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Abstract This paper presents an empirical study of the relationship between residen-
tial energy demand and temperature. Unlike previous studies in this field, the data
sample has a global coverage and special emphasis is given to the heterogeneous
response of different regions and to the contrasting effects on energy demand for
cooling and heating purposes. To account for this we distinguish between different
regions, seasons, and energy sources. Short- and long-run temperature demand
elasticities are estimated. These features make the model results especially valuable
in the analysis of climate change impacts as they provide an empirical basis for the
study of the impact of climate change on energy demand. To illustrate the potential of
the results as a basis for the study of climate change impacts, the estimates are used
in a simple exercise that projects changes in energy demand due to temperatures
increase in 2085.

1 Introduction

The consequences of climate change affect societies and natural ecosystems in
different ways. In turn, each of these effects also influence the behavior of those
who are affected. This is a form of adaptation to climate change, a change of habits
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consequent to the effects of climate change. Among the various behavioral changes
induced by climate change, the way the increase in average seasonal temperature
influences the residential demand for energy is of particular importance (Mansur
et al. 2008). On the one hand, energy use decreases with rising temperature because
of reduced demand for heating. On the other hand, energy demand can increase
to satisfy additional cooling needs. In addition, the temperature elasticity of en-
ergy use is likely to vary with climate conditions and income levels. For example,
air conditioning is a luxury good for low-income households and therefore their
electricity demand might actually be inelastic to temperature changes. Therefore
changes in energy demand for heating and cooling purposes are two important effects
influencing the final use of energy by households that act in opposite directions.

Residential demand for energy accounts for about a quarter of the overall primary
energy used, and it has been increasing since 1990 (IEA 2010). Not only will global
warming have consequences on the economy through changes in the demand for
energy, but different energy use patterns will have a feedback on climate change.
Rising temperature will reduce energy uses because of fewer needs for heating. On
the other hand, it will increase the demand for electricity to satisfy additional cooling
needs. Should the cooling effect prevail, overall energy demand, and consequently
greenhouse gases emissions (GHGs), could eventually increase, with a negative
feedback on climate change impacts. Understanding people’s ability to adapt their
behavior and habits to global warming is thus relevant. Studying the ability to adapt
to climate change may also help to design good policies for mitigation.

The issue of residential energy demand and its relationships with temperature has
received a lot of attention in the past. The need to assess the economic consequences
of climate change, including those related to energy demand, has spurred a renewed
interest. Unfortunately, most of the available estimations can hardly be employed
for this purpose, as they do not provide a global coverage (most of them refer to a
specific region or country), have a short-run perspective, and refer to variables that
are not normally used in climate change models (e.g., cooling/heating degree days).

The existing literature on the impact of weather on energy demand is mostly
characterized by fuel- and country-specific studies. Hanley and Peirson (1998)
analyzed the effect of temperature on the British residential electricity demand,
Vaage (2000) considered different technologies for residential heating in Norway,
Asadoorian et al. (2006) addressed the impact of temperature on Chinese provinces,
while Mansur et al. (2008) studied the effect on the US electricity market. These
are microeconometric studies, estimating, first, the demand for energy-utilizing
appliances and, subsequently, the conditional demand for energy. They rely on
detailed, disaggregated, data that are not always available for all regions in the
world. Other country-specific analysis have been performed with non-parametric
estimation techniques, such as Hanley and Peirson (1996, 1997, 1998), who studied
the relationship between energy demand for heating purposes and temperature in
the UK, and Zarnikau (2003), who analyzed consumption expenditures in the US.

An alternative approach modeled energy demand as a cointegrated process.
Cointegration has been used to study the relationship between energy demand and
Gross Domestic Product (GDP) growth in works such as Stern (2000), addressing
these issues for the US, and Masish and Masish (1996), focusing on South-East Asia.
Beenstock et al. (1999) also applied cointegration to study industrial and residential
energy demand in Israel, considering cooling and heating degree days, among other
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variables. More recently, Sadorsky (2009) used an error correction model to estimate
short- and long-run effects of CO2 emissions and oil prices on renewable demand.

Another stream of literature modeled energy demand as a dynamic process,
depending on a set of covariates and the lagged value of the dependent variable.
Pioneered by Balestra and Nerlove (1966), this method is better suited when dealing
with many countries and aggregate data. A similar study with an international
perspective is Bigano et al. (2006), in which both residential and industrial demand
for energy are studied for five types of energy sources (coal, gas, oil, oil products and
electricity) by means of a dynamic panel analysis.

The present work builds on Bigano et al. (2006), but follows Sadorsky (2009) in
modeling energy demand as a cointegrated process. The demand for three energy
carriers, namely gas, oil products, and electricity is analyzed using a world panel
of 31 countries.1 Emphasis is given on modeling the possible presence of regional
heterogeneity and seasonal differences. Clustering techniques are used to group
countries according to their climate characteristics. Countries belonging to the same
“temperature cluster” have similar distributions of temperatures, between seasons
and across time. Country heterogeneity is addressed not just by using different
constant terms in the regression equation, but also by specifying cluster-specific
relationships.

The contribution of this paper is twofold. From the methodological point of view,
it introduces the use of clustering techniques to account for regional heterogeneities.
Because of to this novel approach we are able to identify cooling and heating effects
for different country groups. The approach of the analysis, which is based on a dataset
with global coverage, allows us to derive results that are applicable in the context of
climate impact analysis. The estimated effects of temperature on energy demand can
be used in climate-economy models to assess the overall impacts of climate change
on energy demand.

