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Abstract Nearly all of Ethiopia’s agriculture is dependent on rainfall, particularly the amount
and seasonal occurrence. Future climate change predictions agree that changes in rainfall,
temperature, and seasonality will impact Ethiopia with dramatic consequences. When, where,
and how these changes will transpire has not been adequately addressed. The objective of our
study was to model how projected climate change scenarios will spatially and temporally
impact cereal production, a dietary staple for millions of Ethiopians. We used Maxent software
fit with crop data collected from household surveys and bioclimatic variables from the
WorldClim database to develop spatially explicit models of crop production in Ethiopia. Our
results were extrapolated to three climate change projections (i.e., Canadian Centre for Climate
Modeling and Analysis, Hadley Centre Coupled Model v3, and Commonwealth Scientific and
Industrial Research Organization), each having two emission scenarios. Model evaluations
indicated that our results had strong predictability for all four cereal crops with area under the
curve values of 0.79, 0.81, 0.79, and 0.83 for teff, maize, sorghum, and barley, respectively. As
expected, bioclimatic variables related to rainfall were the greatest predictors for all four cereal
crops. All models showed similar decreasing spatial trends in cereal production. In addition,
there were geographic shifts in land suitability which need to be accounted for when assessing
overall vulnerability to climate change. The ability to adapt to climate change will be critical for
Ethiopia’s agricultural system and food security. Spatially explicit models will be vital for
developing early warning systems, adaptive strategies, and policy to minimize the negative
impacts of climate change on food production.
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) defines climate change as “… a
statistically significant variation in either the mean state of the climate or in its variability,
persisting for an extended period; typically decades or longer (Intergovernmental Panel on
Climate Change (IPCC) 2001).” Over the past 15 years, the existence, cause, and severity of
climate change has been widely debated (McCright and Dunlap 2003; Oreskes 2004).
However, research at the Massachusetts Institute of Technology Joint Program on the
Science and Policy of Global Change indicates that, regardless of policies designed to limit
anthropogenic influence, an average increase of 2 °C by 2100 is all but certain (Sokolov et
al. 2009). Similar warnings by the Intergovernmental Panel on Climate Change (IPCC)
(2012) predict temperatures to increase by about 1 to 3 °C by the mid-twenty-first century
and by about 2 to 5 °C by the late twenty-first century. The same IPCC assessment also
predicts that the frequency of heavy precipitation is likely to increase globally, even in areas
where total annual rainfall is expected to decrease (Intergovernmental Panel on Climate
Change (IPCC) 2012). How these changes will affect people, economies, and livelihoods
remains to be seen.

It is widely held that developing countries in Africa will be particularly susceptible to
climate change, in part, because of the extraordinary growth of its human population,
fragility of national and regional economies, food and water insecurity, and rapid loss of
natural resources (Intergovernmental Panel on Climate Change (IPCC) 2007, 2012; World
Bank 2010). Furthermore, the majority of subsistence food produced in Africa comes from
rain-fed agricultural systems that are dominated by small-scale subsistence farming; prac-
tices have changed little over the last few centuries. The scarcity of water and lack of
irrigation systems throughout most of Africa substantially increases the dependency people
have on climate for food production. Fluctuating climatic cycles (e.g., El Nino) have led to
extensive drought, famine, and loss of life throughout sub-Saharan Africa (Haile 1988;
Beltrando and Camberlin 1993; Nicholson and Kim 1997) and altered rainfall patterns and
the subsequent loss in agricultural productivity can have direct influences on national
economies (World Bank 2010), war and conflict (Raleigh and Kniveton 2012), and political
stability (Raleigh 2010). Climate change is often seen as the “death knell” for many
communities and countries unless farming policies can change in advance of the climate
(Dinar 2007).

Of all the African countries, Ethiopia is arguably the most at risk from climate change
impacts on agricultural productivity and food security. With a population exceeding 85
million people, nearly 40 % of Ethiopia’s population is considered food insecure (Food and
Agriculture Organization (FAO) 2009). Yet the Ethiopian economy is largely based on
agriculture, which accounts for 41 % of its Gross Domestic Product, 75–80 % of exports,
and 80 % of the job market (US Department of State (USDS) 2012). Ethiopia’s agricultural
system is highly dependent on rainfall, particularly on the amount and seasonal distribution
of precipitation (Bewket 2009; Tefera 2012). Both are highly erratic and difficult to predict
from year to year. Short- and long-term droughts often result in crop failures, food shortages,
and devastating famines (Wood 1977). In other years, Ethiopia is known to experience
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“green famines,” a term used to describe seasonal shifts in rainfall patterns that result in crop
failure. In some cases, rains are delayed by several weeks or may start and stop unexpectedly
during critical germination periods. In either case, crops are lost while the natural vegetation
is able to resume normal phenological cycles, thus providing a green landscape. When rains
occur during the dry season, they facilitate the spread of crop diseases such as powdery
mildew (Erysiphe graminis; Begassa 1985). Some studies suggest that the frequency of
drought and irregular rainfall patterns in Ethiopia has increased in recent decades (Ketema
1999; Viste et al. 2013) while others predict greater consequence under future climate
change (Deressa and Hassan 2009; Mideksa 2010; Intergovernmental Panel on Climate
Change (IPCC) 2012). What is certain is that Ethiopia’s agricultural system is already
extremely vulnerable to climate, and history has repeatedly demonstrated the cascading
effects of crop failure and magnitude of its consequences.

