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Abstract Many analyses of the paleoclimate record include conclusions about ex-
tremes, with a focus on the unprecedented nature of recent climate events. While the
use of extreme value theory is becoming common in the analysis of the instrumental
climate record, applications of this framework to the spatio-temporal analysis of
paleoclimate records remain limited. This article develops a Bayesian hierarchical
model to investigate spatially varying trends and dependencies in the parameters
characterizing the distribution of extremes of a proxy data set, and applies it to
the site-wise decadal maxima and minima of a gridded network of temperature
sensitive tree ring density time series over northern North America. The statistical
analysis reveals significant spatial associations in the temporal trends of the location
parameters of the generalized extreme value distributions: maxima are increasing as
a function of time, with stronger increases in the north and east of North America;
minima are significantly increasing in the west, possibly decreasing in the east, and
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exhibit no changes in the center of the region. Results indicate that the distribution
varies as a function of both space and time, with tree ring density maxima becoming
more extreme as a function of time and minima having diverging temporal trends,
by spatial location. Results of this proxy-only analysis are a first step towards
directly reconstructing extremal climate behavior, as opposed to mean climate
behavior, by linking extremes in the proxy record to extremes in the instrumental
record.

1 Introduction

There is a growing interest in studying the changing behavior of climatic extremes
in both space and time, as the most acute societal impacts of climate change may be
those arising from changes in the frequency and severity of extreme climate events
(Zwiers and Kharin 1998; IPCC 2007, Chapter 3). The statistical theory of extreme
values is a well-developed formalism for investigating the extremal characteristics of
probability distributions and data sets (e.g. Coles 2001), and is increasingly being
applied to, or proposed for, the analysis of the instrumental climate record and
climate model output. A common strategy for analyzing climate-model-derived
temperature or precipitation fields is to treat the parameters of the extreme value
distribution as temporally or spatially varying quantities (Kharin and Zwiers 2000,
2005; Schliep et al. 2010; Mannshardt-Shamseldin et al. 2010). More generally, Katz
(2010, p.5) argues that shifts in the frequency and magnitude of climate extremes
can be reliably derived by modeling the temporal and spatial behaviour of the
probability distribution characterizing the climate variable, rather than the extremes
themselves. These analyses point to the importance of understanding the behavior
of extremes, and that the modeling of extremes requires special considerations and
methodology.

To place recently observed extremes in the climate system into a longer term
context than is possible using the instrumental record, it is necessary to turn to the
climate proxy record. There have been numerous efforts to infer both the spatial
mean and spatial pattern of past surface temperatures from natural proxies—see
NRC (2006), IPCC (2007, Chapter 6), and Jones et al. (2009) for reviews. Reports
of temperature reconstructions frequently include statements about the degree to
which certain (generally recent) years are in some sense extreme with respect to the
baseline climate. The most well-known example may be Mann et al. (1999), which
states that “the past decade [1989–1998] and past year [1998] are likely the warmest
for the Northern Hemisphere this millennium”, a statement which is repeated in the
IPCC Third Assessment Report (IPCC 2001, Chapter 2) (also see, e.g., Luterbacher
et al. 2004; Barriopedro et al. 2011; Kaufman et al. 2009). Usually climate is inferred
from proxies using robust regression, which results in an estimate of the most likely
past climate and associated point-wise uncertainty measures. Such results, while
providing important insights into long-term climate behavior, are limited in being
able to answer questions about the distribution of extremes (see, e.g., NRC 2006;
Field et al. 2012)

Several recent investigations of climate extremes using overlapping proxy and
instrumental data sources data have focussed on resampling techniques (e.g., Li
et al. 2007) or Bayesian modeling approaches (e.g. Li et al. 2010; McShane and
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Wyner 2011; Tingley and Huybers 2010a, b). While these techniques have clear
advantages over regression-based approaches (Tingley et al. 2012), important lim-
itations remain from the perspective of investigating extremal behavior. Since any
analysis of extreme values is, implicitly, an analysis of the tail of a distribution, it
is more appropriate to use Extreme Value Theory to directly model the tails of a
distribution.

Akin to the Central Limit Theorem, which describes how, asymptotically, means
of random variables result in a normal distribution, extreme value theory describes
how, asymptotically, the distributional properties for the tail of a statistical distrib-
ution converge to a common distributional form that is independent of the model
designated for the average behavior. Unlike regression or resampling approaches,
extreme value theory does not require distributional assumptions for the original
series, allows for a proper assessment of uncertainty, and allows for a formal
investigation of spatial and temporal trends in the distribution of extremes.

