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Abstract Given its high dependence on rainfed agriculture and its comparatively low adaptive
capacity, Africa is frequently invoked as especially vulnerable to climate change. Within
Africa, there is likely to be considerable variation in vulnerability to climate change both
between and within countries. This paper seeks to advance the agenda of identifying the hot
spots of what we term “climate security” vulnerability, areas where the confluence of vulner-
abilities could put large numbers of people at risk of death from climate-related hazards. This
article blends the expertise of social scientists and climate scientists. It builds on a model of
composite vulnerability that incorporates four “baskets” or processes that are thought to
contribute to vulnerability including: (1) physical exposure, (2) population density, (3) house-
hold and community resilience, and (4) governance and political violence. Whereas previous
iterations of the model relied on historical physical exposure data of natural hazards, this paper
uses results from regional model simulations of African climate in the late 20th century and
mid-21st century to develop measures of extreme weather events—dry days, heat wave events,
and heavy rainfall days—coupled with an indicator of low-lying coastal elevation. For the late
20th century, this mapping process reveals the most vulnerable areas are concentrated in Chad,
the Democratic Republic of the Congo, Niger, Somalia, Sudan, and South Sudan, with pockets
in Burkina Faso, Ethiopia, Guinea, Mauritania, and Sierra Leone. The mid 21st century
projection shows more extensive vulnerability throughout the Sahel, including Burkina
Faso, Chad, Mali, northern Nigeria, Niger, and across Sudan.

Aside from low-lying island nations, Africa is frequently invoked as the part of the world most
vulnerable to climate change (Low 2005; Boko et al. 2007). Subnational differences in
vulnerability within countries are likely to be as significant as between countries.

The policy community has frequently invoked concerns about the capacity of climate
change together with other causes to contribute to conflict and state failure (CNA
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Corporation 2007; Campbell et al. 2007; Solana 2008; Fingar 2008; UN Security Council
2007). While the precise connections between climate change and security remain contested
(Burke et al. 2009; Buhaug 2010; Feng et al. 2010; Hsiang et al. 2013), identifying the areas
most vulnerable to the security consequences of climate change is an important area for both
scholars and practitioners. With the countries most vulnerable to climate change potentially
eligible for millions of dollars in adaptation funding, identifying the countries and areas within
countries that are likely most vulnerable to climate change has taken on added significance
(Friedman 2010; de Sherbinin 2014).

This paper seeks to advance the agenda of identifying the hot spots of security vulnerabil-
ities associated with climate change, areas where the confluence of vulnerabilities could put
large numbers of people at risk of death from climate-related hazards. It blends the expertise of
social scientists and climate scientists.

Previous iterations of this composite vulnerability model relied on historical physical
exposure data to climate-related hazards (Busby et al. 2011, 2012, 2013). The major innova-
tion in this paper is the incorporation of results from a coupled Atmosphere-Ocean General
Circulation Model (AOGCMs) and a regional climate model (RCM) to generate state-of-the-
art projections of late 20th century and mid-21st century indicators of extreme weather events
to define the physical exposure basket.

The RCM projections enable us to identify whether areas of future exposure to climate-
related hazards are likely to be similar to those that occurred with historic exposure. They use
projections of future climate derived from AOGCMs to constrain the lateral boundaries and
specify future sea surface temperature, but provide more fine-grained and realistic represen-
tations of African climate than are available through AOGCMs.

In this paper, we isolate the likely effects of future climate change on vulnerability by
looking at the impact of changes in projected exposure to climate-related hazards. Security
vulnerability composites are generated for the late 20th century and mid-21st century with only
indicators associated with the physical exposure basket generated by the RCM allowed to
change. With all other indicators and baskets held constant, this study therefore addresses how
we expect climate change to affect Africa’s vulnerability.1

The first section outlines our definition of security vulnerabilities associated with climate
change and describes the methodology. The second section describes the regional climate
model used to generate the historical and future projections of extreme events that can
influence security vulnerability. The third section presents our results.

1 Defining and modeling the security vulnerabilities associated with climate change

The literature on vulnerability is diverse with no standardized approach across disciplines.
Some scholars focus on physical exposure alone, while others emphasize social factors. Some
approaches embed vulnerability in a broader definition of risk, captured by the equation risk=
vulnerability×hazard exposure. Many focus on susceptibility to losses, with a strong emphasis
on livelihoods (Brooks et al. 2005; Brenkert and Malone 2005; Alcamo et al. 2008; Cardona
2004; Füssel and Klein 2006; Weichselgartner 2001; Alexander 2009).