Approximately 85 % of Ethiopians live in rural areas and rely heavily on subsistence
farming for survival. Family households usually cultivate areas less than 1 ha and collec-
tively account for approximately 95 % of the country’s agricultural production (Food and
Agriculture Organization (FAO) 2009). Ethiopia’s major food crops are cereals, which are
also a principal dietary staple for most of the population. The primary cereals grown in
Ethiopia are teff (Eragrostis tef), maize (Zea mays), sorghum (Sorghum bicolor), barley
(Hordeum vulgare), wheat (Triticum spp.) and millet (Eleusine coracana). Cereal crops are
particularly important to Ethiopia’s food security. In the 2011/2012 growing season, Ethiopia
produced 5,400,000 mt of maize, 3,790,000 mt of teff, 3,781,000 mt of sorghum, and
1,592,000 mt of barley (Tefera 2012). The country is one of the largest cereal producers
in Africa, yet is a net importer to meet food demands. Different cereals are grown in different
geographic areas and are a reflection of both climate and culture. Teff is the most preferred
grain of Ethiopia and is cultivated on about 2.8 million ha (Tefera 2012). Teff is indigenous
to the country and used primarily for making traditional fermented bread called injira. Maize
is the second most common cereal grown and accounts for 36 % of all the grain production.
It is a particularly important crop in rural areas where more than 80 % is consumed at the
household level (Tefera 2012). In marginal lands, where average temperatures are high and
rainfall is low, sorghum and millet are the primary cereals grown. Although they are the least
preferred of the cereals, both are relatively drought and pest tolerant. In 2010, the Ethiopian
government announced a plan to double the production of cereals by 2015; an ambitious
plan considering the country’s growing population, the demand for rangelands, the scarcity
of water, and the extreme climates. Still, the government recently launched a campaign to
convert pastoral lands and conservation areas into agriculture. However, there is no indica-
tion that cereal production is increasing but rather an emergence of foreign agribusinesses
intending to grow food for export (Allaro 2012).

Surprisingly, despite the current state of Ethiopia’s agricultural system and the potential
impacts from climate change, there are no studies that have identified which geographic
regions are most at risk. For other African countries, risk maps from projected climate
change are generally coarse-scaled and lack the details needed to develop adaptive strategies
that can minimize negative impacts (Thornton et al. 2009; Schlenker and Lobell 2010).
Fortunately, scientists have a suite of geospatial tools and statistical models to examine
ecological processes and interactions across spatial and temporal scales (Phillips et al. 2006;
Elith et al. 2006). These models have demonstrated that climate is an important regional
predictor for many of these ecological processes (Pearson et al. 2004; Hijmans and Graham
2006; Evangelista et al. 2008a; Kumar and Stohlgren 2009) and are being increasingly used
for predicting impacts of climate change (Evangelista et al. 2011; Graham et al. 2011). In this
study, our objectives were to (1) model the geographic distribution of cereal production in
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Ethiopia and (2) identify how productivity may shift under multiple climate change scenar-
ios. For our analyses, we used the relatively new Maximum Entropy (Maxent) software, a
species distribution model that has become a popular and effective tool for ecologists and
land managers (Evangelista et al. 2008b; York et al. 2011; Kebede et al. 2012). We tested our
models on teff, maize, sorghum, and barley to represent the cereals, the diversity of liveli-
hoods, and range of growing conditions throughout Ethiopia.

2 Methods

2.1 Study area

Our study area encompassed the country of Ethiopia located in East Africa (approximately
9° latitude and 39° longitude). With a land area of just over 1 million km2, the country is
topographically distinguished by extreme elevations ranging from −125 m to more than
4,500 m a.s.l. Mean annual temperatures range from as low as 3.9 °C in the southern
highlands to as high as 31.2 °C in the Danakil desert. Annual precipitation can range from 94
to 2,228 mm largely occurring during two distinct rainy seasons, called the belg and kiremet.
The belg occurs from March to May and is known as the short rainy season for most of
Ethiopia, while the kiremet occurs from June to September and is known as the main rainy
season. The dry season, the bega, normally occurs between October and January. The
average duration of each season and the amount of rainfall from the belg and kiremet varies
geographically (Fig. 1).

