gutiérrez et al. (2013).

2.4 Validation framework

In order to assess the performance of the different downscaling approaches with “perfect”
predictors, we considered reanalysis data for both calibrating/training and testing the sta-
tistical downscaling methods; thus, for each CII we used the period that overlaps with the
ERA-Interim reanalysis (1979-2003 for the FWI and 1981-2010 for the PET). A k-fold
cross-validation approach is considered by splitting the data into k equal-size subsamples.
Then, each subsample is retained as the validation data for testing the model, and the remain-
ing ones are used as training data. We applied the same k-fold (k = 5) cross validation
approach used in Bedia et al. (2013) for the FWI, considering a stratified sampling. For the
case of PET, due to the longer period available, k = 10 different combinations of calibra-
tion and test periods were considered; in this case the first fold was formed by years 1981,
1991 and 2001, etc. In all cases, the statistical models have been trained and tested with
JJAS data at a daily basis, and the resulting tests periods were concatenated into a single
final downscaled multi-year JJAS series for validation. In the case of the component-wise
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approach, the FWI and PET predicted series are computed from the downscaled series of
the required weather variables.

Note that using stratified (or random) folds, the same distributions/climatologies are
sampled for all folds, allowing to estimate the performance/deficiencies attributable to the
downscaling methods themselves (Section 3.1), without mixing this with their extrapolation
capabilities. This latter problem, key in the climate change context, is analyzed separately
when applying the methods in climate change conditions (Section 3.2). Note that con-
secutive folds could be used instead in the cross-validation approach in order to include
extrapolation capabilities. However, in this paper we analyze these two problems separately.

3 Results

3.1 Results in perfect model conditions

The Spearman correlation coefficient (Fig. 2a–d) and the standardized bias (Fig. 2e–h) (i.e.
bias divided by the observations’ standard deviation at each station) for the downscaled val-
ues from the direct analog (a-b, e-f) and linear regression (c-d, g-h) methods are obtained
applying the validation framework described in Section 2.4. Spatially averaged values are
indicated in each panel for the direct approach and also for the component-wise approach
for the case of the analog method —the spatial patterns are very similar in both cases
and, therefore, they are not shown for the sake of conciseness; some results for the FWI
component-wise case are analyzed in Bedia et al. (2013).— Note that higher correlation
values are obtained for the component-wise downscaling, particularly in the case of FWI.
This indicates that some information carried by the weather variables is lost when down-
scaling directly the aggregated CII. However, the possibility of using alternative statistical
downscaling methods under the direct approach is a clear advantage, since the results for
linear regression exhibit higher correlation and smaller biases in all cases. Note that this can
be largely explained by the different nature of the regression and analog methods (Gutiérrez
et al. 2013), but anyhow illustrates the potential value of using a wider range of downscaling
approaches.

Finally, note that the performance of the downscaling methods is higher for PET than for
FWI in all cases. This is partly explained by the higher dependence of FWI on humidity-
related variables (Bedia et al. 2012), more difficult to downscale than temperatures from the
large-scale predictors.

3.2 Downscaling climate projections

Besides the assessment of the component- and direct-wise approaches in perfect model
conditions, we compare their results when downscaling global climate change projections
from a single global model (the ECHAM5 model; see Section 2.2). ECHAM5 is used
here only for illustrative purposes and to explore the sensitivity of the downscaled CIIs
to a given climate change signal, however a multi-model ensemble should be applied to
account for the variability of different global projections. The downscaled results for the
transient A1B scenario for three different future periods 2011-2040, 2041-2070 and 2071-
2100 are compared with those corresponding to the reference period obtained from the
control 20C3M scenario (for the period 1971-2000). To this aim, the delta method (Räisänen
2007) is applied to compute the relative future ‘deltas’ with respect to the reference
values.
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Fig. 2 Spearman daily correlation and standardized bias from the direct analog and linear regression down-
scaling approaches for the FWI (left panels) and PET (right panels). All results correspond to the season
June-September. The numbers in the panels represent the spatially averaged scores (also shown for the
component-wise approach for the analog method)

Figure 3a–b shows the relative ‘deltas’ (in %) for the FWI (left) and PET (right) from the
component versus the direct analog downscaling method for every station. In general, these
results show that the values from the component method are comparable to those from the
direct downscaling method, with R2 values ranging from 0.6 (for the 2011-2040 period, with
small changes) to 0.83 for FWI and over 0.99 for PET. The almost perfect correspondence
obtained by PET could probably be due to the main role that the temperature plays on the
PET definition in warm conditions, contrary to the more pronounced influence of wind in
winter, whereas FWI is more dependent on humidity-related variables, worst predicted by
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Fig. 3 Point-based percent delta changes for FWI (left) and PET (right): a–b Component versus direct
analog statistical downscaling, and c–d direct analog versus the direct linear regression methods. Results for
the three future periods are shown with different markers; goodness-of-fit estimates for the linear regression
are provided in each case

statistical downscaling methods (Bedia et al. 2013) —and therefore, with larger uncertainty
for different methods and/or approaches.—

A comparison of the FWI and PET deltas resulting from the direct downscaling approach
based on analog versus those based on the linear regression is shown in Fig. 3c–d for the
three future periods considered. It can be observed that the uncertainty associated to the
selection of the downscaling method applied directly to the index (analog or linear regres-
sion in this case) is higher than the uncertainty due to the application of the direct or
component downscaling approaches, with R2 values ranging from 0.16 to 0.48 for FWI and
from 0.87 to 0.95 for PET. Moreover, there is a clear trend in both cases, more noticeable
for PET, with increasingly larger downscaled values obtained with the linear regression than
with the analog technique, so, from a climate risk management perspective, scenarios pro-
duced by this technique might favour more precautionary adaptations. This increase can be
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explained by the lack of robustness of the analog downscaling technique (see, e.g. Gutiérrez
et al. 2013), which cannot extrapolate future atmospheric conditions, thus producing an
underestimation of the results as compared to other techniques. Therefore, a key advantage
of the direct downscaling approach in this context is the possibility of using a wider range
of statistical downscaling methods.