Here we are interested in a particular understanding of the security vulnerabilities associated
with climate change. By that, we mean situations where large numbers of people could
possibly die as a result of exposure to climate-related events. Whereas most of the literature

1 This model does not include indirect effects of climate-related extreme events on mortality through changes in
diseases such as malaria or meningococcal meningitis.
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on climate change and security has focused on the connections between climate change and
violent conflict,2 we are interested in a broader set of security outcomes that include but are not
limited to violent conflict. More generally, we seek to identify areas where household and
community resilience is overcome and the capabilities of civilian disaster authorities are
exceeded requiring the mobilization and diversion of domestic and/or international military
response for humanitarian relief purposes.

Existing efforts to model climate hot spots such as the DARA Climate Vulnerability
Monitor, the Notre Dame Global Adaptation Index (ND-GAIN), the Maplecroft Climate
Change Vulnerability Index, and the OneWorld consultancy often have a different focus.3

Many focus on effects on livelihoods rather than security outcomes. Some like the ND-GAIN
Index map national level rather than subnational hot spots. Some like the Maplecroft Index are
subscription-based and somewhat opaque about their data choices and methodology.

Our methodology was informed by previous vulnerability studies, especially Brooks et al.
who used Monte Carlo simulations and expert opinions to identify key contributors to climate
vulnerability (Brooks et al. 2005; Adger et al. 2004). We also drew inspiration from Levy et al.
who incorporated both political stability and physical exposure to climate hazards (Levy et al.
2005) as well as work by (Wheeler 2011; Raleigh et al. 2008; Brenkert and Malone 2005).

Our modeling efforts have been iterative, with the aim of finding more fine-grained sub-
national indicators to replace national level indicators. We have externally validated the work
through extensive fieldwork as well as sensitivity analysis, which has also led us to make
several updates to the model (Busby et al. 2013; Berenter 2012).

Following the work of the IPCC, vulnerability to climate change is more than a function of
physical exposure. Two locations may face identical physical exposure to a climate-related
hazard but have widely divergent overall vulnerability because different demographic, social,
and political conditions may enhance their sensitivity and coping capacity (IPCC 2007).

For these reasons, our model presents a composite index of vulnerability that combines four
“baskets” or processes—physical exposure, population density, household and community
resilience, and governance and political violence—thought relevant to an area’s overall
vulnerability. The results of the index analysis are used to produce maps of vulnerability at
the subnational level. This mapping reflects not only which countries should be of concern, but
also which locations within countries. Given our interest in identifying places where large
numbers of people might die from exposure to climate-related hazards, these maps thus
represent proxies of deaths per area rather than the death risk per person.

Unlike the Famine Early Warning Systems Network (FEWSNET) maps of seasonal vulner-
ability, the maps reflect what Burg called “chronic vulnerability,” the places that consistently
possess a confluence of characteristics that make them vulnerable to having large numbers of
people at risk of death in the event of exposure to a climate-related hazard (Burg 2008).

We briefly describe the intuitions and data sources below. A more extended technical
discussion is available in supporting information and is detailed in (Busby et al. 2013). A
discussion of the model construction, data layers, including the option to zoom in are available
in an on-line data dashboard.4

2 The January 2012 special issue of the Journal of Peace Research is dedicated to assessing the links between
climate change and conflict.
3 DARA Climate Vulnerability Monitor is found at http://daraint.org/. The ND-GAIN Index is available at http://
index.gain.org. The Maplecroft index is available at http://maplecroft.com/. The OneWorld is found at http://
www.oneworldgroup.co.za/. For a survey of hot spot climate mapping exercises, see (de Sherbinin 2014).
4 See http://ccaps.aiddata.org/climate
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1.1 Physical exposure to climate-related hazards

The base of any climate change vulnerability model ultimately must be physical exposure.
Because we are interested in the effects of climate change that could potentially put large
numbers of people at risk of death, we focus on climate-related extreme events. For example,
the Emergency Events (EM-DAT) International Disaster database estimates that three of the
most prevalent extreme weather events types associated with climate-related disasters over
continental Africa are droughts, flooding associated with excessive rainfall, and heat waves
(CRED 2012). Based on this information three indicators are developed and used; each a
proxy for these different weather events. We also include a measure of low-elevation coastal
exposure to take into account areas subject to coastal inundation. How these indicators are
defined based on the regional climate model projections is discussed in Section 2.

