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Abstract An extension of a regression-based methodology for constraining climate fore-
casts using a multi-thousand member ensemble of perturbed climate models is presented,
using the multi-model CMIP-3 ensemble to estimate the systematic model uncertainty in the
prediction, with the caveat that systematic biases common to all models are not accounted
for. It is shown that previous methodologies for estimating the systematic uncertainty in
predictions of climate sensitivity are dependent on arbitrary choices relating to ensemble
sampling strategy. Using a constrained regression approach, a multivariate predictor may be
derived based upon the mean climatic state of each ensemble member, but components of
this predictor are excluded if they cannot be validated within the CMIP-3 ensemble. It is
found that the application of the CMIP-3 constraint serves to decrease the upper bound of
likelihood for climate sensitivity when compared with previous studies, with 10th and 90th
percentiles of probability at 1.5 K and 4.3 K respectively.

1 Introduction

Model-based projections of future climate change are subject to numerous uncertain-
ties, which can be loosely categorized into four groups; the model boundary con-
ditions, the initial variability of the system, model parametrization schemes and so-
called ‘systematic’ uncertainties (Tebaldi and Knutti 2007). In each of the former
three cases, experiments have been designed to explore how these unknowns are
translated into probabilistic statements concerning future projections. Observational
uncertainties are implicitly linked to model uncertainty, as any errors in observations
will be manifested in less than optimal tuning of model parameters.

Unknown boundary conditions may be addressed by exploring simulations with
different climate forcing scenarios, such as the Special Report on Emissions Scenarios
(SRES, Nakicenovic et al. (2000)) which include numerous scenarios for future
emissions and concentrations of atmospheric forcing agents. Initial conditions clearly
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play a role in short term and seasonal forecasts of climate (Collins and Allen 2002)
but whether initial information is relevant on a decadal timescale or longer is still a
subject of debate (Hurrell et al. 2009).

On a global scale, the response of the Earth system to changes in boundary
conditions can be summarized by a small number of parameters. The ‘climate
sensitivity’ is the equilibrium response of global mean surface temperature to a
doubling of atmospheric carbon dioxide concentrations and is inversely proportional
to the net global temperature feedbacks in the system. Many studies (Gregory et al.
(2002), Annan and Hargreaves (2006), Knutti et al. (2006) to name a few) have
sought to constrain the value of the climate sensitivity because many equilibrium
changes in climate on both a global and a regional scale are expected to scale with
this number Knutti and Hegerl (2008). Equilibrium response is clearly an idealized
case, as any real-world climate change will consist of a transient response to slowly
changing boundary conditions, which is a function of both the net feedbacks and of
the inertia of the system (governed primarily by the rate of ocean heat uptake).
However, in this study we will focus on the uncertainties associated with climate
sensitivity, which can be easily calculated in a wide variety of atmospheric climate
models without the need for a computationally expensive fully dynamical ocean.

Model parameter uncertainty and its impact on climate projections has been studied
by various methods; parameter perturbation experiments have been conducted using
the Met Office Hadley Centre Model (Murphy et al. (2004), Stainforth et al. (2005)),
the Model for Interdisciplinary Research On Climate (Annan et al. (2005)) and the
Community Atmosphere Model (Jackson et al. (2008), Sanderson (2011)). There have
been various attempts to use these Perturbed Physics Ensembles (PPEs) together with
observations to somehow constrain the climate sensitivity or transient response of the
real-world system. Murphy et al. (2004) produced a distribution of climate sensitivity,
interpolated over the model parameter space and weighted by a measure of model
likelihood, but Frame et al. (2005) argued that a Probability Density Function arising
from such an approach is inherently dependent on the prior distribution of models in
the parameter space. Some more recent Bayesian studies have duly sampled the
sensitivity of posterior PDFs to the prior (Sexton et al. 2011), while Sexton and
Murphy (2012) argue that if sufficiently strong observational constraint, the result’s
sensitivity to the prior distribution can be reduced.