The rest of the paper is organized as follows. Section 2 analyses the main factors
influencing the relationship between energy demand and temperature and introduces
the empirical model. Section 3 presents the dataset and addresses the issue of
clustering and partial pooling of the panel. Section 4 illustrates the model, the
estimation method, and the results obtained. To illustrate the applicability of the
results to climate change impact assessment, Section 5 shows numerical calculations
for the impacts of climate change on energy demand in 2085. Finally, Section 6
summarizes our findings and concludes.

2 Overview

The existing literature regarding temperature impacts on energy demand has usually
dealt with specific fuels, focusing mostly on residential electricity demand at the local
level. While we take a wider approach, considering different types of fuels as well as
a range of countries, we share with the existing literature some of the issues related
to the model formulation and estimation method.

1We exclude the analysis of coal because of data limitations regarding coal prices.
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A first issue is the choice of the indicator to measure climate variability. Average
temperature change is only one indicator of changes in climate. Other conditions,
such as changes in humidity and precipitations also affect energy demand habits.
Following the mainstream literarture, we focus on temperature changes.2

A second issue is the choice of the functional form used to best capture the
relationship between energy demand, temperature, and other explanatory variables.
Energy uses not only decreases with rising temperature because of reduced demand
for heating, but it is also expected to increase to satisfy additional cooling needs.
In addition, different types of fuels and energy carriers will respond differently to
temperature increases. The cooling effect is mostly linked to the use of air condi-
tioning and other household appliances. As these are mostly fueled by electricity,
the cooling effect is mostly present for electricity. Gas and oil products instead
are mostly used for heating and, therefore, they can be expected to decrease with
higher temperatures. Nevertheless, the energy mix of the power sector influences
these effects. For instance, in countries where electricity is used for both cooling and
heating, there may be a heating effect also for electricity. In order to account for the
differences across fuels, we specify different equations for each fuel type.

The relationship between energy demand and temperature depends on the season.
The same temperature increase will have different impacts in winter, spring, summer
or autumn. An increase in winter temperatures will cause a decrease in energy used
for heating purposes, whereas an increase in summer temperatures is likely to cause
an increase in energy for cooling. To identify in which seasons there is a cooling or
heating effect, as well as their magnitude, we include seasonal temperatures among
the explanatory variables.

Geographic variability also influences households’ responses to temperature in-
creases in their use of energy. In warm regions, higher temperatures have a greater
impact in the summer, because of the use of more air conditioning. In colder regions,
instead, energy demand could be almost unaffected by higher summer temperatures,
but will typically be more responsive to winter, fall, or spring temperatures.3 We
account for geographic variability by controlling for different average temperature-
based country groups.

Finally, energy demand is also influenced by income levels, as wealth and income
affect the ability to adapt to climate change. For example, richer countries can spend
more in cooling devices (which are superior goods). Economic growth and changes in
income over time also influence households’ consumption patterns. As illustrated in
the OECD Environmental Outlook to 2030 (OECD 2008), energy demand increases
as income grows, because of the higher use of household appliances, heating, cooling
equipment and other energy-consuming devices.

The demand for fuels is a derived demand for energy services. Household demand
for energy is related to the stock of energy-utilizing appliances and equipment in
place. Variations in prices, income or temperature, therefore, induce changes in
energy demand, which adjust progressively over time because of the physical capital
inertia. The literature accounted for the dynamic nature of energy demand using

2The choice of the indicator used for temperature change is discussed in the following section.
3Note that the distinction between colder and warmer climates can only partially account for the
geographic variability between and within regions. In fact, variables other than average temperatures
may be relevant, such as the presence of mountains, coastal areas, lakes, precipitations or monsoons.
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two different approaches. In the first one, energy demand is estimated at a micro
level, conditional on the demand for energy-using appliances. This method is very
demanding in terms of a data and it has been mostly used in country/sectoral studies.
A second approach models energy demand as a dynamic process, depending not
only on prices, income, and temperature, but also on the lagged value of energy
demand. This method, pioneered by Balestra and Nerlove (1966), is more suitable
when dealing with many countries and aggregate data.

We specify a dynamic model of household demand for electricity, gas, and oil
products. Energy demand is modeled as an autoregressive process, depending on its
own lagged values, as well as a set of independent variables, such as energy prices,
temperature, and per capita GDP.

For N number of countries and T years, the model can be specified as follows:

yit = c + γ yit−1 + βxit + uit for i = 1, ..., N and t = 1, ..., T (1)

where:

– yit is the natural logarithm of household demand for respectively electricity, gas,
oil products and coal;

– yit−1 is the natural logarithm of the lagged dependent variable;
– xit is the vector of covariates, including natural logarithm of own and alternative

energy good prices, average seasonal temperature levels, real per capita GDP;
– uit is the disturbance term.

3 Data analysis

3.1 Data description

The dataset used in the analysis consists of time series observations, spanning from
1978 to 2000, for 31 OECD and non-OECD countries. As mentioned above, the
paper focuses on the residential sector, as industrial demand for energy does not
seem to respond significantly to price (Liu 2004) and temperature changes (Bigano
et al. 2006; Asadoorian et al. 2006). Table 1 summarizes the sources of data used to
construct the dataset.

