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Abstract There is increasing pressure from stakeholders for highly localised climate
change projections. A comprehensive assessment of climate model performance
at the grid box scale in simulating recent change, however, is not available at
present. Therefore, we compare observed changes in near-surface temperature, sea
level pressure (SLP) and precipitation with simulations available from the Coupled
Model Intercomparison Projects 3 and 5 (CMIP3 and CMIP5). In both multi-model
datasets we find coherent areas of inconsistency between observed and simulated
local trends per degree global warming in both temperature and SLP in the majority
of models. Localised projections should thus take into account the possibility of
regional biases shared across models. In contrast, simulated changes in precipitation
are not significantly different from observations due to low signal-to-noise ratio of
local precipitation changes. Therefore, recent regional rainfall change is likely not
providing useful constraints for future projections as of yet. Comparing the two
most recent sets of internationally coordinated climate model experiments, we find
no indication of improvement in the models’ ability to reproduce local trends in
temperature, SLP and precipitation.
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1 Introduction

Over the past decade, demand for spatially explicit climate change information for
impact and adaptation assessment has been steadily increasing. As many impact
and adaptation assessments are carried out for specific small-scale regions, users
of climate model output may find themselves relying entirely on the information
from a single grid-box of the climate model output to produce what we call here
local projections (e.g. Fronzek et al. 2010). The performance of climate models in
simulating past observed change at these scales, however, has not been comprehen-
sively assessed and hence trust in local climate projections mainly stems from skill
in reproducing large-scale features (Randall et al. 2007). However, it is also known
that climate model performance is scale-dependent (Masson and Knutti 2011b) and
strongly varies across regions (Christensen et al. 2007). To address the above issues,
we compare local observed climate change in near-surface temperature, sea level
pressure (SLP) and precipitation for the second half of the twentieth century with
corresponding simulations. This allows us to assess spatially varying model trend
biases and identify regions where present-day climate models fail to reproduce recent
climate change. Such information is of great practical relevance for users of local
climate projections, as trust in future simulations would be significantly lowered if
the majority of models fails to reproduce the past observed changes.

In the context of local climate projections, we are especially interested in assessing
the climate model’s ability to simulate the response to external forcing (mainly
increasing greenhouse gas concentrations). So here we decompose the simulated and
observed time series into deterministic climate change and variability. Local climate
change is defined as the fraction of the variability in the time series that co-varies with
global temperature. This maximises the signal-to-noise ratio of long-term changes
such as the response to anthropogenic greenhouse gas emissions and compensates
for varying climate sensitivity and differing external forcings across climate models.
In addition, this pattern scaling approach is widely used to produce regional climate
projections (Christensen et al. 2007).

A few pioneering studies have been carried out to analyse performance of climate
models in simulating changes at the grid box scale, but have taken into account
only anthropogenic forcing (Karoly and Wu 2005), assume model independence
(Räisänen 2007), and have considered a single region (van Oldenborgh et al. 2009;
van Haren et al. 2012), or did not provide regional results (Yokohata et al. 2011).
Our analysis extends the above by using simulations which include most relevant
processes and forcing mechanisms and by carrying out a regionally specific but
globally comprehensive assessment that allows us to exclude the influence of a
selection bias that may impair regional analyses. Additionally, we also compare the
results of the two latest generations of the World Climate Research Programme’s
(WCRP) Coupled Model Intercomparison Projects (CMIP3 and CMIP5) thus aiming
to document similarities and potential progress in the two generations of multi-model
datasets.

We assess individual models to identify regions and variables for which a ma-
jority of the models simulate recent local changes that are inconsistent with the
observations. These shared inconsistencies may be indicative of systematic model
trend biases. Furthermore, a spatially explicit analysis of inconsistencies may hint at
processes that are misrepresented in the climate models leading to the identified
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inconsistencies. To allow for observation errors we use both gridded observation
datasets and reanalyses—model simulations with assimilated observations—for vali-
dation of the climate change simulations.

In the following section, we introduce the datasets used in this study. In Sec-
tion 3, we describe how we extract the climate change signal from simulations
and observations and how we assess consistency of simulated and observed local
change. We present spatial patterns of significant inconsistencies along with global
average statistics and a comparison of the CMIP3 and CMIP5 results in Section 4.
Implications of the results and benefits and limitations of the approach are discussed
in the final section.