Piani et al. (2005) also presented a methodology for relating observable quantities
to an unknown response metric, using linear regression to predict climate sensitivity
from the amplitude of various independent modes of variability in the model. The
modes were derived by rotating a set of Empirical Orthogonal Functions (EOFs)
derived from a long control simulation such that they were independent within the
PPE. The coefficients of those EOFs in the ensemble can then be related to the
climate sensitivity through ordinary least squares regression in the PPE. In order to
make an estimate of a PDF for climate sensitivity, observational fields can be
projected onto the EOFs and the established regression coefficients can be used to
estimate a best guess of climate sensitivity.

Uncertainty due to natural variability in the observations was estimated by considering
the variability of the modes projected onto a second, independent long control simulation.
The authors did attempt to quantify the systematic uncertainty in their prediction by
expressing this control simulation as anomaly about the ensemble mean state. This artifi-
cially inflates the uncertainty term by an amount proportional to the projection of the
difference between the ensemble mean and the control simulation mean onto the EOFs.
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In other words, if the ensemble mean shows a radically different base climate to
the long control simulation, there will be a large inflation of error due to assumed
systematic uncertainty. The problem is that the ensemble mean state is dependent
upon the arbitrary sampling strategy of the PPE and it is not clear that this results in
a robust estimate of the systematic uncertainty in the methodology. The estimate
remained untested because the predictors were not applied to any other independent
climate models.

Knutti et al. (2006) use a non-linear regression to relate regional seasonal cycles of
temperature to Climate Sensitivity, though in principal, the methodology may be applied to
any measure of model response. The study was conducted using a PPE, of which a subset
was used to train a neural network which acts as a transfer function between an observable
quantity and an unknown response, while the prediction error was estimated by calculating
the error in the prediction of Climate Sensitivity for the remaining models in the PPE. This
relationship was applied to observations of the climate system to produce a ‘best-guess’
estimate of the true value of the response metric. The width of the resulting PDF is a function
of natural variability in the observables, plus uncertainty in the observed values together
with the ensemble-derived prediction error.

The final source of uncertainty in regression-based predictions of climate response is the
systematic or irreducible component which is due to the difference in underlying formulation
between different models and the true climate system. Knutti et al. (2006) did show some
success in using their predictors to predict the unseen climate sensitivities of other models in
the CMIP-3 archive, but did not include this information directly into their PDFs (they did,
however, show the sensitivity of their PDFs to an increase in the assumed systematic error).

Rougier (2007) and Sexton et al. (2011) address the problem differently to the
transfer function approach, by explicitly evaluating model likelihood as a function of
the parameter space of the model. The systematic error is represented by a ‘discrep-
ancy’ term, which cannot be reduced by model parameter adjustment, although they
use different methodologies to define the term itself. Rougier (2007) advocates the use
of additional ‘hyperparameters’ to define the model discrepancy on a (pre-defined)
regional scale, where a sufficient number of degrees of freedom are created to allow
the observations and ensemble to coexist in the parameter space. Sexton et al. (2011)
reject this approach owing to concerns of double-counting observational information
for both the likelihood estimate and the discrepancy term. Instead, they derive a
discrepancy term by treating different members of the CMIP-3 ensemble as truth,
and calculating PDFs for the future response using the PPE. The resulting errors in
that prediction inform on what additional discrepancy term must be introduced to
account for intra-ensemble systematic errors.

However, these approaches to model discrepancy are not directly applicable to a transfer
function approach like Piani et al. (2005) or Knutti et al. (2006). In a PPE, the models are by
definition not tuned to their optimal state and some models are very poor representations of
the present day climate (Sanderson et al. 2008). Potential systematic errors in Piani et al.
(2005) and Knutti et al. (2006) could arise if relationships between observable quantities and
unknown response metrics were present within the PPE, but could not be generalized to
other climate models or to reality.

One approach to this problem would be simply to evaluate the performance of the
predictors when applied to a MME (Piani et al. (2007), Sanderson et al. (2008)).
However, given that different models may share components and many models have
similar resolutions and inherent assumptions, this may lead to overconfidence in the
accuracy of the predictors when applied to the real world. In addition, if the
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systematic error proves to be very large when estimated using the MME, a method-
ology for reducing this error is desirable.