Table 1 Data sources

Variable Data source Unit of measurement

Energy demand (by fuel) Energy Balances and Statistics (IEA) Ktoe
Energy prices (by fuel) Energy Prices and Taxes (IEA) US$/toe
Temperature High Resolution Gridded Dataset Degree Fahrenheit

(Climate Research Unit University of
East Anglia and Tyndall Center
for Climate Change Research)

GDP (PPP) Main Economic Indicators (OECD) 1995 US$
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Fig. 1 Energy demand by fuel over time (1978–2000)

Data for residential energy demand for different fuel types are obtained from
the Energy Balances and Statistics database of the International Energy Agency
(IEA). Demanded quantities are expressed in thousand tons of oil equivalent (Ktoe).
Figure 1 illustrates the changes in overall energy demand over time for the covered
regions. The data show that there has been a slow increase in energy demand with a
change in the fuel mix. In particular electricity use has increased while that of coal
has decreased. Oil and gas have been rather stable. Household fuel prices, measured
in US$/toe, are obtained from the end-user prices indicators of the IEA’s dataset
on Energy Prices and Taxes. GDP data are obtained from the Main Economic
Indicators dataset of the OECD. GDP is measured in 1995 US$ using Purchasing
Power Parity (PPP).

In the choice of the indicator for temperature, two main measures have been
considered: average temperatures and heating and cooling degree days.4 The use of
degree days has become particularly popular in the studies dealing with residential
demand for space heating and cooling (Madlener and Alt 1996; Parti and Parti 1980).
Degree days are used to segment temperature variations and thus easily capture the
increase in electricity demand due to an increase in the cooling days or to a decrease
in the heating days. However this measure has some drawbacks. It is threshold-
dependent and assumes a sudden switch from heating devices to cooling equipments,

4Degree days are defined in relation to the difference between the observed temperature and a
threshold value, which can vary across regions. When the average daily temperature is above a
certain threshold, the day is classified as a cooling degree day. It is a heating degree day when the
average daily temperature is below the threshold and therefore, when it is cold. The threshold is
calculated based on the heating and cooling needs.
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Fig. 2 Energy demand by fuel over time (1978–2000)

while the adjustment to temperature changes is gradual. The approach based on
degree days also requires a large amount of information. Heating and cooling degree
days are calculated using daily temperature data. The available datasets usually have
a regional or national coverage, making it difficult to implement a panel study with
global coverage.

Average temperature, which is used in a number of studies (Moral-Carcedo and
Vicens-Otero 2005; Mansur et al. 2008; Hanley and Peirson 1998; Asadoorian et al.
2006), allows establishing a direct relationship between temperature and energy
demand. Such relationship can be applied more easily to climate-economy models
in which the most common indicator used for climate change is a global temperature
increase. Further, this approach makes it easier to collect data for different countries
and thus to construct a panel. For the purpose of this study, which aims at establishing
a relationship between energy demand and climate change to be used in global
climate-economy models, the use of average temperatures has been chosen.

Temperature data have been obtained from the High Resolution Gridded Dataset
of the Climate Research Unit University of East Anglia and from the Tyndall Center
for Climate Change Research (see Mitchell et al. 2003).5 This dataset is unique for
geographical coverage, the length of the time series, and monthly details. However,
it has limited time coverage as the data are available only until 2000. As illustrated in
Fig. 2, there has been a mild increase in annual temperatures but greater changes
in seasonal temperatures. In particular, there have been large changes in winter

5The present work deals with a panel of countries that belong to different hemispheres. In this
context simply using seasonal averages for all countries would have created a bias in the different be-
havior between northern- and southern-hemisphere countries. Consequently, seasonal temperatures
were calculated as the average temperature in the months related to a certain season. For example,
winter temperature in France is the average between the temperatures of December, January and
February, whereas in Australia it is the average between the temperatures of June, July, and August.
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temperatures, including wide fluctuations in the average temperature levels. The
difference in changes between seasonal temperatures in the dataset supports the idea
that seasonal temperatures should be used instead of the yearly ones.

3.2 Data poolability and clustering

When dealing with country panels, a standard estimator is the fixed effect estimator.
This method would estimate a coefficient for temperature common to all countries,
with only country specific constant terms. This approach is unsatisfactory here
because the effect of temperature is expected to vary between warm and cold
countries.

Since the time dimension is sufficiently large, the poolability hypothesis can be
tested using a Wald test.6 The panel can be considered as N pooled time-series
observations of length T, grouped in M pools. For each of these time series, we
consider the autoregressive model:

yit = c + γ yit−1 + βxit + uit

uit = ρi + νit (2)

Note that with this formulation the constant term becomes country-specific and the
model can be rewritten as a fixed effect model by naming αi = ρi + c:

yit = αi + γ yit−1 + βxit + νit (3)

This model allows for correlation between the country-specific constant term and the
regressors, Cov(αi, xit) �= 0.

Assuming a homogeneous panel implies that the pool-specific vectors θ j = (βj, γ j)

for j = 1, ..., M are the same for all pools. This can be tested with a usual parameter
restriction test in which the Null Hypothesis is the homogeneity of the panel:

H0 = θ1 = θ2 = ... = θM

H1 = at least one of the above does not hold

This test is significantly rejected for all four types of fuel, when each pool contains
only one region. The next step involves the identification of characteristics for which
countries are similar enough to be grouped into the same pool. In particular, the aim
is to diversify the regions according to their temperature characteristics into cold and
warm regions.

Clustering algorithms can be used for this purpose. Studies in different fields
have used this methodology. For instance, Lehmijoki and Paakkonen (2006) consider

6Recent econometric literature on panel data have compared the validity of homogeneous versus
heterogeneous estimators, to obtain energy demand elasticities with respect to price and income.
Whereas some authors favor the pool estimator despite the rejection of the poolability assumption
(Baltagi and Griffin 1997), Pesaran and Smith (1995) favor an estimator based on the individual time
series.