Applications of extreme value theory to climate proxy data are limited. Katz et al.
(2005) model sediment yield series using a generalized extreme value distribution.
While they highlight that modeling spatio-temporal effects is paramount in ecology,
their model only includes temporal components. Naveau and Ammann (2005)
develop a time series of extreme events based on ice core sulfate proxy information,
but do not model the distribution of the extremes. Cooley et al. (2006) model the age
of moraines, using a generalized extreme value distribution for lichen measurements.
With a separable spatio-temporal model to model the location parameter of the
extreme value distributions, spatial effects are modeled via a random effect term;
the shape and scale parameters are held fixed.

This article investigates both the spatial and temporal patterns in the extremal
characteristics of climate proxies by applying extreme value theory to a set of tree
ring density series over northern North America. As the spatio-temporal statistical
model includes parametric spatial covariance functions, it can be used to interpolate
extremal behavior at unobserved locations. The tree ring density series are described
in the original publications as being predominantly temperature sensitive (Briffa
et al. 2002a, b). To the extent that the extremes in the tree ring density series
reflect extremes in climate, specifically temperature, any significant temporal and
spatial variations detected in the extremal behavior of the tree ring densities are
indicative of changes in the extremal characteristics of the climate system. However,
we stress that the established tree ring density–temperature calibration is in terms
of mean response, not extreme behavior. In addition, the density series are likely
not dependent exclusively on temperature, as trees are affected in a complex way by
numerous climatic and non-climatic variables, (e.g., NRC 2006; Evans et al. 2006).
Here we establish that the extremal characteristics of the proxy series display spatial
and temporal dependencies, which is a necessary precursor to using the proxy record
to directly reconstruct the extremal behavior of the climate variables for which the
proxies are informative—which is an aim of future research.

After reviewing extreme value theory in Section 2, we introduce the tree ring
densities proxies in Section 3, and provide an exploratory extreme value analysis
of these data in Section 4. We present a hierarchical Bayesian model that formally
investigates the spatio-temporal relationships in the extreme value parameters of
decadal maxima and minima in Section 5. These models build on previous work in the
paleoclimate extremes by including non-separable spatial and temporal effects. We
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describe the results of applying this model to the tree ring density series in Section 6,
and close with discussion in Section 7. Additional figures, modeling details, as well as
the Markov chain Monte Carlo algorithm used to fit the Bayesian model are provided
in the online supplement.

2 Statistical modeling of block-maxima for climate and paleoclimate series

The analysis of extremes generally proceeds via models for the tails of a distri-
bution. A cursory introduction is provided here in the context of the maxima of
(paleo)climate time series (results follow similarly for minima; see, e.g., Coles 2001,
p.52), and refer the interested reader to general reviews (e.g., Coles 2001; Resnick
2007; de Haan and Ferreira 2006; Finkenstädt and Rootzén 2004). Consider a set
of observations at regularly spaced time intervals, at a number of different spatial
locations. At any individual location s, an extreme value analysis on the time series
{Yt(s) : t = 1, . . . , T(s)} can be carried out using the block maxima approach, the
running-maxima approach, or the points-over-threshold approach. The block max-
ima approach is described below, picked primarily for the ease of modeling which
it affords for this initial investigation of space–time variability in the parameters
of the extreme value distributions of paleoclimate observations. The supplement
details the other two most commonly utilized approaches, and distinguishes between
marginal and multivariate extreme value analysis—an active area of statistical
research.

For many times series, the time increments fall naturally into blocks, such as
days or years. For a given block length B, suppose that the time series has a length
T(s) that is divisible by B. The time period can then be split into N(s) = T(s)/B
blocks, and the maxima, Mj(s) = max{Y( j−1)B+1(s), . . . , Y jB(s)}, calculated for each
block. Under certain regularity conditions, the series of block maxima asymptotically
follow a generalized extreme value (GEV) distribution (Coles 2001), which we denote
by Mj(s) ∼ GEV(η, σ, ξ). In practice, the GEV approximation improves for longer
block lengths, B. Assuming that the parameters of the distribution are independent
of time and space, the cumulative distribution function is given by