1.2 Population density

All else equal, larger human populations living in physically exposed areas are likely to
command more attention from decision-makers than scarcely populated regions. We elected
to use Landscan’s map of population density in 2008 because it seemed to offer more fine-
grained data than alternatives.5

1.3 Household and community resilience

In the event of physical exposure, the first line of defense for many communities will be the
availability of local resources. Communities exhibit different levels of resilience—the ability to
cope with adversity. While income might be a good proxy for local capability, limited subnational
income data is available. Indicators were ultimately selected after drawing largely on the
simulations and expert reviews of Brooks et al., though we consolidated the number of indicators
as they included two highly correlated school enrollment measures as well as two related
measures of malnutrition (Brooks et al. 2005). We include eight different measures of attributes
of health, education, and access to services. Data for these indicators have irregular temporal and
geographic coverage and draw from diverse sources.6We sought subnational data where possible,
ultimately finding subnational data for infant mortality, child malnutrition, and access to improved
water sources (see Supplementary Table 1). Unlike the physical exposure and population baskets,
the subnational information for these indicators is only available at the admin 1 or provincial-level.

1.4 Governance and political violence

When the severity of a climate-related event exceeds the capacity of households and commu-
nities to cope, governance—the willingness and ability of the government to aid communities
in times of need—becomes critical. Drawing on indicators from the World Bank, Polity IV, the
Swiss Economic Institute (KOF) Index of Globalization, and the Armed Conflict Location and
Events Dataset (ACLED), we include five measures of governance capacity and responsive-
ness and political violence, only one of which, ACLED, is subnational (see Supplementary
Table 2). Because so much of this basket is based on national-level data, the influence of

5 In earlier iterations, we relied on the Global Rural–urban Mapping Project (GRUMP). LandScan (2008)TM

High Resolution global Population Data Set copyrighted by UT-Battelle, LLC, operator of Oak Ridge National
Laboratory under Contract No. DE-AC05-00OR22725 with the United States Department of Energy.
6 Sources include World Development Indicators, Columbia University’s Center for International Earth Science
Information Network, and USAID Demographic and Health Surveys among others.
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governance creates sharp discontinuities at country borders that may be an artifact of modeling
rather than a reflection of reality (de Sherbinin 2014, 33). The difference for example between
northeastern Kenya and southern Somalia may be less stark than our maps portray.

Because each of the indicators in this vulnerability model is initially measured using different
scales, the first step is to standardize the values based on quintiles, from the least vulnerable 20
percent to themost vulnerable 20 percent. All of the variables within a given basket of vulnerability
are then summed and mapped to create composite maps for physical exposure to climate-related
hazards, household and community resilience, and governance and political violence. Population
density consists of a single indicator and is mapped individually. The final maps are classified into
quintiles where areas in Africa are compared relative to the rest of the continent.

In the initial iteration of the composite, the four baskets are then summed together to create
a composite vulnerability map. Following conventions in the field of vulnerability studies, the
four baskets are initially equally weighted in the index. In most circumstances, indicators
within baskets are also assigned equal weights. In the absence of an empirical rationale for
weighting indicators differently, the equal weights assignment was the least arbitrary, though
our on-line tool allows users to adjust basket weights.7 In supplementary material, we present a
multiplicative variation where physical exposure is multiplied by the sum of the three other
baskets as a way of comparing with common approaches in risk management. As is common
in composite indices, the vulnerability model does not have an econometric basis, as the data
come from different years and different scales of resolution, making statistical analysis
problematic, though we have attempted to bootstrap an econometric model.

2 A regional climate model for Africa

The climate change projections used in this study result from the integrated application of
AOGCMs and a RCM. The RCM used is the National Center for Atmospheric Research/
National Oceanic and Atmospheric Administration (NCAR/NOAA) Weather Research and
Forecasting (Skamarock et al. 2005) regional model. Future lateral and surface boundary
conditions for the regional model are derived from simulations using AOGCMS8 that were run
in support of the Intergovernmental Panel on Climate Change’s (IPCC) Fourth and Fifth
Assessment reports (AR4 and AR5, respectively). While the horizontal space scales of
AOGCMs, generally about 150 to 200-km, are not ideally suited to evaluate regional changes
in extreme weather events (Crétat et al. 2013), they provide information about large-scale changes
in the atmosphere and ocean that are needed for constraining the regional model simulation. In
addition to providing finer resolution than the AOGCMs, regional modeling allows one to select
model physical parameterizations that work well in the region of interest, in this case over Africa.