Climatic Change (2013) 116:805–825 813

0
20

40
60

L2
 d

is
si

m
ila

rit
y 

m
ea

su
re

ch us dk nz lu tr gr it pt za mx in ve th ca se no

Dendrogram for tann_clust cluster analysis

Fig. 3 Cluster dendrogram

demographic pools to study convergence and divergence between the groups. Durlaf
and Johnson (1995) consider multiple regimes in which different economies follow
different linear models. Vahid (2000) considers clustering of regions to study the
gasoline demand functions of OECD countries.

Following Kaufman and Rousseeuw (2005), Hartigan (1975) and Everitt (1974),
we use hierarchical cluster analysis to split the sample in terms of average temper-
ature characteristics. This clustering technique splits the sample into partitions in
a hierarchical form. Hierarchic cluster analysis is based on the concept of distance.
The metric that is used here is the Euclidean distance, though the results are robust to
different definitions of distance. The cluster variables, that is, the characteristics used
to define a distance between observations, are the annual average, maximum and
minimum temperature. The clustering algorithm produces the partition tree (cluster
dendrogram) illustrated in Fig. 3.7 It is then necessary to decide how many clusters to
use (this is usually referred to as “pruning” the dendrogram). Follwing the structure
of the dendrogram, we have grouped the countries in three temperature clusters:

– Group Mild: Austria, Belgium, Denmark, France, Germany, Ireland,
Luxembourg, Netherlands, New Zealand, Switzerland, Greece, Hungary,
Italy, Japan, South Korea, Portugal, South Africa, Spain, Turkey, United
Kingdom, United States.

– Group Hot: Australia, India, Indonesia, Mexico, Thailand, Venezuela.
– Group Cold: Canada, Finland, Norway, Sweden.

7Not all countries are included as the tree only displays countries with a certain degree of difference
in annual temperatures. Nevertheless, the cluster analysis is applied to all countries in the sample
used for the estimation and they are all assigned to a certain group.
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The high correlation among average, maximum, and minimum temperature
(around 0.8) signals the existence of some redundancy, and suggests that it could
be sufficient to use one of these three variables to identify the clusters. Indeed, using
just one of the three variables leads to the same grouping, except when the maximum
temperature was used, in which case two groups were produced. Descriptive statistics
of the temperature variables are summarized in the Appendix.

3.3 Data characteristics: time series properties

The panel is characterized by a relatively large time dimension. In this context, the
temporal persistence of the series can be an issue and therefore we check their
stationarity with unit root tests for panel data. There are a number of tests for panel
stationarity, most of which are based on the Null Hypothesis of a unit root. These
tests verify whether there is a unit root in the panel, assuming that long- and short-
run effects are the same. Examples are the Im–Pesaran–Shin test (Im et al. 2003),
the Levin and Lin Chu test (Levin and Lin 1993) and the Fisher test (Maddala and
Wu 1999). We also consider the Hadri test (Hadri 2000), which reverses the Null
Hypothesis. Table 2 reports panel unit root tests. All tests contain an intercept and a
time trend. The first family of tests tends to reject the Null Hypothesis that there is
a unit root, with the exceptions of electricity demand and prices, coal and oil prices.
For the other variables, not all tests agree in rejecting the Null Hypothesis of a unit
root. The results of the Hadri test instead are more homogeneous and they reject the
Null Hypothesis of stationarity at 1% significance level.

Given these results, we check for panel cointegration between energy demand,
prices and GDP using the Westerlund test for panel data (Westerlund 2007). This test
does not pose restrictions on the equality between short- and long-run effects. It is
based on the Null Hypothesis of no cointegration, and checks for an Error Correction
Model (ECM) specification. Testing whether the Error Correction parameter is zero,
allows us to conclude whether the ECM specification is correct and thus whether
the panel is cointegrated. The Westerlund test reports four statistics. The Ga and
Gt test statistics evaluate the Null Hypothesis of no cointegration for all i against
the Alternative of cointegration for at least one i. The Pa and Pt test statistics pool
information over all the cross-sectional units to test the Null Hypothesis H0 of no

Table 2 Panel unit root tests

***Reject H0 at 1%
significance level
**Reject H0 at 5%
significance level
*Reject H0 at 10%
significance level

Electricity Gas Oil Coal

Demand
Levin–Lin–Chu 0.12 0.00*** 0.00*** 0.00***
Im–Pesaran–Shin 0.995 0.02** 0.00*** 0.039**
ADF–Fisher 49 89*** 347*** 106***
Hadri 0.00*** 0.00*** 0.00*** 0.00***

Prices
Levin–Lin–Chu 0.01*** 0.00*** 0.25 0.11
Im–Pesaran–Shin 0.44 0.00*** 0.96 0.50
ADF–Fisher 150*** 78*** 81*** 42
Hadri 0.00*** 0.00*** 0.00*** 0.00***
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Table 3 Energy demand—results from the Westerlund cointegration test (Ga test statistic)

Statistic Electricity Gas Oil Coal

P-value 0.018 0.67 0.00 0.00

H0: no cointegration for all i

cointegration for all i versus the Alternative H1 of cointegration for all i. Using the
statistic Ga, we reject the Null Hypothesis of no cointegration for the electricity and
oil demand equation, while we cannot reject it for the gas demand equation (results
reported in Table 3). The Null Hypothesis H0 can never be rejected when using the
Gt, Pa and Pt statistics.

Although results are mixed, there is some evidence that series are nonstationary
and cointegrated. Therefore, we specify an ECM model for the demand of the
different energy vectors.