In this study, we propose a regression-based constraint on Climate Sensitivity
which excludes those correlations which cannot be validated in a wide range of
GCMs. Inherent in this approach is a methodology for estimating the systematic error
in the resulting PDF, using the assumption that the MME provides a sufficient sample
of different systematic model behavior, and that the MME as a whole is not signif-
icantly biased.

2 Methodology

2.1 Ensemble principal component analysis

Our goal is to find multivariate predictors of climate sensitivity within a perturbed
physics ensemble, with predictions arising from the variables listed in Table 1 in the
additional material section 7.1. The variables are chosen to provide an overall
evaluation of model climate, although the list is clearly not exhaustive. The variables
were chosen both for their availability in all the ensembles considered, together with
the availability of observational values. The overall conclusions of the study were not
found to depend strongly upon the variables chosen.

Multiple gridded seasonal variables for precipitation, surface temperature, atmo-
spheric humidities and radiative fluxes are normalized and concatenated to form a
long state vector for each model’s climatology. This process which is repeated for
each model in the PPE. The state vectors in the PPE are then subjected to a Principal
Component Analysis, such that the base climatology in each model in the ensemble
may be described by a short, truncated vector with independent components. This
process is explained in detail in the additional material section 7.1.

Table 1 Observable quantities used to describe the climate state. The middle column shows the domain over
which the fields are taken, lat/long represents latitude and longitude, linearly interpolated to a 73 by 96 (2.5°
by 3.75°) grid (if necessary). lat/pres represents zonal mean fields on pressure levels, interpolated to a 73 by 17
grid consistent with HadAM3 output. The right-hand column indicates the source of observation or reanalysis
data used to estimate real world values. In all cases, values from DJF and JJA seasons are concatenated to
form a single vector. NCEP data is described in Kalnay et al. (1996), CERES-2 data in Wielicki et al. (1996)
and AIRS data in Susskind et al. (2003)

Diagnostic Domain Obs./reanalysis

Surface temperature (K) lat/long/seas NCEP

Total precipitation rate (ms−1) lat/long/seas NCEP

Clear sky LW TOA flux lat/long/seas CERES-2

Clear sky SW TOA flux lat/long/seas CERES-2

All sky LW TOA flux lat/long/seas CERES-2

All sky SW TOA flux lat/long/seas CERES-2

Air temperature (K) lat/pres/seas AIRS

Relative humidity (%) lat/pres/seas AIRS

Zonal wind (ms−1) lat/pres/seas NCEP

Meridional wind (ms−1) lat/pres/seas NCEP

760 Climatic Change (2013) 118:757–770



3 Unconstrained regression

3.1 Methodology

We begin by demonstrating a methodology similar to Piani et al. (2005), which we
demonstrate produces similar results. Piani et al. (2005) used predictors formed from
eigenvectors of natural variability, orthogonally rotated such as to be independent within
the ensemble. In this work, we omit the rotation step—simply using eigenvectors derived by
applying a PCA to the ensemble itself. This has practically little effect on results but allows
ensemble variability to be expressed exactly, rather than forcing the eigenvectors to be
expressed as a linear combination of an incomplete basis set. Furthermore, eigenvectors
derived directly from the ensemble are more interpretable as relating to physical para-
metrizations within the ensemble (Sanderson et al. (2008), Sexton et al. (2011)), rather than
forming an arbitrary set of basis vectors.

The mathematical details of the regression process are detailed in the additional material
section 7.2, but the technique may be summarized as follows: The sensitivity of each model
in the PPE is related to the principal components derived in Section 2.1 by means of a least
squares regression. The observations are projected onto the set of EOFs derived from the
PPE, and together with the regression coefficients, yield a best-guess value for climate
sensitivity.

The methodology then considers three sources of error for this projection. The first,
due to natural variability is derived by taking a long control simulation, dividing it
into sections, subtracting the mean, projecting onto the EOFs and using the regression
coefficients to calculate a distribution of values. The variance of this distribution gives
the uncertainty due to natural variability.