An ensemble regional modeling approach is used to improve the reliability of the simula-
tions and provide a tool for evaluating confidence. Two ensembles, each consisting of 6 year-
long climate-mode ensemble members,9 are constructed and run using a 90-km domain that

7 For the virtues of equal weights in composite indices, see (Stapleton and Garrod 2006, 2007). For the problems
with equal weight-based indices, see (Chowdhury and Squire 2005).
8 The 9 AOGCMs used are CGCM3.1, CNRM-CM3, ECHAM/MPI-OM, GFDL-CM2.0, MIROC3.2 (medres),
MRI-CGCM3.2, NCAR CCSM3, NCAR PCM, UKMO-HadCM3. The process is detailed in (Cook and Vizy
2012).
9 Climate-mode boundary conditions include seasonality, but filter out shorter timescales. This process has been
shown to be an effective approach to understand climate variability over Africa in other studies (e.g., Vizy and
Cook 2002; Patricola and Cook 2007, 2010). A detailed description on the climate-mode ensemble design
methodology is provided in (Cook and Vizy 2012).
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extends from 61°W to 101°E and from 52°S to 60°N. The first ensemble represents the late
20th century (1981–2000). Initial, surface, and lateral boundary conditions are derived from
the 1981–2000 monthly climatology of the National Centers for Environmental Prediction
reanalysis 2 (Kanamitsu et al. 2002) linearly interpolated to form the six-hourly conditions
needed as described in (Cook and Vizy 2012). Each ensemble member differs only in their
initial conditions.

The second ensemble represents the mid-21th century (2041–2060) under the IPCC AR4
mid-line A1B emissions scenario. CO2 concentrations are adjusted from late 20th century
values to 536 ppmv, which represents the 2041–2060 average under the A1B emissions
scenario. Initial and lateral boundary conditions are derived by taking AOGCM anomalies,
calculated as the differences between monthly-mean, A1B-forced simulations averaged over
2041–2060 and monthly-mean historical simulations averaged over 1981–2000, adding them
to the NCEP2 reanalysis climatological monthly values, and linearly interpolated to form the
6-hourly values needed.

It is shown (Cook and Vizy 2012) that the regional model run in this manner (i.e., climate-
mode) can realistically simulate the African climate system, including the seasonal evolution
of rainfall, important large-scale and regional circulation features, and even the number of
growing season days. This includes the boreal summer migration of rainfall into the Sahel,
which AOGCMs typically do not realistically represent (Cook and Vizy 2006). Furthermore,
the late-20th century ensemble captures the observed distribution of extreme events over
Africa (Vizy and Cook 2012). Thus, these ensemble simulations are suited to provide state-
of-the-art regional projections of extreme weather for the future for use in assessing security
vulnerability.

As discussed in Section 1, three indicators of extreme weather are calculated from the RCM
output and used to form the physical exposure basket. Each is discussed below.

The number of dry days, i.e. the number of days per year when the daily rainfall rate is less
than 1 mm for at least 21 consecutive days, is used to approximate drought. Unlike other
comparable dryness measures (Frich et al. 2002; Tebaldi et al. 2006), the days need not all be
consecutive as the simulation design is not appropriate for evaluating dry periods that extend
multiple years (See Fig. S2–S4).

At the opposite end of the extreme rainfall continuum, the number of extreme wet days is
the number of days per year when the daily rainfall rate exceeds a threshold of the 95th
percentile of wet days (Frich et al. 2002; Zhang and Fang 2004). Here a wet day is defined as
when the daily rainfall is greater than or equal to 1 mm. The 95th percentile corresponds to the
20-year recurrence interval (See Fig. S5–S7). The 95th percentile threshold for the historical
ensemble is calculated and then is utilized to evaluate the future projections.

A heat wave is defined from the RCM output by calculating the daily maximum apparent
temperature (Steadman 1979; Steadman 1984), which factors into account the impact of
atmospheric moisture and wind speed, and evaluating when this human-perceived equivalent
temperature exceeds 41 °C for at least 3 consecutive days. The threshold of 41 °C represents the
point when heat exhaustion is likely, with heat stroke probable with continued activity based on
the U.S. National Weather Service scale. A duration of at least 3 consecutive days is chosen
based on evidence that mortality is more likely by the third day under such conditions
(Kalkstein and Smoyer 1993) (See Fig. S8–S10).