4 Estimation of temperature elasticities

4.1 Model specification

We estimate short- and long-run elasticities using an Error Correction Model (ECM)
approach as in Masish and Masish (1996). In this approach changes in the dependent
variable, in our case the demand for different energy vectors, is modeled as a function
of the level of the disequilibrium in the long-run cointegrating relationship, and
changes in the other explanatory variables:

�yit = c + β1�yit−1 + β2�xit + λ(α1 yit−1 − α2xit−1) + uit

for i = 1, ..., N and t = 1, ..., T (4)

where λ is the error correction towards the long-run relationship. Deviations from
the cointegrated relationship are corrected through a series of short-run adjustments.

In order to differentiate the impact of seasonal temperature by temperature clus-
ter, we introduce a dummy for each temperature group. Mild countries are associated
with the unit value of d1; Hot countries are represented by d2 and finally Cold
countries are identified by d0. This is the reference group and therefore its dummy-
related variables are not included in the regressions. Dummies differentiate the
effects of temperature increases between groups through a group-specific intercept.
To differentiate the effects on the slope, we interact all covariates with the dummies.
With these additional variables, the model reads as follows:

yit =
∑

j=0,1,2

αijdj +
∑

j=0,1,2

β1 j�yit−1dj +
∑

j=0,1,2

β2 j�xitdj

+ λ

⎛

⎝
∑

j=0,1,2

γ1 jyit−1dj −
∑

j=0,1,2

γ2 jxit−1dj

⎞

⎠ + νit (5)

where j = 0, 1, 2 and 0 = Cold, 1 = Mild, 2 = Hot.
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The effect of each regressor now depends on the value of the dummy which iden-
tifies the group considered. This aspect becomes clearer if the model is formalised as
follows:

yit = αi0 + β10 yit−1 + β20xit + λ(γ10 yit−1 − γ20xit−1) + νit if d0 = 1

yit = (αi0 + αi1) + (β10 + β11)yit−1 + (β20 + β21)xit if d1 = 1

+ λ(γ11 yit−1 − γ21xit−1) + νit

yit = (αi0 + αi2) + (β10 + β12)yit−1 + (β20 + β22)xit if d2 = 1

+ λ(γ12 yit−1 − γ22xit−1) + νit

The marginal effect of x on energy demand in the Group of Mild countries, ∂yit

∂xit
=

β20 + β21, is different from that on countries belonging to either the Group Hot,
∂yit

∂xit
= β20 + β22, or the Group Cold, ∂yit

∂xit
= β20. Moreover, the intercept differs across

groups: αi0 + αi1 for Group Mild, αi0 + αi2 for Group Hot and αi0 for Group Cold.
We estimate the ECM model using heteroskedasticity robust variance-covariance
matrix.

4.2 Results

The results from the ECM estimations are reported in Table 4. The data on coal
prices are too few to estimate the model. Thus results are only presented for gas, oil
products, and electricity. Group dummies have been included only in the electricity
demand regression as there were not sufficient data points to account for cluster
heterogeneity in the gas and oil products equations. Very few observations are
available for gas price in the cold and hot groups, where there are observations
only for one and two countries, respectively. The demand for electricity was initially
estimated including all seasonal temperature variables, but in a second stage, the
temperature variables that were not significant were dropped. The Appendix reports
the regression results when all variables are included.

The estimated coefficient on the error correction term λ is negative and always
statistically significant. This demonstrates the importance of the error correction
in adjustments to equilibrium, though the small coefficients indicate that when the
system is not in equilibrium, there is between 10 and 16% correction towards the
long-run equilibrium level in the current period, with the highest adjustment in gas
demand. Results reveal the presence of short- and long-run effects of temperature,
with an estimated impact that is larger over the long-run. Cooling and heating
adjustments are observed both in the short- and long-run. Evidence of the cooling
effect are shown by the positive coefficient of either summer or spring temperature,
depending on the region considered. The heating effect is captured by the negative
elasticity of gas and oil to temperature variables. Summer temperature leads to a
higher annual electricity demand to feed a higher usage of air conditioners. The
other fuels instead tend to respond negatively to temperature increases, especially
when occurring in the fall, spring, or winter.

In the case of electricity demand, different behaviors can be identified for cold,
hot, and mild countries. Table 5 reports temperature elasticities for the three
countries group and for each type of fuel. Long-run elasticities can be calculated
from the results in Table 4 simply by dividing the long-run coefficients by the
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Table 4 Error correction model results—coefficients (t-statistic)

i = Electricity i = Gas i = Oil products

Short run
�yi(−1) 0.081 (1.86)* 0.089 (1.00) 0.023 (−0.501)
�gdppc 0.076 (−1.1) −0.490 (−1.71) −0.201 (−0.5)
�pi −0.007 (−0.76) −0.028 (−0.41) 0.058 (0.38)
�p j −0.149 (−1.44) 0.000 (0.00)
�Summer −0.393 (−4.64)*** −0.949 (−4.2)*** −0.231 (−0.43)
�Winter −0.180 (−4.31)*** −0.222 (−1.59)
�Fall −0.002 (−0.38) −0.025 (−2.46)**
�Spring −0.162 (−1.61) −0.264 (−0.98) −0.702 (−2.59)**
�Summerd1 0.430 (3.27)***
�Winterd1

�Falld1

�Springd1 −0.131 (−0.94)
�Summerd2 1.317 (4.7)***
�Winterd2

�Falld2

�Springd2 0.777 (3.34)***
Long run

yi(−1)(λ) −0.096 (−5.13)*** −0.162 (−2.5)** −0.117 (−4.29)***
gdppc(−1) 0.084 (2.52)*** 0.303 (2.34)** 0.168 (2.19)**
pi(−1) −0.016 (−3.9)*** −0.016 (−0.28) −0.076 (−1.18)
p j(−1) −0.169 (−3.02)*** −0.023 (−0.35)
Summer(−1) −0.321 (−1.81)* −1.008 (−1.59) −0.912 (−1.54)
Winter(−1) −0.085 (−2.94)*** −0.422 (−5.64)*** −0.406 (−2.19)**
Fall(−1) 0.685 (1.65) 0.0002 (0.03)**
Spring(−1) 0.522 (5.72)*** 0.686 (1.65) −0.395 (−0.84)
Summerd1(−1) 0.521 (2.44)**
Winterd1(−1) −0.085
Falld1(−1)