The second source of error in the unconstrained regression arises from the systematic bias
estimate and is described in detail in the additional material section 7.2.1. For this, we follow
Piani et al. (2005) by representing the long control as an anomaly about the climateprediction.-
net ensemble mean. This has the effect of inflating the derived variance, but is a largely arbitrary
decision which is itself dependent on the distribution of models in the climateprediction.net
ensemble. The final source of error is due to intra-ensemble prediction, using the
climateprediction.net ensemble itself as a transfer function. This calculation is de-
scribed in additional material section 7.2.2.

3.2 Application to a PPE

In Fig. 1a, we demonstrate the above methodology using the climateprediction.net ensemble
of perturbed climate models (Stainforth et al. 2005). As in Piani et al. (2005), we take a
subset of models from the ensemble (in this case nens=1696, after removal of models with a
drifting control climate). We apply the methodology detailed in the previous section to the
ensemble, estimating the systematic bias of the model by expressing the 500 year control
simulation variability about the climateprediction.net ensemble mean. Although in keeping
with the methodology of Piani et al. (2005), this bias clearly does not represent any
difference between models and observations, rather as a representative inter-model bias.

Despite a slightly different methodology (the use of different observable fields and direct
PCA of the ensemble, rather than using rotated natural EOFs), we obtain results very similar
to those found by Piani et al. (2005), with a most likely climate sensitivity of 2.8 K and 95th
percentiles at 1.3 K and 6.0 K. For comparison, Piani et al. (2005) found 5th and 95th
percentiles of 2.2 and 6.8 K.
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One way we can verify the assumptions which go into the estimation of systematic error
with this method is to apply the predictors to different climate models where both a pre-
industrial simulation and a double CO2 sensitivity experiment are available. We evaluate the
predictor performance on two other ensembles. Firstly, the predictors may be applied to pre-
industrial control simulations from the Coupled Model Inter-comparison Project (CMIP-3),
and the predicted sensitivities can be compared to the known climate sensitivities of each
model. Figure 1a shows that the climateprediction.net derived predictors consistently
overestimate the sensitivities of each model in the CMIP-3 ensemble. The mean
predicted CMIP-3 sensitivity is 5.4 K, compared to the true CMIP-3 mean sensitivity of
3.2 K. Similarly, if we apply the climateprediction.net derived predictors to control simulations
from the NCAR CAMcube ensemble (Sanderson 2011), a bimodal distribution of sensitivity is
predicted; 54 CAM models in this ensemble have convective mass transport parametrization
switched on, and these models have sensitivities which are accurately predicted by the
climateprediction.net derived predictors (a predicted mean sensitivity of 2.9 K and a true mean
sensitivity of 2.6 K). However, in the remaining 27 CAMcube models, the convective mass
transport is switched off and the predicted sensitivities are strongly overestimated (a predicted
mean of 6.3 K as compared to the true mean sensitivity of 2.8 K). Both these verifications with
other ensembles suggest that the estimated systematic error using the above technique may be
an underestimate.

A possible criticism of calculations of the type shown in Fig. 1a is that a large number of
models in the PPE can often be dismissed as unphysical by evaluation of their base climatology.

Fig. 1 a A plot in the style of Piani et al. (2005) showing true model climate sensitivity expressed as a
function of the value predicted from independent modes of control state variability within the climatepredic-
tion.net ensemble. Each blue point represents a single model in the climateprediction.net ensemble. Red points
show the same predictors applied to CMIP-3 control simulations, where the ‘true’ sensitivities of each model
are the slab model climate sensitivities of each respective models. Green points show the predicted and true
climate sensitivities of slab models in the NCAR CAMcube ensemble (Sanderson 2011). The solid curve on
the horizontal axis is the distribution for likely climate sensitivity using the observations detailed in 1, and
adding uncertainty due to natural variability and systematic error using the methodology in Section 3 (this
curve does not include any estimate of error due to the prediction itself). The dashed curve on the vertical axis
is the final PDF using the climateprediction.net ensemble as a transfer function to estimate the intra-ensemble
prediction error. The box and whisker plot shows the median, along with the 90th and 95th percentiles of this
PDF. b As for (a) except for a pre-filtering of climateprediction.net models to exclude those with greater than
8 Wm−2 global mean top of atmosphere energy imbalance
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Although model weighting according to some pre-defined likelihood function is difficult to
achieve and often dependent on arbitrary choices, we can illustrate that pre-filtering an
ensemble for model quality can potentially change the result of a regression-based prediction
of climate sensitivity. In Fig. 1b, we perform the regression using only a subset of the
climateprediction.net ensemble where models have a Top of Atmosphere energy imbalance
of less than 8 Wm−2 (leaving 411 viable models). Although this is clearly not a comprehensive
evaluation of model climate, it serves to generally eliminate those models which have instantly
dismissible base state climatologies. We find that even with this simple restriction, that the
results of the regression-based predictor exhibit fewer biases when applied to the CMIP-3
ensemble, with a mean predicted sensitivity of 3.8 K, much closer to the actual value of 3.2 K.
This suggests that unrealistic models in the PPE can potentially dominate the terms in a
regression prediction of climate sensitivity.