Each of the three indicators were converted in ArcGIS to raster files and classified into
quintiles, with 1 being the least exposed to the hazard and 5 being the most exposed to the
hazard.

In order to represent future risk from rising sea levels, this study used a digital elevation
model (DEM) to extract the 1–10 m coastal zone for all of Africa. We selected all cells with
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values 1–10 and then excluded areas clearly not contiguous to the coast to increase accuracy. It
is possible, however, that a few low-lying areas included in the final low-elevation coastal zone
dataset would be protected from rising sea levels and storm surges by higher elevation land
along the coast. We assigned areas in the 1–2 m coastal elevation zone a value of 5, areas in the
3–4 m zone a value of 4, areas in the 5–6 m zone a value of 3, areas in the 7–8 m zone a value
of 2, and areas in the 9–10 m zone a value of 1. The DEM resolution is 30 arc sec (1 km)
(USGS 2009) (see Fig. S11).

We summed the four final rasters for exposure to each type of climate-related hazard, with
1–5 scores, to create a composite score of physical exposure to climate-related hazards. The
quintile ranking system enabled the combination of different types of events without regard to
how their frequency was measured. Each type of exposure received equal weight, so the final
equation for exposure was as follows: Exposure to climate-related hazards=dry days+heavy
rainfall days+heat wave days+low elevation coastal zone. The highest possible value was 20
and the lowest was 3. We classified this composite raster by quintiles as well and reclassified
once more on the 1–5 scale.

In the representations of the three extreme event indicators, unpopulated areas are excluded
in the security vulnerability assessment, though the RCM generates projections for these
regions. The rationale is that unpopulated areas in the Sahara and the Kalahari Desert would
dominate the upper quintile of the physical exposure basket, biasing the ultimate results
towards unpopulated areas. Because the goal was to capture the vulnerability of habitable
areas, rather than create a mask excluding the unpopulated areas in the final composite map,
we excluded these data points from the calculations in the physical exposure basket and the
final composite.10

3 Results

In this section, we focus first on the changes in the physical exposure basket before turning to
the composite vulnerability model (See Text SI for more detailed information).

3.1 Changes in the physical exposure basket

For the late 20th century (Fig. 1), we find the most exposed areas to be concentrated along the
southern border of the Sahara extending from Senegal to Mali, the eastern edge of Niger into
Chad, as well as much of Sudan and South Sudan.

By the mid-21 century (Fig. 2), the Sahel band of high exposure is projected to widen and
become more extensive from the coast of West Africa across to Sudan. Pockets within
Mozambique, Malawi, and Zimbabwe are also projected to become more exposed to extreme
weather events.

This increase in projected exposure is visible in the following change map (see S1). The
increasing vulnerability over southern Africa, extending from Angola across to Mozambique and
south, is found to be associated with a projected increase in the number of dry days, with parts
having asmany as 36 to 86 additional dry days a year, and an increase in the number of heat waves.

The increasing exposure over the Sahel (along the southern border of the Sahara desert) is
driven largely by increases in the number of heat wave events projected to increase by more
than 100 days a year, from a base of between 26 and 74 days a year (see Figure 6 in Vizy and
Cook 2012) in addition to an increase in the number of extreme rainfall days (see Figure 10 in

10 It is possible that some currently unpopulated areas will become habitable as a result of climate change.
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Vizy and Cook 2012). Across the Sahel, the number of dry days is projected to change
marginally, but for much of the region, more than two-thirds of the year will be dry. Coastal
West Africa’s increasing exposure is a function of an increase in heavy rainfall days, with the
number of days of rainfall falling above the late 20th century threshold for the 95th percentile
increasing from approximately 8 days to between 11 and 25 days a year for many areas. Areas
of decreased exposure include much of the DRC which is projected to have fewer dry days
(between 36 and 54 fewer dry days over much of the north) as well as fewer heavy rainfall
days (between 4 and 8 fewer heavy rainfall days over various regions).

3.2 Composite vulnerability

The exposure maps are then combined with the other three baskets—population density,
household and community resilience, and governance and political violence—to create a
composite index of vulnerability (see Fig. S12–S14 for maps of each of these other baskets).

Fig. 1 Late 20th century simulation
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Given that we are interested in isolating the expected effects of climate change on overall
vulnerability, we hold all three of the other baskets constant.