Springd1(−1) −0.599 (−6.17)***
Summerd2(−1) 0.495 (−1.44)
Winterd2(−1)

Falld2(−1)

Springd2(−1) −0.259 (1.06)

OBS 525 399 399
T 21 21 21
N 25 19 19
R-sq 0.2554 0.2924 0.1763

***Significant at 1%
**Significant at 5%
*Significant at 10%
d0 : Cold countries
d1 : Mild countries
d2 : Hot countries

appropriate adjustment coefficient, λ. While higher summer temperature leads to
an increase in electricity demand in mild and hot regions, it has the opposite effect
in cold regions. Mild and hot regions are characterized not only by higher average
temperature levels, but also by a higher variability in summer temperature, as shown
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Table 5 Short- and long-term
temperature elasticities

Electricity Gas Oil

Short-run
Summer Cold −0.39 −0.95

Mild 0.037 −0.95
Hot 0.92 −0.95

Winter Cold −0.18
Mild −0.18
Hot −0.18

Spring Cold −0.16 −0.70
Mild −0.29 −0.70
Hot 0.61 −0.70

Fall Cold −0.025
Mild −0.02
Hot −0.025

Long run
Summer Cold −3.33

Mild 2.08
Hot 1.80

Winter Cold −0.88 −2.60 −3.45
Mild −0.88 −2.60 −3.45
Hot −0.88 −2.60 −3.45

Spring Cold 5.42
Mild −0.79
Hot 5.42

Fall Cold −3.361
Mild −3.36
Hot −3.36

in the Data Statistics in the Appendix. A temperature increase in the spring can
also be associated with an increase in electricity demand in regions with extreme
weather conditions, namely hot and cold regions. The strong and positive effect of
spring temperature compared to summer temperatures can be explained with the fact
that the dependent variable is the annual, and not the seasonal, demand for energy.
Annual demand is expected to be affected more by the overall length of the hot
season than by higher average temperatures in summer.

The heating effect is stronger for oil than gas. Only a temperature increase in
winter would reduce the demand for all three energy carriers considered here. The
demand for gas and oil products, mostly used for heating, is particularly sensitive
to changes in winter, spring, and fall temperatures. An increase in temperature in
these seasons reduces the demand for these types of energy vectors, but only in
mild-climate regions. Only in the summer cold countries seem to use less electricity.
Instead cold regions would increase electricity use in spring.

Table 6 Income and price long run elasticities (only significant elasticities are reported)

Income Price

Electricity Gas Oil products Electricity Gas Oil products

0.88 1.87 1.43 −0.17 −1.04
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Table 7 Long run elasticities in the literature

Income Price Type of data

Liu (2004) −2.243:4.23 −0.6:0.85 Panel, OECD
Nordhaus (1977) 0.29:1.11 −1.94:1.45 Panel, OECD
Pindyck (2006) −1.7:−1 Cross section, OECD
Kouris (1983) −0.43 Dynamic time series
Prosser (1985) −0.4 Dynamic time series, OECD
Engested and Bentzen (1993) 1.21 −0.47 Denmark, time series
Balestra and Nerlove (1966) 0.62 −0.63 Panel, USA

Regarding the other covariates, GDP per capita and fuel prices are significant
only in the long-run. Table 6 reports the own price and income long-run elasticities.
Table 7 reports the results of the exiting literature. Our price and income elasticities
are within the ranges estimated in other studies. When significant, income elasticity is
always less than one and positive, signaling the tendency for richer people to increase
energy consumption. Significant price elasticities are always negative, pointing at the
substitution possibilities among fuels.

The Appendix reports additional regression results obtained considering a shorter
time period. A number of countries are characterized by a significant reduction in oil
demand immediately after the oil shock, between 1978 and 1983. The three demand
equations were thus estimated for the sub-period 1984–2000. Coefficient estimates
are in line with the estimates obtained using the full sample, although shortening the
sample tends to weaken energy temperature elasticity, especially in the short-run.

5 Assessing climate change impacts on energy demand: an illustrative application

A novel aspect of the estimation exercise described in this paper is its global coverage
and the selection of explanatory variables, which makes it possible to apply the
results to study the economic impacts of climate change on energy demand. To
exemplify the point, this section presents a simple application merely intended at
illustrating the procedure and the type of output that can be obtained.

Energy consumption levels for a selected group of countries have been projected
to 2085, distinguishing the three categories of electric energy, gas and oil products,8

neglecting changes in temperatures. In a second step, we considered the seasonal
temperature scenarios for the century available through High Resolution Gridded
Dataset of the Climate Research Unit University of East Anglia and from the Tyn-
dall Center for Climate Change Research (Mitchell et al. 2003). Using temperature
elasticities described in the previous section, we constructed the variations in energy
demand induced by temperature changes. These variations, expressed in thousands
tons oil equivalent (Ktoe), are displayed in Table 8.