We can also explore the sensitivity of the technique to the choice of systematic model bias. In
Piani et al. (2005), the systematic bias was estimated by adding a bias to the noise estimate of
natural variability about the observed mean, where the bias was taken to be the difference
between the climateprediction.net ensemble mean control state and the mean of a HadCM3
500 year control simulation. We can test the sensitivity of the technique to the choice of
systematic bias by taking the bias to be the difference between the climateprediction.net mean
and various models in the IPCC ensemble. The results of this sensitivity study are shown in
Fig. 2.

The results of this sensitivity study show that the upper bound of likelihood for
climate sensitivity is especially sensitive to the choice of systematic bias estimate. The
upper bound (95th percentile) ranges from 4.4 K (using the Canadian Climate Centre
Model 3.1 at T63 resolution) to 8.0 K (using Miroc 3.2 ‘medium’ resolution model).
So, clearly the upper bound of the PDF is highly sensitive to the choice of model
used to evaluate the systematic bias component.

Fig. 2 Repeating the methodology to produce the PDF in Fig. 1, but using different models in the CMIP-3
ensemble to estimate systematic model bias. To produce each PDF, the bias added to the noise estimate as
described in the additional material, section 7.2.1 is taken to be the difference between the climatepredic-
tion.net model mean and each of 18 pre-industrial simulations from the IPCC CMIP-3 ensemble. Each box
and whisker plot shows the 5th, 10th, 50th, 90th and 95th percentiles of the resulting PDF using each one of
the CMIP-3 models to estimate systematic bias from the climateprediction.net mean
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Although we have shown that the results of a regression-based prediction of climate
sensitivity can potentially be made less biased by considering a subset of models close to
observed climatology, this is not an ideal solution for two reasons. Firstly, it has been shown
by Rougier (2007) and others that rigorous inter-model weighting within a PPE is not a
trivial task, and is potentially sensitive to the choice of metrics considered (Gleckler et al.
2008). Secondly, the methodology as presented above using the constrained subset of
climateprediction.net still requires a somewhat arbitrary computation of a systematic bias
term. Therefore, in the following section we propose a modified regression-based predictor
with two goals of producing a somewhat quantitative systematic error term and decreasing
inter-model prediction bias by making the process less sensitive to potentially unrealistic
models in the PPE.

We can to some degree test our methodology with an independent PPE, CAMcube, which
is derived using the Community Atmosphere Model. If model sensitivity within this
validation ensemble can be predicted within the derived error margins, we can have more
confidence in our methodology correctly estimating the systematic error in the prediction.
We choose to use CAMcube as validation only because the range of climate sensitivity
simulated in this ensemble is significantly smaller than that of climateprediction.net, and
thus cannot be used to significantly constrain relationships between sensitivity and base
climate state.

4 Constrained regression

Figure 1 shows that the climateprediction.net derived predictors of sensitivity are strongly
biased towards high predicted values when applied to the CMIP-3 dataset, suggesting that
the observation-based predicted sensitivity value may also be biased towards high values. In
this section, we seek to use the available simulations from the CMIP-3 ensemble to constrain
the regression process itself.