2.2 Data sources

Crop data for maize, teff, sorghum, and barley were derived from the 2002 Atlas of the Rural
Ethiopian Economy (International Food Policy Research Institute (IFPRI) and Central
Statistical Agency (CSA) 2006). The data were compiled following a 2001/2002 Ethiopian
Agriculture Sample Enumeration (EASE) assessment. The EASE assessment was a coun-
trywide effort to collect agricultural data by surveying 450,000 households and sampling
crop types, field sizes, productivity, and household demographics across 464 woredas
(IFPRS and International Food Policy Research Institute (IFPRI) and Central Statistical
Agency (CSA) 2006; Chamberlin et al. 2007).Woredas are local administrative units similar
to a ward or district with an average size of 2,000 km2. Of the 583 woredas in Ethiopia, 119

April DecemberAugust

Fig. 1 Monthly rainfall (in millimeters) for 3 months representing the belg (short rainy season; April), the
kiremet (main rainy season; August), and the bega (dry season; December)
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were excluded from this study because crop data were not collected due to low human
population densities and geographic remoteness. Most of the excluded woredas lie primarily
within the Afar Region where, due to desert-like conditions, pastoralism is the dominant
form of subsistence. For this analysis, the best resolution of data that was publicly available
was at the woreda level. Crop data were acquired as a Geographic Information Systems
(GIS) shapefile and processed using ArcGIS (version 10; ESRI, Redlands, CA). We selected
woredas where quintals per hectare (qt/ha) for the specified crop were greater than or equal
to the national average. These average annual yields were 7.96 qt/ha for teff, 15.10 qt/ha for
maize, 12.91 qt/ha for sorghum, and 8.96 qt/ha for barley (IFPRS and CSA 2006). Within
these selected woredas, we generated 500 random points with a minimum separation of
2 km. Quintals per hectare was selected as a proxy for crop presence because we felt actual
yield was more representative of growing climate conditions and crop suitability rather than
the area as a percentage of total cropped area which was also provided within the dataset.

2.3 Environmental variables

Current climate conditions were represented by 19 bioclimatic variables acquired from the
WorldClim database v1.4 (Hijmans et al. 2006; www.worldclim.org). These data are avail-
able at ∼1 km2 grids which will also be the resolution of the final models and are interpolated
from monthly weather station measurements collected between 1950 and 2000 (Hijmans et
al. 2005). The WorldClim dataset uses altitude, temperature, and precipitation to derive
monthly, quarterly, and annual climate indices to represent trends (e.g., mean diurnal
temperature range), seasonality (e.g., temperature seasonality), and extremes (e.g., maxi-
mum temperature of the warmest month) that are biologically relevant (for more details, see
www.worldclim.org/bioclim). Future climate scenarios were also acquired from the
WorldClim database (www.worldclim.org/futdown.htm). Three different atmospheric–oce-
anic-coupled climate projections were used for the years 2020 and 2050. These were
produced from the Canadian Centre for Climate Modeling and Analysis (CCCMA), Hadley
Centre Coupled Model v3 (HadCM3), and Commonwealth Scientific and Industrial Re-
search Organization (CSIRO). The CCCMA is a three-dimensional climate model that
combines an atmospheric model and modular ocean model (Flato et al. 2000). The HadCM3
is another atmospheric-oceanic-coupled climate model is unique in that the model does not
require a heat or salinity flux in its simulations to prevent drifting (Collins et al. 2001). With
nine atmospheric levels and 21 vertical ocean levels, the CSIRO is another widely used
coupled global climate model (Cai and Watterson 2002). Each climate projection provides
two greenhouse gas emission scenarios based on the IPCC’s Special Report on Emission
Scenarios (Intergovernmental Panel on Climate Change (IPCC) 2001), the first representing
a greater population and emissions (i.e., a2a) and the second with more conservative pro-
jections (i.e., b2a).

2.4 Analysis

We conducted our analyses using the freely available Maxent modeling software (v.3.3.3k;
www.cs.princeton.edu/∼schapire/maxent/), a general-purpose niche modeling algorithm for
estimating probability of distributions based on the principle of maximum entropy (Phillips
et al. 2004, 2006). Maxent uses point data on the landscape to identify environmental
conditions based on the independent variables to predict a species’ distribution excluding
all conditions that are unfounded or undefined by comparing it to available environment.
The model is nonlinear, nonparametric, and not sensitive to multicollinearity. Results from
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the Maxent model include a spatially explicit probability surface, two model evaluations
(i.e., the area under the receiving operating curve (AUC) and jackknife testing of predictor
variables), and provides the permutation importance of each independent variable used to
develop the model.