3.2.1 Late 20th century simulation

The supplementary materials show that the vulnerable areas are concentrated in Chad, the
Democratic Republic of the Congo, Niger, Somalia, Sudan, and South Sudan, with pockets in
Burkina Faso, Ethiopia, Guinea,Mauritania, and Sierra Leone. The least vulnerable regions for the
late 20th century were countries in southern Africa and along the Mediterranean (see Fig. S15).

3.2.2 Mid-21st century projection

The mid 21st century projection shows more extensive vulnerability throughout the Sahel belt
in West Africa, including Burkina Faso, Chad, Mali, northern Nigeria, Niger, across through

Fig. 2 Mid 21st century projection
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Sudan and western Ethiopia (see Fig. S17). Throughout West Africa, worsening vulnerability
is driven in particular by increases in the projected number of heat wave days and in coastal
areas by heavy precipitation days. Increases in the projected number of dry days and the
number of heavy rainfall days in northern Ethiopia are largely responsible for the deterioration
in vulnerability in that part of the country. Areas within Malawi, Mozambique, and Zimbabwe
are also projected to become more vulnerable, largely a function, as noted above, of increases
in dry days and heat waves. Much of the DRC, based on changes in physical exposure (namely
a reduction in dry days and heavy precipitation days), is projected to become less vulnerable
(Fig. 3, Fig. S16).11 For both the late 20th simulation and the mid 21st projection, the
multiplicative model accentuates the vulnerability of Sahel countries (Fig. S18–S19).

4 Discussion and conclusions

How do these results compare with other vulnerability analyses? We conducted several
comparisons to other efforts. First, we compared the late 20th century simulation of physical
exposure to our previous work, which used data on historic climate hazard exposure (Busby
et al. 2011; Busby et al. 2013). Second, we compared our late 20th century findings to the
national level vulnerability studies by David Wheeler from the Center for Global Development
(Wheeler 2011). In addition, we compared our late 20th composite to three measures of
disasters from the EM-DAT database, the number of disaster events between 1995 and
2010, the number of people killed, and the total number of people affected (Guha-Sapir 2012).

In terms of our historic work, there are some differences in the findings for the
physical exposure basket. Our previous work showed the highest physical exposure to
climate-related hazards in Angola, South Sudan, southern DRC, and Madagascar (see
Fig. S20) while the physical exposure basket in the late 20th simulation identifies
much of the Sahel to be exposed (see Fig. 1). In part, these are a function of different
source indicators. Our previous work included six indicators (wildfires, cyclone risk,
two drought indicators, low elevation coastal zone, and floods) while the new
simulation only has four (dry days, heavy rainfall, heat wave events, and low
elevation coastal zone). Moreover, while the heavy rainfall measure in the climate
simulation is meant to pick up on flood risk, our previous flood data closely tracked
river basins whereas the heavy rainfall measure has wider geographic dispersion.
Nonetheless, there are a few areas in Chad, Mali, northern Nigeria, Sudan, and
South Sudan where both maps consistently show the same areas to be in the 4th
and 5th (most exposed) quintiles (see Fig. S21 and regional pullout map S22).

A second comparison is between our late 20th century composite (see Fig. S15)
and David Wheeler’s index which ranks all countries in the world in terms of their
vulnerability to climate change (see Fig. S23). We focus on one of his measures,
vulnerability to extreme weather events. His index is constructed using an econometric
approach, where the dependent variable is the proportion of people affected by a
climate-related disaster in the EM-DAT database during the period 1995–2008.12 His
independent variables include the effects of CO2 forcing and controls for population,

11 This is based on the assumption that fewer dry days and heavy rainfall events would reduce exposure to
extreme events. It is important to produce a more regionally focused assessment that better accounts for the direct
and indirect consequences of these imperfect “disaster” proxies, as their impacts may vary considerably from
region to region over continental Africa.
12 Wheeler includes windstorms, droughts, floods, wildfires, and extreme heat events in his measures of climate-
related disasters.
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urban population, measures of information transparency and regulation quality, and
dummy variables for regional and country-specific effects. His index projects the trend
change in disaster risk for 2015 based on the projected change in CO2 accumulation
by 2015 with all other variables held constant at 2008 levels.