Pr{Mj(s) ≤ x} = exp

{
−

(
1 + ξ

[
x − η

σ

])−1/ξ

+

}
, (1)

where y+ = max{y, 0}. η ∈ R is the location parameter, with a larger value concen-
trating the distribution of the maxima at higher values. The scale parameter, σ > 0,
determines the spread of the distribution, with higher values resulting in a more
disperse distribution of the maxima. Finally, the shape parameter, ξ ∈ R, describes
the tail behavior of the distribution, with higher values corresponding to heavier tails.
When the shape parameter is negative, the tails are bounded; otherwise the tails are
unbounded. The minima are fit with the GEV models for maxima using the negative
of the original minima observations and the negative of the corresponding location
parameter estimates. Our key interest is to explore how the parameters of this GEV
distribution vary over space and time, in order to draw conclusions about spatio-
temporal evolution of the distribution which describes the extremal behavior of a
climate sensitive proxy.
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Fig. 1 a The location of the 34 tree ring density series, one series per grid box, arranged on a 5◦ × 5◦
grid over northern North America. In each box, the top number is the location identifier, and the
number in parentheses is the number of decades observed. b A histogram summarizing the number of
decades per location. c The black denotes the mean proxy value by year, averaged over all locations.
The gray region denotes the minimum and maximum proxy values per year, summarized over all
locations. The vertical dashed lines denote the years of significant volcanic events. d The number of
proxies that make up the average in each year

3 The proxies: annually resolved tree ring densities

The tree ring data set used here is a gridded version of the maximum late wood
density data set described in Briffa et al. (2002a, b)1 which has been included in
numerous efforts to reconstruct past climate (e.g., Briffa et al. 2002a, b; Mann et al.
2007, 2008, 2009; Tingley 2009; Rutherford et al. 2005). Analyzing the proxy data set
on a 5◦ by 5◦ grid will aid future comparisons of the extremes in the proxy series
with those in the Climate Research Unit’s gridded instrumental temperature data set
(Brohan et al. 2006), which is often used to calibrate paleoclimate reconstructions
(e.g., Luterbacher et al. 2004; Rutherford et al. 2005; Mann et al. 2008; Kaufman
et al. 2009).

The grid box averages are formed as weighted averages of the site chronologies in
each grid box, with weights determined by the number of trees in each chronology.
Each chronology in turn is formed by averaging cores from individual trees (roughly
20) for a given site, after removing growth effects (Briffa et al. 2002a, b). These
gridded density series are described as standardized residuals with arbitrary units. As
the time series span different lengths, the series represent residuals or anomalies with

1Data currently available at www.cru.uea.ac.uk/∼timo/datapages/mxdtrw.htm.

http://www.cru.uea.ac.uk/~timo/datapages/mxdtrw.htm
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respect to means calculated over different reference intervals. We guard against the
differing reference intervals influencing the interpretation of spatial and temporal
trends in the extremes by including location-specific intercept terms in the model
described in Section 5.

For this initial application of extreme value theory to decadal maxima and minima
of tree ring proxies, the study region is confined to northern North America, where
there are 34 series of lengths ranging from 11 to 58 decades; each grid box contains
one series. Figure 1a and b summarizes the set of spatial locations and the bimodal
distribution of the number of decades per location. As a summary of the overall
central tendency of the tree ring density series, Fig. 1c plots the mean across the
available observations for each year, which displays both high frequency and low
frequency variability. The vertical dashed lines in the figure display all known
volcanic eruptions since AD 1400 with reported Volcanic Explosivity Index (VEI)
greater than six (taken from Simkin and Siebert 1994). There are sudden reductions
in the mean across the density series after most of these large volcanic events.
The gray regions in Fig. 1c show the minimum and maximum values for each year
summarized over locations, indicating that, taking the region as a whole, the maxima
may be increasing over the years and the minima may be decreasing. However,
as Fig. 1d shows a disparity in the number of available observations over time
(with fewer proxies available at earlier time points), we caution against drawing
conclusions from these apparent patterns. We leave for future research the inclusion
of volcanic activity in the model, as further work is required to understand the delay
and spatial influence of volcanoes.

4 Exploratory extreme value analysis

For each of the tree ring series at the 34 different grid cells, the decadal maxima
and minima are calculated, along with the years within each decade at which they
occurred (Fig. 2 shows results for representative locations). There is clear evidence
of spatially varying temporal dependencies in the decadal maxima and minima series.
At the majority of locations, the decadal maxima exhibit increasing long-term trends
of differing magnitudes. The decadal minima are more mixed, with some areas in
the west exhibiting increasing trends (e.g., locations 2 and 29), and some areas in the
east exhibiting decreasing trends (e.g., locations 23 and 27). For the most part, the
variability of the decadal minima (with respect to the temporal trend) appears larger
than that for the the decadal maxima.