For each cereal crop, we developed the model based on current climate conditions and
applied the defined parameters from our model results to each future climate projection (i.e.,
CCCMA, HadCM3, and CSIRO) and each climate scenario (i.e., 2020 A2a, 2020 B2a, 2050
A2a, and 2050 B2a). Each cereal model was developed by running 20 replicates where a
random subsample of 80 % of the data was used to train the model and the remaining 20 %
were withheld for testing and increasing the number of iterations per model to 5,000 to
ensure model convergence. Replicates were then averaged for a final model output. The
current climate predictions were reclassified to 0 (unsuitable) or 1 (suitable) using a 10 %
presence logistic threshold of the training points. Future climate predictions were further
reclassified to 2 (unsuitable) or 4 (suitable) and added to the current prediction to show
predicted changes.

To demonstrate how each climate projection performed in our analysis, we calculated the
predicted changes of unsuitable and suitable areas of each projection independently (in
square kilometers). Area calculations were performed on model output grids with an equal
area coordinate reference system (i.e., Africa Albers Equal Area Conic). For geographic and
visual representations, we averaged the results of all three climate projections to produce
change maps that differentiate areas of increasing, decreasing, and stable suitability from
current to future climate scenarios.

3 Results

3.1 Teff

Under current climate conditions, suitable range for teff production is predicted highest in
the north central region of Ethiopia (Fig. 2b). This largely matched the current production of
teff in Ethiopia (Fig. 2a). The average test AUC for the teff production model was 0.79 with
precipitation of wettest quarter (Bio16) and annual precipitation (Bio12) having the highest
permutation importance of 26.6 and 19.3 %, respectively, for the final model (Table 1).
Model results under averaged current climate predicted that 419,098km2 or approximately
37 % of Ethiopia’s area is suited for teff production (Appendix Table 2).

For the 2020 averaged A2a climate scenarios, the total crop area decreased to
372,577 km2 (−11 %). Of this, our models predicted an increase of suitable crop area of
26,792 km2 and a reduction of 73,313 km2 from current crop area (Fig. 2c). The 2020
averaged B2a climate scenarios predicted similar results (Fig. 2d) with a total crop area
decreasing to 370,379 km2 (−12 %). Current crop area was predicted to increase by 28,475
km2 and suitable crop area predicted to decrease by 77,193 km2 (Appendix Table 2).

The predicted teff crop range for 2050 showed some stabilization with some
additional decreases in suitable area. The averaged A2a climate scenarios for 2050
predicted the total crop range to be 349,137 km2 (−17 %) with an increase of 41,999
km2 and a decrease of 111,960 km2 (Fig. 2e). The averaged B2a scenarios predicted
the total crop range to decrease to 372,219 km2, with an area suitable for teff
production increasing by 35,377 km2 and decreasing by 82,256 km2 (Fig. 2f). All
three of the future climate models and their emission scenarios produced similar
results for predicted future teff production (Appendix Table 2).
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3.2 Maize

The current production of maize is highest in the northwest region of the country (Fig. 3a).
Based on averaged current climate conditions, the current climate Maxent model for maize
performed well with an average test AUC of 0.81. Suitable range for maize production was
primarily concentrated in the western and central regions of Ethiopia. The predictor with the

Fig. 2 Teff current production in quintal per hectare (a), current suitability model based on current climate
(b), and averaged projected change in suitability for three climate models under two emission scenarios for
2 years; 2020 A2a (c), 2020 B2A (d), 2050 A2a (e), and 2050 B2a (f)
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highest permutation importance for the modeled distribution was precipitation of wettest
quarter (Bio16) having a contribution of 32.5 %. The second highest contributing predictor
was precipitation of the driest month (Bio14) with a contribution of 13.5 % (Table 1).
Current models predicted that 358,624 km2 or approximately 32 % of the landscape is
suitable for maize production (Fig. 3b; Appendix Table 3).

For the 2020 averaged A2a climate scenarios, the total crop area decreased to
306,691 km2 (−14 %). Of this, the model predicted an increase of suitable crop area by
24,805 km2 and a reduction by 76,739 km2 from current crop area (Fig. 3c). The 2020
averaged B2a climate scenarios predicted slightly lower suitable area with a total crop area
decreasing to 283,211 km2 (−21 %). Current crop area was predicted to increase by
24,518 km2, and suitable crop areas are predicted to decrease by 99,931 km2 under this
scenario (Fig. 3d; Appendix Table 3).

The predicted trend for A2a is continued to decrease suitable area for maize by 2050
while the trend for B2a is predicted to stabilize or slightly increase. The A2a- and B2a-
averaged scenarios for 2050 predicted that the suitable range for maize production will be
268,806 and 295,061 km2, respectively. For the A2a climate scenarios, the crop area is
predicted to increase by 22,634 km2 from the current range and decrease by 112,453 km2

(Fig. 3e). Similarly, the averaged B2a climate scenarios predicted crop area to increase by
29,888 km2 and decrease by 93,451 km2 (Fig. 3f). All three of the future climate models
(i.e., HADCM3, CCCMA, and CSIRO) showed decreases in suitable area for maize with
CCCMA having the greatest decreases and CSIRO having the least (Appendix Table 3).