2 Observations and climate model simulations

We analyse seasonal temperature, SLP, and precipitation for the most recent 50-
year period common to observations and simulations. For near-surface temper-
ature, we use the GISS surface temperature analysis from 1880 to present with
1200 km smoothing as our primary validation dataset (Hansen et al. 2010). The
dataset—referred to here as GISTEMP—consists of interpolated station and ship
observations. The primary SLP observations are from the gridded HadSLP2 dataset,
which consists of local pressure observations aggregated to 5◦ × 5◦ available for
1850–2004 (Allan and Ansell 2006). Precipitation observations before 1979 are only
available over land. Here we use the Global Precipitation Climatology Centre’s
(GPCC) Variability Analysis of Surface Climate Observations (VASClimO) version
1.1 consisting of quality-controlled rain-gauge observations on a 2.5◦ × 2.5◦ grid for
1951–2000 (Beck et al. 2005) .

In addition to the gridded station measurements, we also use data from the Twen-
tieth Century Reanalysis Version 2 (20CRv2, Compo et al. 2011). With 20CRv2,
only SLP data are assimilated and therefore the reanalysis is not subject to inho-
mogeneities related to the inclusion of satellite data after 1979 as other reanalyses
(Sterl 2004). Changing observation density, however, still might affect the 20CRv2
(Ferguson and Villarini 2012). In addition to the assimilated SLP observations,
gridded observed sea-surface temperatures constrain the atmospheric model at its
lower boundary. In contrast, observed temperatures over land are not assimilated nor
prescribed, but are simulated.

Here we analyse output stored in the two latest versions of the World Climate
Research Programme’s (WCRP) Coupled Model Intercomparison Projects (CMIP),
termed CMIP3 and CMIP5 respectively. The simulations in CMIP3 (Meehl et al.
2007) represent the state of climate modelling in 2005. CMIP5 models have only
recently been made available and more simulations will be added to the archive in the
near future.

From the CMIP3 multi-model ensemble, we analyse 51 simulations from 24
models. These use observed external forcings for the twentieth century as boundary
conditions (experiment 20c3m) and are extended into the twenty-first century with
simulations according to the SRES A1B scenarios. Eleven models include both
natural and anthropogenic forcings for the twentieth century and the remainder an-
thropogenic forcings only (Online Resource, Tab. S1). From 2000, all simulations are
constrained by anthropogenic forcings scenarios only. This is expected to introduce
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negligible errors due to the lack of major volcanic eruptions in the first five years
of the twenty-first century, the inertia of the climate system, and the similarity of
emission scenarios with observed emissions for this time period. From the CMIP5
multi-model ensemble, we analyse 93 simulations from 26 models using observed ex-
ternal forcings until 2005 as boundary conditions (Online Resource, Tab. S2). Initial
condition ensemble means are computed from all the available simulations of each
individual model.

All data are interpolated onto a common 1.5◦ × 1.5◦ grid using conservative
remapping and simulations are masked according to the observations. Seasonal
averages are computed if all the corresponding monthly values were available.
Trends are computed if at least 80 % of the seasonal averages are available. For
precipitation, the analysis is carried out on relative anomalies with respect to the
base period 1961–1990 and arid regions with a seasonal precipitation climatology of
less than 20 mm are masked.

3 Analysis scheme

To assess the significance of the difference in observed and simulated local trends, we
follow the approach as described by van Oldenborgh et al. (2009). We compute local
climate change A(x, y) by regressing the respective grid box time series R(x, y, t) on
the corresponding global temperature time series Tglobal(t), smoothed with a 3-year
running average to remove variability in global temperatures induced by El Niño-
Southern Oscillation.

R′(x, y, t) = A(x, y) T ′(3)
global(t) + ε(x, y, t) (1)

The standardised difference z between simulated and observed changes at each grid
box and for each model is then computed based on the respective trends per degree
global warming A and their standard errors �A.

z = Aobs − Amod√
(�Aobs)2 + (�Amod)2/N

(2)

The bar denotes the ensemble mean and N is the number of ensemble members
(Online Resource, Tabs. S1 and S2). We compute the standard errors assuming iid
residuals and correct these estimates for autocorrelated residuals using the effective
sample size according to Wilks (1997). The standard errors describe the variability of
trends in a stationary climate (Online Resource, Sec. S2).

As z approximately follows a standard normal distribution for trends derived
from long time series, we can test for consistency of observed and simulated trends
by testing the null hypothesis H0: “The standardised difference z is drawn from a
standard normal distribution”. Tests on the local significance are performed with
probability of a type-1 error α of 10 %. To address the problem of multiple testing,
we adjust the critical p-values of local tests by controlling the ‘False Discovery Rate’
(Ventura et al. 2004).