Separate GEV models are fit to both the decadal maxima and minima at each
location.2 To formally investigate temporal and spatial patterns in the extremes,
the GEV models include time as a covariate in the specification of the location
parameter. Let si (i = 1, . . . , I = 34) denote the spatial centroid of the grid cell
corresponding to the ith tree ring series, Mj(si) the decadal maxima (or min-
ima) in decade j ( j = 1, . . . , N(si)), yr j(si) the year in which the decadal maxima

2To address the appropriateness of a GEV distribution for the decadal maxima and minima, we
repeated the following exploratory analysis over blocks of 15 years—the results (omitted), are similar
to those obtained for decadal extremes.
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Fig. 2 The top left panel shows the locations of the 34 tree ring density series. Blue numbers denotes
the locations for which time series plots of the decadal maxima (black lines) and minima (blue
lines) are shown in the remaining panels. Thick solid lines give the estimated time-varying location
parameters, η̂ j(s), at each spatial location, using maximum likelihood, and dashed lines display the
associated pointwise 95 % confidence intervals for the location parameters

(or minima) occurred within decade j, and a j(si) = (yr j(si) − 1405)/600 a standard-
ized year variable. For each i, assume the {Mj(si) : i = 1, . . . N(si)} are independent
and GEV-distributed:

Mj(si) ∼ GEV(η j(si), σ (si), ξ(si)), with η j(si) = α(si) + β(si)a j(si). (2)

This model allows the temporal dependence of the location parameter, η j(si), to vary
as a function of space. On account of the limited number of observations at each
location, the scale, σ(si), and shape, ξ(si), parameters are assumed to vary spatially
across locations but are constant in time (see also, Sang and Gelfand 2009; Cooley
and Sain 2011).

Parameters of the GEV models are estimated via maximum likelihood (ML) in the
R software package (R Development Core Team 2011) using the ismev R library.3

Results confirm earlier observations, as the estimated location parameters for the
decadal maxima and minima (Fig. 2, thick solid lines) display temporal trends that
vary as a function of space. 95 % pointwise confidence intervals for the estimated
location parameters (Fig. 2, dashed lines) indicate that, on a site-by-site basis, there

3http://www.ral.ucar.edu/∼ericg/softextreme.php

http://www.ral.ucar.edu/~ericg/softextreme.php
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are significant, increasing trends in many of the decadal maxima series, while trends
in minima series are both positive and negative, depending on the location.

Spatial maps of the ML parameter estimates (see the supplement) show that,
for the maxima, the slopes in the model for the location parameter of the GEV
distribution tend to be positive. Long-term trends in the maximum decadal value of
the tree ring density are thus increasing across the majority of the spatial locations.
The ML slope estimates from the maxima model display strong spatial homogeneity,
and many of the negative values are associated with large standard errors, indicating
uncertainty in the direction of the slopes at these locations. The large standard errors
occur mostly where the tree ring series are shortest. For the decadal minima, there
is a spatially-cohesive region in the east for which the slope parameter is either no
different from zero or negative. The slope parameters in the west indicate that the
decadal minima are more likely to increase in value as a function of time. Exploratory
spatial analysis of the ML estimates suggests there is significant spatial correlation
and nugget effects in the intercept and slope parameters for the maxima and minima,
and in the model defined in Section 5 below, we include covariates (longitude and
latitude) to account for nonstationarities in space. The scale parameters display
strong spatial homogeneity, and results confirm that the decadal minima of the
tree ring density series tend to be more variable, with respect to the corresponding
temporal trends, than the decadal maxima. The estimates of the shape parameters
are more variable over space and suggest that the tails of the GEV distributions are
shorter for the maxima than for the minima.

While fitting GEV models (Eq. 2) individually to the decadal maxima (or minima)
at each location makes sense for a simple analysis, doing so does not leverage the
spatial dependence between the GEV parameters at nearby locations. A model
which takes into account the spatial persistence in the parameters allows estimates to
borrow strength across space, thus reducing uncertainties. In addition, fitting models
on a site-by-site basis complicates the overall joint assessment of significance, due to
the standard multiple comparison problem (e.g., Hsu 1996). The following section
presents a hierarchical model for extrema that avoids these issues by modeling the
joint distribution of the GEV parameters.