3.3 Sorghum

The highest production for sorghum is concentrated centrally and along the northwestern
border of Ethiopia (Fig. 4a). Under current climate conditions, predicted suitable range for

Table 1 Top four predictor vari-
ables and their permutation impor-
tance in the final model for each of
the four cereal crops modeled

Crop Predictor variables Permutation
importance
(%)

Teff Precipitation of Wettest Quarter (Bio16) 26.6

Annual precipitation (Bio12) 9.3

Precipitation of the coldest quarter (Bio19) 8.3

Precipitation seasonality (Bio15) 6.1

Maize Precipitation of wettest quarter (Bio16) 32.5

Precipitation of the driest month (Bio14) 13.5

Precipitation seasonality (Bio15) 10.0

Mean temperature of the wettest quarter
(Bio8)

7.8

Sorghum Annual precipitation (Bio12) 36.0

Precipitation of the driest month (Bio14) 9.3

Temperature Seasonality (Bio4) 8.7

Precipitation of Wettest Month (Bio13) 6.0

Barley Annual precipitation (Bio12) 26.3

Precipitation of Wettest Quarter (Bio16) 9.8

Min Temperature of Coldest Month (Bio6) 9.2

Temperature Seasonality (Bio4) 7.9
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sorghum production is highest in western to northern Ethiopia and in central Ethiopia
(Fig. 4b), aligning with the current production yields. The average test AUC for the sorghum
model was 0.79 with annual precipitation (Bio12) and precipitation of the driest month
(Bio14) having the highest contributions of 36.0 and 9.3 % to the final results, respectively
(Table 1). Model results for the current climate predicted 415,773 km2 or approximately
37 % of Ethiopia’s area is suited for sorghum production (Appendix Table 4).

Fig. 3 Maize current production in quintal per hectare (a), current suitability model based on current climate (b),
and averaged projected change in suitability for three climate models under two emission scenarios for 2 years;
2020 A2a (c), 2020 B2A (d), 2050 A2a (e), and 2050 B2a (f)
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For the 2020-averaged A2a climate scenarios, the total crop area decreased to 385,858 km2

(−7 %). Of this, suitable crop area is predicted to increase from current predictions by
50,858 km2 and decrease by 80,500 km2 (Fig. 4c; Appendix Table 4). The 2020-averaged
B2a climate scenarios predicted similar results with a total crop area decreasing to 366,964 km2

(−12 %). Of the total crop area for 2020 B2a, suitability for sorghum production is predicted to
increase by 46,212 km2 and decrease by 95,021 km2 (Fig. 4d).

Fig. 4 Sorghum current production in quintal per hectare (a), current suitability model based on current
climate (b), and averaged projected change in suitability for three climate models under two emission
scenarios for two years; 2020 A2a (c), 2020 B2A (d), 2050 A2a (e), and 2050 B2a (f)
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The predicted crop range for 2050 A2a was 385,183 km2 (−7 %), almost exactly the same
as the 2020 A2a scenario. The predicted increase of crop range was 62,909 km2, while the
decrease in area was 93,499 km2 (Fig. 4e). The averaged 2050 B2a climate scenarios
predicted the total crop range to increase from 2020 predictions to 401,506 km2 but was
still slightly less than current predictions (−3 %). The predicted suitable area for sorghum
production under the 2050 B2a scenario increased by 60,940 km2 and decreased by
75,208 km2 (Fig. 4f). All three of the future climate models and their emission scenarios
had similar results in predicted future sorghum production (Appendix Table 4).

3.4 Barley

Current barley production is highest in the north central region of Ethiopia (Fig. 5a).
Predicted suitable range for barley production based on average current climate conditions
was primarily concentrated to the northwest and central regions of Ethiopia, agreeing with
those regions of higher yield in current production (Fig. 5b). The average test AUC for the
barley crop production model was 0.83 with annual precipitation (Bio12) having the highest
predictive importance at 26.3 % (Table 1). The second strongest predictor was the precip-
itation of the wettest quarter (Bio16) with a permutation importance of 9.8 % (Table 1).
Current models predicted that 350,766 km2 or approximately 31 % of the landscape is
suitable climate for barley production (Fig. 5b; Appendix Table 5).