Additionally we infer the distribution of z given we had a perfect model. For each
model with multiple ensemble members, we use each individual simulation in turn
as pseudo-observation and compare its trends with the trends of the ensemble mean
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of the remaining simulations. We then pool the results from all CMIP3 and CMIP5
models and we estimate the distribution of resampled z and derived statistics given a
perfect model from these 126 independent estimates from 36 models.

4 Results and discussions

The observed trend (per degree global warming) in seasonal near-surface temper-
ature shows a warming which is strongest over northern hemisphere continents in
boreal winter (DJF) and least over oceans, where the warming is generally less than
the global average warming (Fig. 1a, b). Patches of local cooling can be found in the
southern oceans and North Pacific. In contrast, most climate model simulations show
less spatial diversity in the warming over the past 50 years (not shown).

Significant inconsistencies can be found in the majority of CMIP3 and CMIP5
models in the Indian Ocean and Indonesia, the Arctic, and north-western Africa
and south-western Europe in boreal summer (JJA), and central Asia in DJF where
models underestimate the observed warming (Fig. 1c–f). In addition, models do not
reproduce the regional cooling or lack of warming over parts of the southern Ocean

a) Observed temperature trend in DJF b) Observed temperature trend in JJA
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Fig. 1 Observed trend in DJF (a) and JJA (b) temperature per degree global warming (computed for
1956–2005) according to GISTEMP. Fraction of models with significant inconsistencies at the 10 %
level for the CMIP3 (c, d) and CMIP5 (e, f) multi-model ensemble. The colour in c–f indicates the
sign of the deviation of the majority of the models; blue corresponds to simulated warming smaller
than the observed
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and western Atlantic and the north-eastern and south-eastern Pacific. Shading in
Fig. 1 starts at 0.25, corresponding to at least 6 (7) of the 24 (26) CMIP3 (CMIP5)
models. Assuming that the models are independent draws from the real climate
system—which they are most likely not, see Masson and Knutti (2011a) for a
discussion of dependence in the CMIP3 multi-model ensemble—the likelihood of
getting at least 6 significant (at the 10 % level) inconsistencies out of 24 random
tries is 0.0075. Assuming that there are in fact only four independent models, the
probability of getting at least 2 significant results (i.e. 50 %) is 0.05. Hence the results
presented here are likely not random.

The identified patterns of inconsistencies are robust to the choice of time period.
Such analysis indicated that the last decades dominate our findings, which is to be
expected in the presence of emerging anthropogenic climate change.

The pattern of SLP changes in boreal winter (DJF, Fig. 2a) is almost zonally
symmetric, with strong increases in high latitudes, strong decreases in the subtropics,
and weakly increasing SLP in the tropics. In boreal summer (JJA, Fig. 2b), the area
of decreasing SLP in the southern hemisphere extends further equatorwards and the

a) Observed SLP trend in DJF according to HadSLP b) Observed SLP trend in JJA according to HadSLP
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Fig. 2 Observed trend in SLP per degree global warming (computed for 1955–2004) in boreal winter
(DJF, a) and summer (JJA, b) along with the fraction of models with significant inconsistencies in
seasonal SLP trends for the CMIP3 (c, d) and CMIP5 (e, f) multi-model ensemble. The colour in c–
f indicates the sign of the deviation of the majority of the models; blue corresponds to simulated
changes smaller than the observed. The models with significant differences underestimate the
magnitude of the observed trend
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increases in the subtropics are less pronounced. In comparison, the models show
less spatial variability and generally weaker trends (not shown). Consequently, the
majority of the models significantly underestimate the magnitude of the observed
decrease in SLP in parts of the high latitudes in the respective winter months (Fig. 2c–
f). Additionally, most of the models underestimate the magnitude of the observed
increase over Africa and tropical South America in DJF, and a smaller fraction of
models also in the tropical Atlantic and the eastern Indian Ocean (Fig. 2c, e).

The identified inconsistencies in SLP are robust to choosing a different time
period. Whereas significant underestimation of the observed magnitude of SLP
change in high southern latitudes in austral winter (JJA) is found even in 30-year
trends, inconsistencies in the tropics are mostly not significant for trend lengths
shorter than 40 years. The general pattern of underestimation of the magnitude of the
observed changes in SLP in the tropics and the high latitudes of the respective winter
hemisphere, however, is consistent across time periods and in line with previous
findings (Gillett and Stott 2009). In contrast to earlier studies, we find globally
significant inconsistencies between simulated and observed changes in SLP.