5 Bayesian hierarchical modeling of paleoclimate extremes

The key idea underlying the hierarchical statistical model developed in this
section is the notion of spatially varying coef f icients for the GEV distribution (e.g.,
Fotheringham et al. 2002; Gelfand et al. 2003). In the previous section, a different
value of the temporal slope is estimated in the model for the location parameter of
the GEV at each location, without regard for neighboring locations. Such a model
does not reflect scientific intuition, as it is anticipated that the geophysical variables
influencing tree growth—including the variables which influence extremes—will
vary smoothly as a function of space. Spatially varying coefficient models allow
information about a given parameter to be shared between spatial locations. When
there is even moderate spatial dependence among the parameters, such sharing
of information can overcome the sparse data issues (e.g., Little and Rubin 2002;
Banerjee et al. 2004) that affected the assessment of uncertainty at some of the
locations for the site-by-site analysis.
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5.1 Defining the hierarchical model

We assume that the distribution of the maxima (or minima) over decades j =
1, . . . , N(si) and locations si (i = 1, . . . , K) are independent, conditional on the
parameters of the GEV distribution, with

Mj(si)|η j(si), σ, ξ ∼ GEV(η j(si), σ, ξ). (3)

The location parameter η j(si) again satisfies Eq. 2. The scale and shape parameters
(σ and ξ) are modeled as each being constant over space and time, a modeling choice
motivated by the results of Section 4. We discuss a more general model for the scale
parameters in the supplement, but model diagnostics did not indicate any significant
improvements in model fit.

The spatially varying coefficient models for the intercepts, α(s), and slopes, β(s),
are specified in terms of Gaussian processes. In particular, it is assumed that each
is multivariate normal, with a mean that is linear in the longitude and latitude, and
a stationary, spatial covariance structure that captures residual spatial dependence
between locations, while allowing for a nugget effect that captures possible site-by-
site heterogeneity. Let lo(si) denote the longitude at spatial location si, and la(si)

denote the latitude at spatial location si. Define X to be a K × 3 design matrix
with first column all ones, second column (lo(s1), . . . , lo(sK))T , and third column
(la(s1), . . . , la(sK))T . Let NK(μ, �) denote the K-variate normal distribution with
mean μ and covariance �. Assuming α ≡ (α(s1), . . . , α(sK))T is independent of
β ≡ (β(s1), . . . , β(sK))T , the spatial models take the form,

α|λα, τ 2
α , ω2

α, φα ∼ NI
(
Xλα, τ 2

α R(φα) + ω2
α I

) ;

β|λβ, τ 2
β , ω2

β, φβ ∼ NI
(
Xλβ, τ 2

β R(φβ) + ω2
β I

)
. (4)

In Eq. 4, I is the identity matrix, λα = (λα,1, λα,2, λα,3)
T are the regression parameters

in the model for the spatially varying intercept, τ 2
α is the residual variance, and

ω2
α is the nugget variance, parameterizing the site-by-site heterogeneity that is

unaccounted for by the spatial model. The K × K matrix R(φα) defines the residual
correlation between spatial locations; assuming a stationary exponential correlation,
the (i, i′) element of the correlation matrix gives the correlation between centroids si

and si′ :

[R(φα)]i,i′ = exp(−||si − si′ ||/φα) . (5)

Here || · || is the chordal distance and is defined in the supplement. The use of the
chordal distance induces “a valid correlation function on the sphere” (Banerjee
2005, p.620), and allows for the interpretation of the range parameters in units of
kilometers. In Eq. 5 the range parameter φα defines the strength of the spatial
correlation between sites. The interpretation of the parameters characterizing the
spatially varying slopes, β, in Eq. 4 are similar.

To allow for full propagation of uncertainties, a Bayesian approach is taken to
fit the model defined by Eqs. 3–5. In addition, the Bayesian approach allows us to
make full summaries of the posterior distributions, which is useful, for example,
in characterizing the probability that trends in the GEV parameters of maxima or
minima are significantly different from zero. An alternative to using the Bayesian
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approach would be to fit the model via maximum likelihood with the Expectation-
Maximization (EM) algorithm (Dempster et al. 1977).

5.2 Bayesian inference: priors and sampling the posterior distribution

Bayesian inference requires that prior distributions be specified for all unknown pa-
rameters. Where possible, conjugate prior distributions are employed to simplify the
inference (see the supplement for details). In the Bayesian paradigm, all inference
is based on the posterior distribution. With η = (η j(si)) denoting the collection of
location parameters, the unknown parameters for the model of the previous section
can be collected in a single vector, θ = (

η, σ, ξ,α,β,λα, τ 2
α , φα, ω2

α,λβ, τ 2
β , φβ, ω2

β

)
.