Wheeler finds areas of Kenya, Uganda, Tanzania, Mozambique, and Madagascar to be
much more vulnerable than our late 20th century composite. However, we find more vulner-
ability than Wheeler does for portions of the Sahel in countries like Niger. Unlike Wheeler
who uses only changes in CO2 concentrations to predict changes in disaster events, our
physical exposure basket includes indicators of extreme weather events generated from a
regional climate model. While we both include a variety of governance measures, we place
more emphasis on subnational indicators of violence.

Our final comparison takes three national level indicators of climate-related disaster events
from EM-DAT for the period 1995–2010 (see Fig. S24–S26) and compares this to our late

Fig. 3 Mid-21st century composite vulnerability
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20th century simulation (see Fig. S15).13 While EM-DAT data is available dating back to the
early 20th century, as Wheeler notes, there are a number of reasons including reporting bias to
think that data from the earlier period is less reliable. Areas of commonality with our work
include Somalia, Ethiopia, and Sudan. Like Wheeler, the EM-DAT data showMadagascar and
Mozambique to have experienced high disaster frequency, mortality, and affected populations.
Moreover, EM-DAT also shows Kenya and South Africa to have experienced considerable
disaster impacts during this period, possibly a function of more media coverage.

Our first pass of multi-study comparison—with our previous work, Wheeler’s index, and
EM-DAT disasters—suggests there are substantial differences in modeling results between
them and the simulation and composite maps generated here.

The inconsistency of results for Madagascar and Mozambique in particular gives us some
pause and raise questions for future research. One productive area for future research is the
generation of model results for cyclone frequency and severity. The absence of such an
indicator in this iteration of our physical exposure basket may account for the difference
between our current effort and other studies.

These maps are meant to be points of departure for more extensive research and discussion,
including additional field-work validation, modeling, and econometric work. As Sherbinin
notes, maps are effective tools to present information, but they can mislead readers to perceive
them as “objective” when indicator selection and modeling choices inherently involve some
value judgments and trade-offs (de Sherbinin 2014, 34).

The maps are also intended to be iterative. We aim to have greater precision with improved
data sources and methods, including new subnational data sources of educational achievement
based on the USAID-funded Demographic and Household Surveys as well as revised infant
mortality data and new indicators of rainfall anomalies.

We caution against using these maps as the sole source of information to prioritize
resources, in part because results across different mapping efforts have not coalesced around
a consistent set of results. It is therefore important that maps like these serve to start rather than
end the conversation about high priority areas of concern, with analysts and consumers clear
about what they are seeking to explain and address.

These concerns notwithstanding, we believe our approach offers a promising
beginning for inter-disciplinary collaboration. With this article, we sought to stimulate
a conversation among academics and policymakers about how best to understand the
confluence of factors that contribute to vulnerability and where those vulnerabilities
are concentrated. In our view, the appropriate response from policymakers would be
to examine the underlying layers and to question, even challenge, our assumptions
and compare our results and approach with others. Our new online information portal
allows users to examine the data for themselves. Ultimately, they will be able to
change the baskets weights according to their own intuitions about what is impor-
tant.14 While there may be some risks of adoption of these maps as totemic guides to
direct resources, we are more sanguine about their overall utility.

We held population, social, and governance characteristics constant while using the climate
models to simulate and project future aspects of physical exposure, isolating the effects of
changes in the physical exposure basket by mid-century. Obviously, all else is highly unlikely
to be equal. With rapid urbanization and population growth, Africa in 2050 will not only be

13 In addition to the five measures Wheeler identified, we also include storms and mass movement wet landslides
in our measures of climate-related disasters.
14 See http://stg.ccaps.aiddata.org.
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more physically exposed to climate change but the number of people who face such chal-
lenges, particularly in coastal cities, will likely be much larger.

Projecting how these processes will change, beyond extrapolation of current trends, is
perhaps beyond the expertise of social scientists, though some scholars have tried by
projecting future economic growth and democratic development across Africa (Burke et al.
2009). Population may be easier to project than the other indicators, but we are not aware of
high-resolution mid-century projections of population.

For a region where data is limited and of questionable quality, whether the maps of security
vulnerability are “true” representations of reality is somewhat beside the point. The more
important question is: Does this mapping process represent a methodological advance that
enables scholars and practitioners to understand with more geographic specificity the places
that are likely to be most vulnerable to the security consequences of climate change? By
pulling together the best available information in a hot spots map, we believe our approach
provides a single representation of a complex, many-layered problem. More importantly, we
believe our work offers an opportunity to begin a conversation about how, where, and why this
pressing problem is likely to affect a continent.
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