Under the 2020 A2a climate scenario, the averaged three climate projections total crop
area for barley dramatically decreased to 221,763 km2 (−31 %). Of this, our models
predicted an increase of suitable crop area of only 19,668 km2 and a decrease of
129,003 km2 from current suitable crop area (Fig. 5c). The 2020 B2a climate scenarios also
predicted significant range decreases with a total suitable barley crop area of 224,470 km2

(−36 %; Fig. 5d). Current crop area was predicted to increase by 20,886 km2 and decrease by
147,182 km2 from current climate predictions (Appendix Table 5).

Decreasing crop areas were predicted to continue by 2050. The A2a- and B2a-averaged
scenarios for 2050 predicted that the total suitable range for barley production will be
190,040 (−46 %) and 220,507 km2 (−37 %), respectively (Fig. 5e). For the A2a climate
scenarios, the crop area is predicted to increase by 23,887 km2 and decrease by 184,613 km2

from the current climate range prediction. The averaged B2a climate scenarios predicted
crop area to increase by 30,216 km2 and decrease by 160,475 km2 (Fig. 5f). The CCCMA
climate model for all emission scenarios predicted significantly higher decreases in future
suitable area for barley production compared with HadCM3 and CSIRO (Appendix Table 5).

4 Discussion

Our model evaluations for the current climate averages indicate strong model performances
and predictability for all four cereal crops. We were also encouraged that the future
HadCM3, CCCMA and CSIRO climate predictions for each crop showed similar trends
among the different climate assessments and emission scenarios. We also noticed that the top
climatic predictors for each crop (Table 1) corresponded with the growing conditions
described in the literature and by rural farmers in Ethiopia (Evangelista, personal commu-
nication). These, with the strong AUC evaluations, lead us to believe that our models
provide reasonable predictions on the geographic changes in cereal production throughout
Ethiopia under projected climate change. However, we advise that our results be interpreted
with prudence due to a number of untested and untestable assumptions we had to make
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related to environmental conditions in space and time. All models have associated assump-
tions and extrapolating models in time or space is subject to violating assumptions of species
distribution models (Wiens et al. 2009). We consider our results as probable future scenarios
that relate crop production and climate from a select number of intensive studies and
observed trends. The models relied on predicted future climate scenarios, which add an
immeasurable degree of uncertainty to our results and are difficult to validate (Beaumont et

Fig 5 Barley current production in quintal per hectare (a), current suitability model based on current climate
(b) and averaged projected change in suitability for three climate models under two emission scenarios for
2 years; 2020 A2a (c), 2020 B2A (d), 2050 A2a (e), and 2050 B2a (f)
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al. 2007). We must also keep in mind that Ethiopia commonly experiences erratic climate
patterns, which are expected to increase in time (Deressa and Hassan 2009; Mideksa 2010).
Fluctuations in climate, seasonally or annually, are not reflected in our analyses though we
are quite certain that it would intensify the impacts associated with our predictions.

Ethiopia is generally known for its fertile soils, though variations in composition
and structure occur geographically. Soils are a significant influence on cereal produc-
tivity, and we believe they may have strengthened our model predictions if included
in our analyses. Unfortunately, we were unable to find suitable soils data for our
study. Soils, however, can be modified and improved as needed through different
means, such as fertilizing, fallowing, crop rotation, and terracing. So despite the
absence of soils in our models, we do not believe it diminishes the value and trends
of our results. There are numerous natural and anthropogenic variables that are known
to facilitate or regulate crop production, which could either compound the negative
effects of climate change or provide opportunities for adaptation and increased
resilience. These range from insect outbreaks, farming practices, new technologies,
market prices, traditional preference, conflict, and others that simply cannot be
projected or confidently integrated in our models (Heikkinen et al. 2006; Schlenker
and Lobell 2010).

Further research is recommended to refine predictions and better assess the poten-
tial impacts that climate change may have on agricultural production. Of particular
importance is the need for better spatial datasets. As previously noted, there remain
large data gaps that restrict our ability to predict productivity at finer scales. These
include information collected at community and landscape scales and span a wide
range of disciplines. There is also a need for alternative means of testing model
performance and predictions beyond traditional statistical evaluations. The use of
species distribution models in real-time studies allows researchers to validate results
in the field; however, this is not an option when trying to predict environmental
responses to future climate change. One alternative approach would be to test models
using historical climate records to predict current conditions. Unfortunately, the ab-
sence of historical data for developing countries such as Ethiopia is particularly
problematic but may be tested in countries where such datasets exist and is available.

Despite varying degrees of uncertainty, our results provide detailed quantitative pre-
dictions that are spatially and temporally explicit. Because climate change will affect
different communities and crops disproportionately, the types and intensity of adaptive
strategies required will need to be assessed on a regional basis. Broad national-scale climate
forecasts (e.g., Schlenker and Lobell 2010) for a country that is as culturally and ecologically
diverse as Ethiopia simply have little or no value to end-users at local or regional scales.
Models, such as the ones we present here, are critical for determining the vulnerability of
specific targets, whether it is a specific crop, a resource, or a community. Ultimately, we
hope this study and our results demonstrates the need and importance of a spatially explicit
early warning system that will inform research, decision-making processes, adaptive man-
agement, and development to minimize the negative impacts of climate change on food
production.