The posterior distribution π(θ |y) of the parameters given the decadal maxima
(or minima) of the tree ring densities, y = (Mj(si)), is,

π(θ |y) ∝
⎧⎨
⎩

I∏
i=1

N(si)∏
j=1

f
(
Mj(si)|η j(si), σ, ξ

)⎫⎬⎭
× {

π
(
α|λα, τ 2

α , φα, ω2
α

)
π(λα)π

(
τ 2
α

)
π(φα)π

(
ω2

α

)}
× {

π
(
β|λβ, τ 2

β , φβ, ω2
β

)
π

(
λβ

)
π

(
τ 2
β

)
π(φβ)π

(
ω2

β

)}
× {π(σ)π(ξ)} . (6)

The first term defines the likelihood of the maxima at each location conditional on
the spatially—and decadally—dependent location parameter η j(si), scale parameter
σ and shape parameter ξ . The products follow from assuming conditional indepen-
dence between sites and decades, where f (Mj(si)|η j(si), σ, ξ) denotes the likelihood
at location si and decade j, as defined by Eq. 3. The second term is the model for
the spatially-varying intercept coefficients, π

(
α|λα, τ 2

α , φα, ω2
α

)
, conditional on the

regression parameters, (λα), variances
(
τ 2
α and ω2

α

)
and spatial correlation parameters

(φα). These parameters have mutually independent prior densities given by π(λα),
π

(
τ 2
α

)
, π(φα), and π

(
ω2

α

)
respectively. Similarly, the third term is the model for the

spatially-varying slope coefficients. In the final term, π(σ) and π(ξ) are the prior
densities for the scale and shape parameters, which are mutually independent.

The posterior distribution defined in Eq. 6 does not follow a well known dis-
tributional form. In such cases a standard strategy (e.g., Gelman et al. 2004) is to
sample from this distribution using a Markov chain Monte Carlo (MCMC) algorithm.
The supplement provides details of the algorithm used to sequentially draw samples
of the parameters θ given the data, y, and values of the hyperparameters. For
each run of the MCMC algorithm, the first 10,000 samples were discarded as a
“burn-in”, in order to guard against results being influenced by the algorithm being
initialized in an unlikely areas of the posterior parameter space (e.g., Gelman
et al. 2004, Section 11.6). In addition trace plots (time series plots of the MCMC
draws) were used to check that samples were “mixing well”, in the sense that draws
were representative of the posterior distribution as a whole, and not sampling a
subspace. 100,000 posterior samples were produced after the burn in, but to reduce
the autocorrelation between subsequent samples, only every 20th draw was retained.
Thus the Bayesian inference described below is based on 5,000 samples.
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6 Results

The model defined by Eqs. 3–5 was fit separately to the decadal maxima and minima
of the tree ring density series. The posterior mean and 95 % credible intervals
(CIs) for selected model parameters for the fits to the decadal maxima and decadal
minima are shown in Table 1. These tables indicate Bayesian learning in most of the
parameters—the posterior distributions of the parameters are different from prior
distributions, indicating that the data update our knowledge about the parameters.
Section 6 of the supplement demonstrates this learning graphically for two of the
parameters in the model. Table 1 confirms the findings of the exploratory data
analysis (Section 4). The scale parameter, σ , is larger for the minima model versus
the maxima model, indicating that the decadal minima exhibit more variability than
the decadal maxima. The 95 % CI for the shape parameter, ξ , in the decadal maxima
model is entirely below zero, which provides strong evidence of bounded tails for the
maxima (compare with Section 4). In comparison, the interval for ξ in the decadal
minima is wider, distributed over a higher set of values, and includes zero. The
broader range of values for ξ in the minima models reflects a higher uncertainty
in the tail behavior of the decadal minima. The inclusion of positive values in the
95 % CI for ξ likely reflects model uncertainty, rather than an unbounded tail
for the distribution of the minima; the Supplement discusses model diagnostics in
more detail.