The methodology is presented in detail in the additional material section 8, but can be
summarized as follows: we seek to eliminate those correlations which cannot be verified in
the CMIP-3 ensemble. To do this, we invoke a constrained regression algorithm which finds
the least squares relationship between the base vectors defined in the previous section and
climate sensitivity subject to the constraint that the sensitivities in the CMIP-3 ensemble are
predicted correctly within an assumed error Emax. In choosing the constraint Emax, we are
effectively establishing an upper limit for the allowed error in the prediction of sensitivity for
any model in the CMIP-3 archive and making an a priori assumption about the inherent
systematic error in applying the predictor to another climate model. The predictors are
constrained to predict valid sensitivities for the CMIP-3 models, within the permitted
systematic error margins. Intra ensemble prediction error is then calculated as in the
additional material Section 8.0.3, by using the climateprediction.net ensemble as a transfer
function to produce the final PDF for climate sensitivity.

Systematic error in the constrained calculation is taken to imply any error which might
arise from the assumption that relationships which are valid in the climateprediction.net
ensemble are also valid in other models, or in the real world. We estimate this term by
measuring the mean error in the prediction of sensitivities for the CMIP-3 archive. If this is
greater than the combined uncertainty due to natural variability and intra-ensemble predic-
tion error, the systematic error term is deemed to be non-zero and the variance in the
predicted result is inflated to account for the CMIP-3 prediction error. The technique is
described in detail the additional material section 8.0.3.
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The three plots in Fig. 3 show three different a priori assumptions for Emax, with the
weakest constraint requiring CMIP-3 model Sensitivities to be predicted within 0.5 K, 1.5 K
and 3.0 K of the true value. The final PDFs for climate sensitivity exhibit their 95th
percentiles at 6.0 K, 4.5 K and 5.1 K respectively.

Figure 4a shows the different errors as a continuous function of Emax. When the allowed
error Emax is less than 0.4 K—there is no solution to the constrained regression algorithm,
implying that there are not sufficient degrees of freedom in the regression equation to predict
the CMIP-3 sensitivities.

When Emax=0.4, the regression is entirely based upon correlations in the CMIP-3 models,
the algorithm cannot optimize the regression coefficients to better fit the climateprediction.-
net ensemble. In this case, the intra ensemble prediction error is at its maximum and the
systematic error term Esys is zero.

As the allowed CMIP-3 error Emax is increased, the accuracy of predictions within the
climateprediction.net ensemble is improved and Epred becomes smaller, but the skill in
predicting models in the CMIP-3 archive is reduced until the point that the systematic error
term Esys becomes non-zero.

When Emax is greater than 7 K, the problem is effectively unconstrained and the result is
identical to the ordinary least square regression approach in Section 7.2.2. Figure 4b shows the
PDFs as a continuous function of Emax, and it can be shown that the width of the PDF exhibits a

Fig. 3 Sensitivity distributions assuming three different values of Emax, which defines the maximum allowed
error in the prediction of model sensitivity in the CMIP-3 archive. Blue dots represent individual models in the
climateprediction.net archive, with predicted sensitivity on the horizontal axis and actual climate sensitivity on
the vertical axis. Green dots show models in the CAMcube ensemble, and red dots show models in the CMIP-
3 archive. The dashed red line shows the CMIP-3 constraint. The curves on the bottom axes show the
distribution of observational predictions, centered on the most-likely value with a distribution width due to
both simulated natural variability and a pre-defined systematic uncertainty distribution of standard deviation
Emax. The curve on the vertical axis used the climateprediction.net ensemble as a transfer function to estimate
the final PDF for climate sensitivity. The vertical boxes and whiskers represent the 5th, 10th, 90th and 95th
percentiles of the final PDF

Climatic Change (2013) 118:757–770 765



minimum at a value Emax=1.5 K. The PDF is wider at larger values Emax because the CMIP-3
prediction error is larger, and at small values of Emax because the climateprediction.net
prediction error is increased. The resulting PDF for the optimal Emax value of 1.5 K is shown
in Fig. 3b.