5 Conclusions

Even under conservative emission scenarios, future climate changes are expected to signifi-
cantly reduce Ethiopia’s cereal production. All of our models, projected to the HadCM3,
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CCCMA, and CSIRO climate model projections, showed similar decreasing trends for the four
cereal crops. Barley was predicted to have the greatest reductions, with net losses in land area
ranging from 28 to 62% (Appendix Table 5). Sorghum had the least change, ranging from a net
loss of 21% to a net gain of 14% (Appendix Table 4). In addition to net losses and gains of land
area, there were dramatic geographic shifts in land suitability that need to be accounted for
when assessing overall vulnerability. All models had reasonably high AUC values indicating
strong performances. As expected, predictability with all of our models largely centered on
rainfall patterns and seasonality. Based on multiple future climate projections, our results
support the many studies warning of future risks to Ethiopia’s food security.
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Appendices

Table 2 Predicted areas (in square kilometers) for teff production using (1) historic 50-year climate averages
and (2) three future climate projections (i.e., HadCM3, CCCMA, and CSIRO) averaged and independently

Total range Stable Increase Decrease

Current climate prediction 419,098

Averaged (HadCM3, CCCMA, and CSIRO)

2020 a2a 372,577 (−11) 345,785 (83) 26,792 (6) 73,313 (−17)
2020 b2a 370,379 (−12) 341,904 (82) 28,475 (7) 77,193 (−18)
2050 a2a 349,137 (−17) 307,138 (73) 41,999 (10) 111,960 (−27)
2050 b2a 372,219 (−11) 336,842 (80) 35,377 (8) 82,256 (−20)
HadCM3

2020 a2a 382,095 (−9) 349,409 (83) 32,686 (8) 69,689 (−17)
2020 b2a 365,593 (−13) 339,508 (81) 26,085 (6) 79,590 (−19)
2050 a2a 344,384 (−18) 283,554 (68) 60,830 (15) 135,544 (−32)
2050 b2a 378,975 (−10) 344,419 (82) 34,556 (8) 74,679 (−18)
CCCMA

2020 a2a 370,545 (−12) 342,445 (82) 28,099 (7) 76,653 (−18)
2020 b2a 357,871 (−15) 328,781 (78) 29,090 (7) 90,317 (−22)
2050 a2a 361,083 (−14) 318,577 (76) 42,506 (10) 100,520 (−24)
2050 b2a 345,213 (−18) 317,044 (76) 28,169 (7) 102,053 (−24)
CSIRO

2020 a2a 365,090 (−13) 345,500 (82) 19,590 (5) 73,598 (−18)
2020 b2a 387,674 (−7) 357,424 (85) 30,249 (7) 61,673 (−15)
2050 a2a 341,944 (−18) 319,282 (76) 22,662 (5) 99,816 (−24)
2050 b2a 392,469 (−6) 349,062 (83) 43,407 (10) 70,036 (−17)

The percent change from current climate predictions are provided in parenthesis
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Table 3 Predicted areas (in square kilometers) for maize production using (1) historic 50-year climate
averages and (2) three future climate projections (i.e., HadCM3, CCCMA, and CSIRO) averaged and
independently

Total range Stable Increase Decrease

Current climate prediction 358,624

Averaged (HadCM3, CCCMA, and CSIRO)

2020 a2a 306,691 (−14) 281,886 (79) 24,805 (7) 76,739 (−21)
2020 b2a 283,211 (−21) 258,694 (72) 24,518 (7) 99,931 (−28)
2050 a2a 268,806 (−25) 246,171(69) 22,634 (6) 112,453 (−31)
2050 b2a 295,061 (−18) 265,174 (74) 29,888 (8) 93,451 (−26)
HadCM3

2020 a2a 317,128 (−12) 291,972 (81) 25,156 (7) 66,653 (−19)
2020 b2a 282,007 (−21) 262,656 (73) 19,351 (5) 95,968 (−27)
2050 a2a 256,577 (−28) 231,782 (65) 24,795 (7) 126,843 (−35)
2050 b2a 301,523 (−16) 272,732 (76) 28,790 (8) 85,892 (−24)
CCCMA

2020 a2a 274,006 (−24) 253,382 (71) 20,624 (6) 105,242 (−29)
2020 b2a 234,901 (−34) 223,886 (62) 11,015 (3) 134,738 (−38)
2050 a2a 241,645 (−33) 224,529 (63) 17,116 (5) 134,095 (−37)
2050 b2a 238,503 (−33) 228,996 (64) 9,507 (3) 129,628 (−36)
CSIRO