The observed trend in seasonal precipitation from 1951 to 2000 according to
VASClimO is strongly variable in space and large in magnitude in some regions
(more than ±100 % per degree global warming). The simulated changes are con-
siderably weaker but generally consistent with the observed change, except in boreal
spring (MAM) when we find some coherent areas of inconsistencies shared across
models (not shown). The lack of significant differences is mainly due to the low
signal-to-noise ratio of externally forced changes in precipitation.

We compare the performance of individual models across regions using area-mean
squared standardised differences zrms. zrms is a good proxy for the fraction of area
with significant inconsistencies, with a correlation of 0.93 between the area fraction of
significant inconsistencies and global zrms for seasonal temperature across the CMIP3
models. In contrast to the area-fraction, zrms also allows us to indicate whether the
correspondence between simulations and observations is better than expected under
H0 resulting in zrms < 1.

For seasonal temperature (Fig. 3a) and DJF SLP and precipitation changes
(Fig. 3b), the global average zrms for the majority of CMIP3 and CMIP5 models is
larger than resampled zrms (representative of zrms given we had a perfect model) for
the main observational dataset. The majority of the models is thus biased in its rep-
resentation of regional changes at least in some regions. For SLP and precipitation
changes in JJA (Fig. 3b, c) the global average zrms based on the primary observation
data set are not significantly different from resampled zrms for most models in
both multi-model datasets.

The respective ensemble means (Online Resource, Sec. S3) outperform the indi-
vidual models in zrms for temperature and precipitation. This is consistent with earlier
findings that the ensemble mean performs better in a root mean square error sense
(see Annan and Hargreaves 2011, for further discussion). For changes in SLP, on the
other hand, we find that up to seven individual models outperform the respective
ensemble mean (Fig. 3b).

The results for temperature and SLP are similar if 20CRv2 is used as observations,
which is not surprising given that observed SLP is assimilated and observed sea
surface temperature are used as boundary conditions in 20CRv2. For precipitation,
however, global average zrms based on 20CRv2 indicate strong trend biases in
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Fig. 3 Global average root mean squared standardised differences zrms for near-surface temperature
(a), SLP (b), and precipitation (c). Range (lines) and interquartile range (bars) of zrms are shown in
red for CMIP3 and blue for CMIP5 models. Results according to the primary observation dataset are
shown in saturated colours, according to 20CRv2 in light colours. The light grey shaded areas denote
the central 90 percentile of resampled zrms and crosses denote zrms for the respective multi-model
ensemble mean

the models throughout the year. Precipitation in reanalyses is known to differ
considerably from rain-gauge measurements (Pavelsky and Smith 2006), and the
differences between the two observation-based datasets highlight the need to treat
precipitation results presented here with caution.

Significant standardised differences between simulated and observed trends are
due to either the simulated forced response differing from the true response, or
the simulated variability being lower than the observed variability (and hence
(�Amod)2 < (�Aobs)

2). For temperature and SLP, models do not underestimate the
observed variability and, consequently, we find as much or more inconsistency when
replacing the simulated standard errors (�Amod)2 with the observed (�Aobs)

2 in
Eq. 2. We find some indication that simulations tend to underestimate observed
variability in precipitation, less so in CMIP5 compared to CMIP3.

With respect to the representation of the forced response, we analyse global mean
z for all variables. We find no indication of significant global average trend biases
except for a positive trend bias in DJF in the majority of models consistent with
the large area of shared inconsistency in the tropics shown in Fig. 2. As in previous
studies (Wentz et al. 2007; Zhang et al. 2007; Bhend and von Storch 2008; van Haren
et al. 2012), our results indicate that simulations tend to underestimate the magnitude
of the forced response in both SLP and precipitation as significant inconsistencies are
found where models underestimate the magnitude of the observed change.