4 Conclusions

Climate Impact Indices (CIIs) are becoming popular in order to summarize in a single
index the multi-variable meteorological information relevant for a particular impact sector.
Statistical downscaling methods have been recently applied to CIIs following an indirect
component-wise approach —the weather variables forming the index are downscaled and
the CII is computed from the resulting downscaled series.— The present study reveals
the suitability of performing statistical downscaling directly on the CII, simplifying the
application of this methodology and allowing to use a wider range of statistical downscal-
ing methods. According to the experiments performed using “perfect” predictors, similar
performance was obtained applying both approaches for both indices, with slightly better
results for the component-wise approach. The comparison for future global projections from
a single GCM (the ECHAM5 model) yields similar deltas with both approaches for differ-
ent periods of the 21st century. Note that the goal of this paper is testing the performance
of the direct- and component-wise approaches and, therefore, for illustrative purposes, we
used a single global climate model. However, a general study of climate change projec-
tions should consider a multi-model ensemble approach, accounting for the variability of
different global projections.

The suitability of the direct statistical downscaling approach widens the range of
statistical downscaling methods that can be used (since only one index needs to be
downscaled rather than multiple physically and spatially consistent variables). This is a
clear advantage which is illustrated in this paper by considering an alternative statis-
tical downscaling approach (based on linear regression). In this case, clear differences
arise from the comparison of the deltas for the analog and the linear regression meth-
ods. This is in agreement with previous studies, reporting the problems of the ana-
log method to extrapolate future climatic conditions, thus leading to underestimated
values.

While this work focuses on particular indices (FWI and PET) and regions (the
Mediterranean), the same study could be extended to other indices and areas of
interest defined in other sectors which are particularly affected by climate change.
Therefore, for those impact studies where the intermediate climate information is
not relevant, it is advisable to use the direct downscaling approach in order to
provide local scale information for a particular CII. However, there is a trade-off
between performance and simplicity which needs to be balanced for each particular
application.
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Höppe P (1999) The physiological equivalent temperature - a universal index for the biometeorological

assessment of the thermal environment. Int J of Biometeorol 43:71–75
Huang S, Krysanova V, sterle H, Hattermann F (2010) Simulation of spatiotemporal dynamics of water

fluxes in Germany under climate change. Hydrol Process 24(23):3289–3306
Hur J, Ahn JB (2014) The change of first-flowering date over south Korea projected from downscaled Ipcc

Ar5 simulation: peach and pear. Int J Climatol. doi:10.1002/joc.4098
Hur J, Ahn JB, Shim KM (2014) The change of cherry first-flowering date over south Korea projected from

downscaled Ipcc Ar5 simulation. Int J Climatol 34(7):2308–2319
Kilsby CG, Wilby RL (2007) A daily weather generator for use in climate change studies. Environ Model

Softw 22(12):1705–1719
Krause P, Hanisch S (2009) Simulation and analysis of the impact of projected climate change on the spatially

distributed waterbalance in Thuringia, Germany. Adv Geosci 21:33–48
Li Z, Zheng FL, Liu WZ (2012) Spatiotemporal characteristics of reference evapotranspiration during 1961-

2009 and its projected changes during 2011-2099 on the Loess plateau of China. Agric Forest Meteorol
154–155:X147–155

Maak K, Von Storch H (1997) Statistical downscaling of monthly mean air temperature to the beginning of
flowering of galanthus nivalis l. in northern Germany. Int J Biometeorol 41(1):5–12

Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T,
Themel M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010)
Precipitation downscaling under climate change: recent developments to bridge the gap between
dynamical models and the end user. Rev Geophys 48:RG3003. doi:10.1029/2009RG000314

Matzarakis A, Mayer H, Iziomon M (1999) Applications of a universal thermal index: physiological
equivalent temperature. Int J Biometeorol 43:76–84

Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments-
application of the RayMan model. Int J Biometeorol 51:323–334

Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments:
basics of the RayMan model. Int J Biometeorol 54:131–139

Mieczkowski Z (1985) The tourism climatic index: a method of evaluating world climates for tourism. Can
Geogr 29:220–233

Morgan R, Gatell E, Junyent R, Micallef A, Özhan E, Williams A (2000) An improved user-based beach
climate index. J Coast Conserv 6:41–51

Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate
change on fire risk in the Mediterranean area. Clim Res 31:85–95

Ouyang FLH, Zhu Y, Zhang J, Yu Z, Chen X, Li M (2014) Uncertainty analysis of downscaling methods in
assessing the influence of climate change on hydrology. Stoch Enviro Res Risk A 28(4):991–1010

Pons M, San-Martı́n D, Herrera S, Gutiérrez JM (2010) Snow trends in northern Spain. Analysis and
simulation with statistical downscaling methods. Int J Climatol 30:1795–1806
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