2020 a2a 328,940 (−8) 300,304 (84) 28,636 (8) 58,320 (−16)
2020 b2a 332,726 (−7) 289,539 (81) 43,186 (12) 69,085 (−19)
2050 a2a 308,195 (−14) 282,203 (79) 25,992 (7) 76,421 (−21)
2050 b2a 345,158 (−4) 293,793 (82) 51,365 (14) 64,832 (−18)

The percent change from current climate predictions are provided in parenthesis

Table 4 Predicted areas (in square kilometers) for sorghum production using (1) historic 50-year climate
averages and (2) three future climate projections (i.e., HadCM3, CCCMA, and CSIRO) averaged and
independently

Total range Stable Increase Decrease

Current climate prediction 415,773

Averaged (HadCM3, CCCMA, and CSIRO)

2020 a2a 385,858 (−7) 335,273 (81) 50,585 (12) 80,500 (−19)
2020 b2a 366,964 (12) 320,752 (77) 46,212(11) 95,021 (−23)
2050 a2a 385,183 (−7) 322,274 (78) 62,909 (15) 93,499 (−22)
2050 b2a 401,506 (−3) 340,565 (82) 60,940 (15) 75,208 (−18)
HadCM3

2020 a2a 393,663 (−5) 334,105 (80) 59,558 (14) 81,668 (−20)
2020 b2a 355,530 (14) 307,147 (74) 48,383 (12) 108,626 (−26)
2050 a2a 386,258 (−7) 312,987 (75) 73,272 (18) 102,786 (−25)
2050 b2a 410,422 (−1) 342,590 (82) 67,832 (16) 73,183 (−18)
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Table 4 (continued)

Total range Stable Increase Decrease

CCCMA

2020 a2a 380,558 (−8) 331,054 (80) 49,504 (12) 84,719 (−20)
2020 b2a 329,903 (−21) 298,080 (72) 31,823 (8) 117,693 (−28)
2050 a2a 363,363 (−13) 303,510 (73) 59,853 (14) 112,263 (−27)
2050 b2a 375,762 (−10) 321,910 (77) 53,852 (13) 93,863 (−23)
CSIRO

2020 a2a 383,352 (−8) 340,659 (82) 42,693 (10) 75,114 (−18)
2020 b2a 415,460 (0) 357,031 (86) 58,429 (14) 58,742 (−14)
2050 a2a 405,929 (−2) 350,326 (84) 55,603 (13) 65,447 (−16)
2050 b2a 418,333 (1) 357,196 (86) 61,137 (15) 58,577 (−14)

The percent change from current climate predictions are provided in parenthesis

Table 5 Predicted areas (in square kilometers) for barley production using (1) historic 50-year climate
averages and (2) three future climate projections (i.e., HadCM3, CCCMA, and CSIRO) averaged and
independently

Total range Stable Increase Decrease

Current climate prediction 350,766

Averaged (HadCM3, CCCMA, CSIRO)

2020 a2a 241,431 (−31) 221,763 (63) 19,668 (6) 129,003 (−37)
2020 b2a 224,470 (−36) 203,584 (58) 20,886 (6) 147,182 (−42)
2050 a2a 190,040 (−46) 166,153 (47) 23,887 (7) 184,613 (−53)
2050 b2a 220,507 (−37) 190,292 (54) 30,216 (9) 160,475 (−46)
HadCM3

2020 a2a 253,349 (−28) 230,038 (66) 23,311 (7) 120,728 (−34)
2020 b2a 146,522 (−58) 126,029 (36) 20,493 (6) 224,738 (−64)
2050 a2a 204,679 (−42) 175,445 (50) 29,235 (8) 175,322 (−50)
2050 b2a 220,507 (−37) 190,292 (54) 30,216 (9) 160,475 (−46)
CCCMA

2020 a2a 171,531 (−51) 161,657 (46) 9,875 (3) 189,110 (−54)
2020 b2a 133,433 (−62) 125,739 (36) 7,694 (2) 225,027 (−64)
2050 a2a 180,965 (−48) 155,844 (44) 25,121 (7) 194,922 (−56)
2050 b2a 180,418 (−49) 164,909 (47) 15,509 (4) 185,857 (−53)
CSIRO

2020 a2a 294,326 (−16) 266,905 (76) 27,421 (8) 83,861 (−24)
2020 b2a 286,629 (−18) 254,976 (73) 31,653 (9) 95,791 (−27)
2050 a2a 242,632 (−31) 216,586 (62) 26,046 (7) 134,181 (−38)
2050 b2a 276,425 (−21) 230,521 (66) 45,904 (13) 120,245 (−34)

The percent change from current climate predictions are provided in parenthesis
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