To assess whether CMIP3 or CMIP5—as an ensemble—better represent local
trends in individual regions, we test the difference in the distribution of zrms between
CMIP3 and CMIP5 using the Wilcoxon rank sum test for 21 subcontinental regions
(Fig. 4). We find no clear indication of difference in the ability of CMIP3 and CMIP5
to reproduce local observed trends. Similar but generally less significant differences
are found between performance in CMIP5 and the smaller CMIP3 ensemble which
includes both anthropogenic and natural forcing.
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Fig. 4 Results of Wilcoxon rank sum tests on zrms for various regions and variables and the two
observational datasets. Red denotes cases in which CMIP3 significantly (two-sided test at the 10 %
level) outperforms CMIP5, blue denotes cases in which CMIP5 significantly outperforms CMIP3.
The bold triangle in the respective upper-left corner corresponds to the comparison with the primary
observational dataset, the light-shaded triangle in the lower-right corresponds to the comparison with
20CRv2. The regions are global land and ocean (TGLO), 21 sub-continental regions (land only,
see Giorgi and Francisco 2000) ordered from south to north and global land (GLO). There is no
observation data for precipitation in Greenland (GRL) and over oceans

Even though the lack of progress from CMIP3 to CMIP5 might seem counter-
intuitive at first, there are reasons why such an outcome could be expected. In com-
parison with CMIP3, models in CMIP5 are generally more complex in that a larger
number of processes and forcing mechanisms are explicitly simulated (Taylor et al.
2011). Whether this contributes to more or less realistic representations of the local
change is difficult to infer from the two ensembles at hand. To be able to attribute
differences in the models’ ability to reproduce observed local trends to varying model
complexity, however, controlled experiments with individual models are needed.

5 Conclusions and outlook

We present a globally comprehensive assessment of consistency of simulated and
observed local trends in near-surface temperature, SLP, and precipitation per degree
global warming. To avoid issues with model dependencies (Jun et al. 2008) and to
be able to address inter-model differences, we chose to analyse the consistency of
changes for individual models. Observational uncertainties are treated by conducting
the analysis with two partly independent observation-based data sets, and we note
that the observation errors might be large at high southern latitudes for all variables
and globally for precipitation.

We find that all of the models analysed show significant inconsistencies between
the observed and simulated changes in temperature and SLP. Each of the models
therefore fails to reproduce the observed trend at least in some areas. Also areas
with significant inconsistencies are congruent across a majority of models and the
inconsistencies are robust to using two different observation-based datasets as the
reference. This suggests that the climate models share biases in their representation
of recent regional changes. Therefore, efforts which use past local changes to
constrain climate projections should address biases shared across simulations (e.g.
Sexton et al. 2011).
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Simulated changes in precipitation, on the other hand, are generally not sig-
nificantly different from the observed changes due to the low signal-to-noise ratio
of externally forced changes in precipitation. However, the differences in trends
across the two observation-based datasets used in this study are large. These results
have two important implications for regional climate projections. First, quick and
qualitative approaches to putting climate projections and past observed changes in
precipitation into context will be misleading in most cases, as apparent differences
between observed and projected precipitation changes might be due to internal
variability. Second, the observed recent change in precipitation will likely not
provide useful constraints for future projections as of yet and constraints for regional
precipitation projections will have to come from other variables (e.g. regional rainfall
climatology such as discussed in Whetton 2007 and applied in Smith 2010).

Reichler and Kim (2008) document considerable improvement from CMIP1 to
CMIP3 when analysing the climatological mean state across different variables. Con-
sidering measures of climate change such as climate sensitivity, Andrews et al. (2012)
find little change between CMIP3 and an early version of the CMIP5 ensemble
even though improvements have been documented for individual models (Watanabe
et al. 2010). For local changes, differences between CMIP3 and CMIP5—or the
lack thereof—has not been documented so far. Here we find no improvement from
CMIP3 to CMIP5 with respect to consistency of simulated local trends per degree
warming in near-surface temperature, SLP, and precipitation with the observed
change. That is, recent model development has not significantly altered our under-
standing and description of long-term regional change in these variables. Increasing
complexity and realism of the models, on the other hand, seem to mainly affect the
representation of the variability in the models which might change the significance
of the results. Indeed progress in the description of variability has been documented
already for ENSO (Guilyardi et al. 2012). Our analysis reveals, however, that the
representation of interannual variability in the two multi-model ensembles has not
changed sufficiently (and/or sufficiently systematically) to affect the consistency of
observed and simulated local changes.

We emphasise that this consistency assessment is only one step in understanding
regional changes. Here, we diagnose inconsistencies between simulated and observed
local changes, but process studies and a more careful analysis of individual models
and intermodel differences will be needed to explain why these inconsistencies
occur. Furthermore, future studies will need to more rigorously address observation
uncertainties as these contribute considerably to the overall uncertainties in some
cases. Finally, it should be noted that the analysis has been performed on a subset of
the eventual CMIP5 ensemble. Even though the complete set of models may offer
additional insight into differences between CMIP5 and CMIP3, we do not expect the
general conclusions and results presented here to change.
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