8To this end, we considered baseline consumption levels at 2000. Increases in energy consump-
tion have been obtained on the basis of available population (source:GGI Scenario Database,
http://www.iiasa.ac.at/Research/Models/index.html, referring to IPCC SRES scenario B2) and in-
come per capita growth scenarios (source: own elaboration from World Bank data). Changes
in energy demand due to higher income levels were obtained using income demand elasticities
estimated in this study.

http://www.iiasa.ac.at/Research/Models/index.html
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Table 8 Variation in energy
consumption (KTOE) at 2085
due to climate change

Electricity Gas Oil prod. Total

Group Mild
Austria 737 0 −8251 −7514
Belgium −4309 −19178 −17626 −41113
Denmark 392 0 −3609 −3217
France −6008 −66735 −29909 −102652
Germany 3412 0 −43107 −39695
Greece −143 0 −11258 −11400
Hungary 1903 0 −2478 −575
Ireland −460 −920 −4242 −5623
Italy −726 −18775 −11389 −30890
Japan 7710 0 −51411 −43701
Luxembourg 49 0 −1410 −1360
Netherlands −4037 −46408 −275 −50721
New Zealand 989 −84 −127 778
Portugal 513 0 −3191 −2678
South Africa 7148 0 −5797 1352
South Korea 3110 0 −80844 −77734
Spain 262 −4721 −17343 −21801
Switzerland 8678 0 −167257 −158579
Turkey −9894 0 −28507 −38402
U.K. −13152 −153837 −13051 −180041
U.S.A. 109469 0 −217452 −107983

Group Hot
Australia 11211 −4860 −1140 5211
Indonesia 25432 0 −188342 −162909
India 118545 0 −753008 −634463
Mexico 35862 0 −104515 −68653
Thailand 20063 0 −33714 −13651
Venezuela 12013 0 −13306 −1294

Group Cold
Canada −31317 0 0 −31317
Norway −14865 0 −1952 −16817
Finland −4755 0 −5239 −9994
Sweden −11017 0 −5308 −16324

Total 266816 −315518 −1825057 −1873759

The results show that there is a clear heating effect for cold countries and a
cooling and heating effect in hot countries. Results are mixed for mild countries. This
application shows that it is possible to calculate the overall effect of temperature rise
on energy demand. This will be positive or negative according to whether the heating
or cooling effect prevails. In most countries, the heating effect prevails leading to
an overall decrease in energy demand. The exceptions for this are New Zealand,
South Africa and Australia. The heating effect also prevails at the global level, as
temperature causes an overall decrease in energy demand.

The country-specific results can also be related to the fuel mix in the various
regions. Cold regions have declining levels of fossil fuel energy as well as electricity.
This is not only due to the prevailing heating effect, but also to the fact that in these
regions electricity occupies a large share of the energy mix (ranging from almost 30%
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in Canada to around 80% in Norway). This is true also for other countries, such as
France, where the share of electricity is high due to the widespread use of nuclear
energy. An opposite example, is that of Germany, where the share of electricity is
lower and its consumption increases due to a cooling effect.

It is important to keep in mind that this exercise is merely illustrative, as it does
not consider any general equilibrium effect or over-time adjustments. A reliable
conclusion on the overall change in energy demand can only be obtained applying the
empirical results in a climate-economy model that considers economy-wide effects.

6 Conclusions and extensions

Climate change causes variations in seasonal temperatures, which affect patterns
of residential energy demand for heating and cooling. This paper has attempted to
identify and quantify these effects through an empirical analysis of energy demand
responses to temperature variations. The analysis is based on a panel of OECD and
non-OECD countries for different types of fuels. The empirical model is based on
an Error Correction formulation, which reflects the statistical characteristics of the
data.

The analysis shows that the cooling effect can be seen through the increase in
electricity demand caused by rising summer and spring temperatures. Such an effect
is present in mild and warm regions. The heating effect can be seen through a
demand reduction for those fuels that are typically used for heating purposes, gas,
and oil products. The overall effect of higher temperatures on annual energy demand
depends on the region. Cold countries, such as Canada and Norway, experience
reductions in all components of energy demand. In mild countries, like Italy, the
higher demand for electricity during the summer is compensated by a lower demand
for gas and oil products in winter and spring. In warm countries, such as Mexico, the
cooling effect leads to increases in energy demand not only in the summer, but also
in the spring.

The contribution of this paper is twofold. First, the differentiation between
different temperature clusters employed in the paper facilitates the identification of
the cooling and heating effects. Second, this paper takes a more global approach
using a broader dataset than earlier studies, in terms of regional disaggregation
and fuel types. Because of their global coverage, the results from the analysis can
be applied to climate-economy models and used for the climate change impacts
assessments.

To illustrate the potential of the results in supporting climate impact assessment,
we used the estimates to gauge the economic impacts of climate change on energy
demand in the year 2085. We found that the total effect, for the group of countries
we considered, is a significant reduction in energy consumption, amounting to more
than 1.8 bn Ktoe. Most of this reduction is due to a drop in demand for oil products,
used for heating purposes.
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Appendix A: Data statistics summary

Table 9 Summary statistics for the three temperature groups

Group Mild Group Hot Group Cold

Obs Mean Std. dev. Obs Mean Std. dev. Obs Mean Std. dev.

Gas 368 12223 26162 23 1798 510 46 5687 5874
Electricity 483 6693 16694 138 1739 1334 92 4204 3525
Coal 483 1366 2398 138 1248 2788 92 31.22 31.54
Oil pr. 483 5706 8986 138 4312 4824 92 2775 2450
GDP per capita 483 16874 6368 138 6617 6044 92 20142 2855
T ann 483 73 5.450 138 97 3.688 92 54 5.712
T max 483 89 6.313 138 103 2.614 92 78 2.946
T min 483 57.053 8.0712 138 90 8.148 92 30.093 11.534

Table 10 Summary statistics for the three temperature groups

Group Mild Group Hot Group Cold

Obs Mean Std. dev. Obs Mean Std. dev. Obs Mean Std.dev.