The remaining parameters in Table 1 summarize the posterior distributions for
α(s) and β(s), the spatially varying intercepts and slopes in the location parameter
model given by Eq. 2. For the decadal maxima model, more negative values in the
95 % credible interval for λα,2 and λα,3 indicate that the intercepts, α(s), may decrease
with longitude and latitude. The 95 % CI for λβ,3 indicates a weakly positive increase
in the slopes, β(s), with latitude, while the interval for λβ,2 suggests (albeit with lower
significance) a weakly positive effect with longitude. In the decadal minima model,

Table 1 Posterior summaries of a subset of the parameters in the Bayesian hierarchical model for
the decadal maxima (left) and decadal minima (right) of the tree ring density time series

Parameter Decadal maxima Decadal minima

Post. mean Post. 95 % CI Post. mean Post. 95 % CI

σ 0.414 (0.395, 0.434) 0.546 (0.518, 0.574)
ξ −0.085 (−0.120, −0.047) 0.000 (−0.039, 0.043)
λα,1 0.525 (−2.044, 3.106) 2.626 (0.413, 4.834)
λα,2 −0.007 (−0.021, 0.006) 0.010 (−0.002, 0.020)
λα,3 −0.024 (−0.070, 0.019) −0.056 (−0.094, −0.019)
τ 2
α 0.151 (0.043, 0.331) 0.080 (0.013, 0.202)

φα 1083.719 (573.474, 1767.003) 1098.144 (574.274, 1782.636)
ω2

α 0.023 (0.004, 0.073) 0.015 (0.003, 0.048)
λβ,1 −0.561 (−2.528, 1.489) −2.323 (−4.909, 0.493)
λβ,2 0.006 (−0.003, 0.015) −0.017 (−0.031, −0.005)
λβ,3 0.036 (0.002, 0.071) 0.012 (−0.036, 0.055)
τ 2
β 0.038 (0.004, 0.152) 0.078 (0.007, 0.246)

φβ 1020.224 (488.242, 1757.427) 1095.691 (565.204, 1806.958)
ω2

β 0.022 (0.004, 0.069) 0.017 (0.003, 0.057)

The 95 % CIs are formed from the 2.5 and 97.5 percentiles of the posterior draws; for the shape and
regression parameters, intervals shown in bold do not contain zero



854 Climatic Change (2013) 117:843–858

the intercepts, α(s), significantly increase with latitude and there is a weakly positive
but less significant effect with longitude. In contrast, the slopes, β(s), significantly
decrease with longitude. In both the maxima and minima models, the longitudinal
dependencies are modulated by significant spatial covariances—as measured by the
posterior distributions of τ 2

α and φα for the intercepts, and τ 2
β and φβ for the slopes.

In the models for both the intercepts and slopes, the nugget effects, ω2
α and ω2

β , are
smaller in magnitude than the corresponding spatial covariance effects as measured
by τ 2

α and τ 2
β .

To investigate the net effects of the longitudinal dependence and spatial variability
of the slope parameters, posterior summaries of β(s) (from Eq. 2) are shown in Fig. 3,
for both the decadal maxima and decadal minima models. Monte Carlo methods are
used to sample from the posterior distribution of the slope parameters, conditional
on the data and model assumptions, while the model in Eq. 4 allows for predictions
of the β(s∗) at unobserved grid centroids s∗, as the covariates (longitude and latitude)
are fully observed and the covariance structure allows for the sharing of information
across space.

These posterior summaries indicate strong patterns in the temporal slope behavior
of the GEV location parameters for both the decadal maxima and the decadal
minima. The maxima display significant increases with time across the entire spatial
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Fig. 3 a Posterior summaries of the spatially varying slopes (β(s) from Eq. 2) for the location
parameters in the maxima GEV model at the measured grid cells (with gray borders) and the
unobserved locations (without borders). In each box, the top number denotes the posterior mean
slope value, and the number below in parentheses is the associated posterior standard deviation.
Boxes shaded pink have a slope that is positive with a posterior probability of at least 0.95; boxes
shaded blue have a slope that is negative with a posterior probability of at least 0.95. b As in a, but
for the spatially varying slopes for the location parameters in the minima GEV model
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domain, with the trends becoming larger and more certain moving to the east and the
north. The minima display significant increases with time in the western portion of
the region, decreases with time in the east (with varying levels of significance), and
do not display trends significantly different from zero in the center of the region. The
slopes for the minima are generally more uncertain in the eastern part of the domain,
as compared to the west.