The process of constraining the regression restricts correlations to those which can be
validated within the CMIP-3 ensemble, and we can use the independent CAMcube ensemble
to test these climateprediction.net derived constrained predictors in a different environment
(the CAMcube ensemble is not itself used to constrain the regression). In each case, the
constrained regressions are considerably more accurate in predicting sensitivities in the
CAMcube ensemble than the Ordinary Least Squares regression approach. The regressions
with the smallest CMIP-3 constraint produce the smallest errors in the prediction of
CAMcube sensitivity (Fig. 4).

Fig. 4 a The standard deviation of the three forms of error leading to uncertainty in the PDF for climate
sensitivity, as a function of the a priori CMIP-3 constraint. Emax. The ‘prediction error’ is the standard
deviation of the residuals in the prediction of models within the climateprediction.net ensemble. The ‘natural
variability’ is the standard deviation of the predictor applied to 64×15 year segments from a 500 year control
simulation. The ‘systematic error’ is the additional error which must be combined with the other terms
required to describe the standard deviation of CMIP-3 residuals. The ‘Total error’ is the root sum square
combination of these separate sources of error. Finally, ‘CAMcube error’ is the standard deviation of the
residuals in the prediction of models within the CAMcube ensemble. b 90 and 95th percentiles of the final
distribution for climate sensitivity shown as a function of of the constraint on CMIP-3 model sensitivity. The
PDFs are calculated as for the curves on the vertical axis in Fig. 3
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All of the methologies presented in this study require an decision on the appropriate
truncation length for the EOF basis set. In Piani et al. (2005), this was determined by an f-
test, but we show in Fig. 5 in the additional material that this decision becomes less critical in
the constrained regression case. Whereas the unconstrained regression shows a large depen-
dency of the resulting PDF for climate sensitivity on the truncation length, the constrained
case shows little dependency for truncation lengths above 10. Interestingly, the uncon-
strained result using the pre-filtered ensemble using only models in approximate energy
balance is also not highly dependent on truncation length, with the results of the latter two
calculations largely in agreement for truncation lengths of 10 or more.

The distribution for sensitivity with an optimal Emax value of 1.5 K and a truncation
length of 20 (or greater) indicates a most likely value of 2.9 K with 5th and 95th percentiles
at 1.7 K and 4.6 K. There are some caveats to this result. Firstly the assumption of a linear
transfer function between the climate state variables and sensitivity could omit important
potentially nonlinear relationships. Secondly, we assume that the errors due to natural
variability in each predictor are normally distributed, which may be an oversimplification.

5 Discussion

The future response of the climate to changing boundary conditions caused by an
increase in anthropogenic greenhouse gas concentrations is highly dependent upon the
strength of the net feedbacks in the climate system. Perturbed physics ensembles
(PPEs) exhibit a wide range of climate sensitivity to increasing greenhouse gases,
and are thus an invaluable tool for studying and constraining likely real-world
response. Past approaches have relied on finding correlations between observable
quantities and climate sensitivity within a PPE. However, we have shown that such
approaches may not be robust when PPE-derived predictors of climate sensitivity are
applied to entirely separate models, such as those found in a Multi Model Ensemble

Fig. 5 Median (solid lines) and 5,95th percentiles (dashed lines) of the final distribution for climate
sensitivity shown as a function of the truncation length for the climate state EOFs used as predictors of
sensitivity. Plots in green, blue and red show conventional OLS regression, pre-filtered regression as in Fig. 1b
and optimally constrained CMIP-3 regression as in Fig. 3b
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(MME) such as CMIP-3. We show that prediction biases can be significantly reduced by
performing regressions on a subset of plausible models within the PPE, but this requires at least
two arbitrary decisions to bemade: the choice of metrics to be used for model weighting and the
choice of how to represent an unknown systematic error term.

We have developed an alternative approach in which we estimate uncertainty in a PPE
regression-based prediction of climate sensitivity using a MME which we assume contains
models which are indistinguishable from reality (i.e. the models are drawn from a distribu-
tion of which the real world is a potential member). Our methodology differs from that used
in previous work primarily in our treatment of the systematic uncertainty which arises when
correlations within a particular climate model structure are used to predict attributes of a
completely different model or the real world.