GDP per capita (1995 US$) 483 16874 6368 138 6617 6044 92 20142 2855
Population (Million) 483 41 56 138 196 294 92 11 9.5
Electricity (Ktoe) 483 6693 16694 138 1739 1334 92 4204 3525
Gas (Ktoe) 368 12222 26162 23 1798 510 46 5687 5874
Coal (Ktoe) 483 1366 2398 138 1248 2787 92 31 31.5
Oil (Ktoe) 483 57063 8986 138 4312 4824 92 2775 2450
Electricity price (US$/toe) 483 11050 100301 97 10127 39281 86 968 317
Gas price (US$/toe) 368 568 282 23 362 53 46 230 80
Coal price (US$/toe) 264 1688 7078 12 83 37 19 472 111
Oil price (US$/toe) 483 9692 80025 128 4864 17135 92 1104 369
Av. summer temp. (◦F) 483 85 7.5 138 98 7.4 92 75 2.8
Av. spring temp. (◦F) 483 71 5.4 138 99 4.5 92 521 6.5
Av. fall temp.(◦F) 483 74 5.8 138 98 3.2 92 56 4.7
Av. winter temp. (◦F) 483 61 10.8 138 95.1 7.5 92 34 11
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Appendix B: Additional regressions

Table 11 Error correction model results shorter time period 1984–2001—Coefficients (t-statistic)

i = Electricity i = Gas i = Oil products

Short run
�yi(−1) −0.016 (−0.33) −0.085 (−0.83) −0.37
�gdppc −0.083 (−1.32) −0.362 (−1.19) 0.026 (0.04)
�pi 0.006 (0.53) −0.054 (−0.710) 0.231 (1.21)
�p j −0.044 (−0.48) 0.014 (0.13)
�Summer −0.0005 (−0.01) −0.674 (−2.75)** −1.183 (−2.36)**
�Winter −0.171 (−3.54)*** −0.310 (−1.93)*
�Fall −0.008 (−1.42) −0.009 (−0.43)
�Spring −0.295 (−2.23)** −0.366 (−1.59) −0.939 (−3.3)
�Summerd1 0.074 (0.58)
�Winterd1

�Falld1

�Springd1 −0.011 (−0.07)
�Summerd2 0.819 (1.49)
�Winterd2

�Falld2

�Springd2 1.26 (5.8)
Long run

yi(−1) −0.122 (−6.18)*** −0.148 (−3.31)*** −0.218 (−3.19)***
gdppc(−1) 0.087 (2.54)** 0.270 (2.78**) 0.220 (1.74)
pi(−1) −0.019 (−6.02)*** 0.032 (0.46) 0.059 (0.96)
p j(−1) ( ) −0.095 (−1.55) 0.005 (0.08)
Summer(−1) 0.318 (2)** −0.691 (−1.52) −2.69 (−2.4)**
Winter(−1) −0.095 (−2.76)** −0.542 (-5.07)*** −0.430 (−1.99)*
Fall(−1) ( ) −0.003 (−0.46) −0.080 (−1.65)*
Spring(−1) 0.480 (2.47**) 0.643 (1.84)* −0.841 (−2)**
Summerd1(−1) −0.174 (−0.84)
Winterd1(−1)

Falld1(−1)

Springd1(−1) −0.577 (−3.14)***
Summerd2(−1) −0.509 (−1.08)
Winterd2(−1)

Falld2(−1)

Springd2(−1) 0.648 (2.3)**

OBS 425 323 323
T 17 17 17
N 25 19 19
R-sq 0.2748 0.2762 0.2736

***Significant at 1%
**Significant at 5%
*Significant at 10%
d0 : Cold countries
d1 : Mild countries
d2 : Hot countries
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Table 12 Error correction
model results for electricity
including all
variables—Coefficients
(t-statistic)

***Significant at 1%
**Significant at 5%
*Significant at 10%
d0 : Cold countries
d1 : Mild countries
d2 : Hot countries

i = Electricity

Short run
�yi(−1) 0.063 (−1.37)
�gdppc 0.072 (1.08)
�pi −0.0134 (−1.15)
�p j

�Summer −0.303 (−3.3)***
�Winter −0.015 (−0.47)
�Fall −0.1445 (−1.87)
�Spring 0.012 (0.11)
�Summerd1 0.335 (2.41)**
�Winterd1 −0.078 (−1.01)
�Falld1 0.151 (1.97)*
�Springd1 −0.338 (−2.02)**
�Summerd2 1.236 (7.59)***
�Winterd2 0.389 (1.51)
�Falld2 0.144 (1.87)*
�Springd2 0.714 (2.02)**
yi(−1) −0.0907 (−4.73)***
gdppc(−1) 0.087 (2.56)**
pi(−1) −0.0149 (−3.53)***
p j(−1)

Summer(−1) −0.111 (−0.72)
Winter(−1) −0.177 (−4.26)***
Fall(−1) −0.215 (−1.93)*
Spring(−1) 0.699 (5.48)***
Summerd1(−1) 0.204 (0.91)
Winterd1(−1) 0.064 (0.74)
Falld1(−1) 0.221 (1.99)*
Springd1(−1) −0.815 (−5.94)***
Summerd2(−1) 0.145 (0.47)
Winterd2(−1) 0.389 (1.47)
Falld2(−1) 0.220 (1.98)*
Springd2(−1) −0.352 (−1.41)

OBS 525
T 21
N 25
R-sq 0.2748
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