Quantile plots were used to assess the distributional assumptions made by the
GEV models (see, e.g., Coles 2001, for general discussion of diagnostics for models
of extreme values). In general, the quantile plots show that the GEV models fit better
for the decadal maxima than for the decadal minima; further details and figures
are provided in the supplement. To investigate the robustness of our conclusions to
changes in the modeling and prior assumptions, we considered additional models for
the decadal maxima (and minima) of the tree ring density series (see the supplement
for details) and obtain qualitatively similar results and conclusions to those shown in
Fig. 3. While posterior diagnostics indicate that the GEV approximation is reason-
able in this particular application, a word of caution is in order. In most paleoclimate
applications, data are sparse and incomplete in both space and time. Paleoclimate
records reflect, at best, seasonal averages and the decadal blocks used here, while a
natural choice, are short. In related applications, it is quite possible that the data may
violate the extreme value theory assumptions and lead to non-interpretable results,
pointing to the need for careful model checking. In such situations, there are other
methods that are available for modeling the tail of the distribution. These include,
for example, a two parameter Gumbel model, the largest order statistic model (see
Coles 2001, pg. 66), and quantile regression.

7 Discussion and conclusions

Understanding and characterizing the distribution of climate extremes is an
important and societally relevant undertaking (Zwiers and Kharin 1998; IPCC 2007,
Chapter 3). While many reconstructions of late Holocene climate include statements
about the extent to which recently observed climate is, by some metric, extreme
(e.g., Mann et al. 1999; Luterbacher et al. 2004; Kaufman et al. 2009; Barriopedro
et al. 2011), such studies do not exploit the power of statistical extreme value theory.
Application of generalized extreme value theory to a suite of climate sensitive (Mann
et al. 2008; Briffa et al. 2002a, b) late wood tree ring density series over Northern
North America reveals a rich spatio-temporal structure in the distributional para-
meters governing the maximal and minimal behavior of the proxies. The analysis
presented here shows that the decadal maxima are trending upwards over this spatial
region, while the decadal minima are trending upwards in the west, and exhibit some
downwards trends in the east.

Centennial scale changes in either the mean behavior or the variability of the
proxies would result in changes in the distributions of the decadal maxima and
minima (Fig. SPM.3 from the IPCC SREX; Field et al. 2012), and a positive trend
in the maxima and negative trend in the minima is consistent with an increase in the
variability of the proxies with time. Results from the maxima and minima models
together thus indicate that the range in tree ring densities is increasing faster in
the east than the west, and the distribution is likewise more volatile in the east.
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While the analysis presented here is of tree ring density series, not temperatures,
the motivation behind this analysis is the importance of quantifying recent climatic
extremes in the longer term context afforded by the paleoclimate record (Field
et al. 2012; Luterbacher et al. 2004; Barriopedro et al. 2011). Any conclusions drawn
about the climate from this work necessarily assumes that the well-established tree
ring density–temperature connection for mean behavior (e.g. Briffa et al. 2002a, b)
likewise holds for extremes—an issue we defer for future research.

The linear model for the time dependence of the GEV location parameters is
likely a simplification, and many improvements to the hierarchical model presented
here are possible. Including covariates, such as green house gas concentrations,
solar irradiance, and volcanic forcing (c.f., Li et al. 2010) may improve model fit.
In particular, including information about large volcanic eruptions, which can be
associated with rapid and short climatic cooling, may improve the fit of the decadal
minima model. We stress that this work presents a novel framework for analyzing
the extremal behavior of climate proxies, and even the relatively simple models used
here provides significant evidence of temporal and spatial structure in the maxima
and minima. This methodology may be readily applicable to other proxy series, such
as oxygen isotope ratios from ice cores, or tree ring widths, where we stress once
more the importance of checking that the GEV model is an adequate description
of the maxima and minima; see Section 6. Understanding how the extremal value
properties of various climate-sensitive proxies differ from one another will be helpful
in interpreting climate reconstructions based on the different proxies.

The distributional behavior of extremes in space and time provides important
information about how the climate system is changing. Most paleoclimate reconstruc-
tions model the proxy-climate relationship as linear, with additive Gaussian errors
(see, e.g., Jones et al. 2009). When dealing with extremes, the assumption of Gaussian
errors is clearly incorrect, and a linear relationship in the underlying distribution
may not hold in the tails. This article provides an introductory framework and novel
first analysis for implementing extreme value methodology for paleoclimate series in
an effort to further understand long-term changes in climate behavior. The analysis
presented here reveals a rich space–time structure in the parameters governing
extremal behavior of climate sensitive proxy series—tying the results directly to the
climate remains an important area for future exploration.
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