Past approaches have considered the uncertainty in the observed state as a minimum
estimate for the systematic uncertainty term, and then examined the sensitivity of the PDF to
an arbitrary inflation of this term (Knutti et al. 2006). Other approaches have inflated the
natural variability term to represent the systematic uncertainty—but in a fashion which is
arbitrarily dependent on the fashion in which the ensemble parameter space has been
sampled (Piani et al. 2005). We have shown that the methodology in Piani et al. (2005) is
highly influenced by the presence of unphysical models within the PPE, and by performing a
simple pre-filtering to exclude those models significantly out of energy balance, we can
significantly reduce the uncertainties in the projection of a PDF for climate sensitivity. Such
an approach in undesirable, however, because an arbitrary decision is required to define
suitable metrics for determining whether a model is acceptable or not.

We instead propose an approach which is not directly dependent on the choice of sampled
parameters or included models, instead making the assumption that the CMIP-3 multi-model
ensemble represents a range of model environments. The methodology requires an a priori
decision on the degree to which the CMIP-3 models should be constrained, but an optimal
constraint can be determined by sampling values to minimize the uncertainty in the final PDF.
Once an optimal value is determined, the regression of model base-state predictors onto model
response is performed over the PPE. An additional systematic error term is introduced to inflate
the error due to natural variability to account for the error in predicting the CMIP-3 models. A
final PDF for climate sensitivity is obtained by using the climateprediction.net ensemble as a
transfer function to describe any intra-PPE prediction error.

If we consider the extreme cases: as the systematic constraint tends to zero in the case that
there are fewer independent predictors than CMIP-3 models, there is no solution to the
problem. As the constraint is increased to the minimum value with a solution, the regression
is made over the CMIP-3 ensemble only. However, this over-constraint becomes self-evident
when calculating the internal prediction error in the PPE, the predictors show little skill on
that dataset and the internal prediction error term becomes very large.

Considering the other extreme case, where the CMIP-3 constraint becomes infinite, the
regression over the PPE is unconstrained and the systematic error term is estimated from the
spread of CMIP-3 residuals. However, this spread may be very large because the predictors
may be dominated by correlations within the PPE which arise from highly perturbed models
and processes which may only been significant within the PPE itself. When these predictors
are applied to the CMIP-3 model to estimate the systematic error term, large prediction errors
are observed which inflate the systematic uncertainty component of the total error.

Clearly, both of these extreme cases results in large uncertainties in the final PDF for
climate sensitivity. However, we optimize the prediction by minimizing the width of the
PDF as a function of the systematic constraint. This ‘optimal’ constraint ensures that
regression predictors derived from the PPE are not used if they are not validated within
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the CMIP-3 ensemble. This approach assumes, of course that the CMIP-3 models them-
selves are to some degree physical. This is largely justified by the fact that PPEs contain
many models which easily be disregarded on physical grounds (Sanderson et al. 2008),
whilst it is often difficult to produce consistent rankings for models in the multi-model case
(Gleckler et al. 2008). The use of the multi-model ensemble as a testbed for PPE derived
predictors is thus imperfect, but is likely the best strategy with current available simulations.

One legitimate concern with this approach is whether systematic difference between
models in the CMIP-3 ensemble is comparable to that between any given model and the
real-world. Certainly, the models have many approximations in common, such as limits in
resolution which may cause a failure to resolve atmospheric features such as blocking
(Palmer et al. 2008) and omitted components of the earth system such as an interactive
carbon-nitrogen cycle which might significantly affect the real-world response to green-
house gas forcing. Our analysis therefore produces a lower bound on uncertainty, on the
assumption that the CMIP-3 models are a sample of possible ‘worlds’.

What differs from previous PPE derived estimates of sensitivity is the exclusion of
correlations which cannot be validated in other GCMs. The benefits of this are two-fold:
firstly, if models are present in the PPE which are highly perturbed and give very poor
representations of the climate, they are no longer allowed to dominate the prediction.
Secondly, the dependency of the prediction on EOF truncation length is eliminated because
predictions based upon the higher, noisy predictors are suppressed by the constraint. The
methodology established here may be extended to provide multivariate, or regional predic-
tions of unknown climate parameters based upon data from both a PPE and a MME used to
validate and constrain the prediction.
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