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Abstract This study provides a multi-site hybrid statistical downscaling procedure com-
bining regression-based and stochastic weather generation approaches for multisite simula-
tion of daily precipitation. In the hybrid model, the multivariate multiple linear regression
(MMLR) is employed for simultaneous downscaling of deterministic series of daily precip-
itation occurrence and amount using large-scale reanalysis predictors over nine different
observed stations in southern Québec (Canada). The multivariate normal distribution, the
first-order Markov chain model, and the probability distribution mapping technique are
employed for reproducing temporal variability and spatial dependency on the multisite
observations of precipitation series. The regression-based MMLR model explained 16 %~
22 % of total variance in daily precipitation occurrence series and 13 %~25 % of total
variance in daily precipitation amount series of the nine observation sites. Moreover, it
constantly over-represented the spatial dependency of daily precipitation occurrence and
amount. In generating daily precipitation, the hybrid model showed good temporal reproduc-
tion ability for number of wet days, cross-site correlation, and probabilities of consecutive wet
days, and maximum 3-days precipitation total amount for all observation sites. However, the
reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to
further increase the explained variance of the observed precipitation series, as for example by
using regional-scale predictors in the MMLRmodel. However, in all downscaling precipitation
results, the hybrid model benefits from the stochastic weather generator procedure with respect
to the single use of deterministic component in the MMLR model.
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1 Introduction

Simultaneous generation of temporal and spatial variability of climate variables at multiple local
points is often required in many hydrological, agricultural, and ecological research and
applications, including climate change impact analysis (Wilby et al. 2003; Mehrotra and
Sharma 2007). Atmosphere-Ocean Global Climate Models (AOGCMs) provide large-scale
information for the analysis of impacts of climate change. It is broadly recognized that
AOGCMs produce reliable climatology for large-scale upper-air variables (e.g. wind, temper-
ature, humidity, air pressure, etc) (Giorgi et al. 2001) and at the annual and seasonal time scales
over broad continental scales (McAveney et al. 2001; Schoof et al. 2007). However, outputs of
the AOGCMs are generally too coarse, with horizontal resolutions generally larger than 2°
longitude and longitude (e.g., 3.75°longitude×3.75°latitude for the Canadian AOGCM), to be
applied directly at the local scale in the assessment of climate change impacts. Furthermore,
they generally demonstrate only temporal variability and spatial dependency on a global-scale
and cannot reproduce those at a more local-scale (Prudhomme et al. 2002).

Downscaling techniques have been developed to fill the gap between large scale atmospher-
ic variables simulated by AOGCMs and the local scale climate information (Huth 2002).
Downscaling techniques include dynamic downscaling, which uses regional climate models
(RCMs) driven by AOGCM outputs to generate climate information over a limited area, and
statistical downscaling (SD), which uses statistical relationship between large scale climate
predictors from AOGCMs and local-scale predictand (Wilby et al. 1998). SD approaches are
often used because of their relative ease of implementation, they require low computation, and
provide climate information at the equivalent of point climate observations (Wilby et al. 2002).
SD methods, as reviewed in several studies (Xu 1999; Wilby et al. 2002), can be divided into
three main groups (e.g. Wilby et al. 2004): regression-based approaches, stochastic weather
generator approaches, and weather typing (or analog) approaches. Regression-based are com-
mon and simple where an empirical relationship between predictors and predictands is derived
directly by linear or non-linear transfer functions. In the regression-based approaches, multiple
linear regression (MLR) (Hellström et al. 2001; Palutikof et al. 2002; Wilby et al. 2002; Huth
2004; Hessami et al. 2008), canonical correlation analysis (CCA) combined to MLR (Trigo and
Palutikof 2001; Huth 2002, 2004), and principle component analysis (PCA) with MLR (Huth
2004; Buishand and Brandsma 2001) have all been used as transfer functions. Despite the fact
that SDs are easily adaptable to local scale and applicable to any output of AOGCM (Hellström et
al. 2001), these large-scale predictors used in the regression-based approaches explain only a
fraction of the observed variance of the predictand, especially for precipitation (Wilby et al. 2002).
Moreover,Wilby et al. (2003) andHarpham andWilby (2005) experienced difficulty to reproduce
spatial coherence among multisite precipitations using the regression-based approaches.

Stochastic weather generator approaches are fairly simple but flexible and computation-
ally economical methodologies for daily weather data at a single site as well as multisite
(Wilks 1998, 1999; Qian et al. 2002; Palutikof et al. 2002). A weather generator uses a
random number conditioned upon large-scale model output state (Wilks 1999). They are also
statistical models which mimic sequences of observed weather variables. The main limita-
tion in the weather generator is the difficulty in adjusting the parameters in a physically
realistic and consistent manner under future climate states (Wilby et al. 1998). Weather
typing (or analog) approaches generate local climate variable by resampling from observed
atmospheric data (Buishand and Brandsma 1997; von Zorita and Storch 1999; Hewitson and
Crane 2002; Boé et al. 2006; Crimmins 2006).

A conditional re-sampling approach, a hybrid scheme combining a regression-based
approach with a MLR model and a stochastic weather generator, was first proposed by
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Wilby et al. (2003) and was successfully applied by Harpham and Wilby (2005) for multisite
precipitation simulation. This hybrid procedure could overcome weaknesses of both
regression-based and stochastic weather generation approaches. Ideally, unexplained temporal
variability and spatial dependence on a local-region by global-scale AOGCM predictors can be
complemented by employing a stochastic weather generating technique. Moreover, this hybrid
procedure can provide physically realistic information fromAOGCMoutputs to generate future
climate scenarios. Including the conditional re-sampling approach introduced by Wilby et al.
(2003), several studies have tested for multisite simulation of precipitation and temperature with
or without downscaling. Wilks (1998, 1999), Qian et al. (2002), and Mehrotra and Sharma
(2007) generated multisite precipitation using stochastic weather generation approaches based
on Markov chain. Regression-based approaches have used to simulate precipitation at multiple
sites by using AOGCM predictors (Harpham and Wilby 2005). They used artificial neural
network techniques as transfer functions to downscale daily precipitation for multisite. Fowler
et al. (2005) provided a multisite stochastic rainfall model based on weather types for climate
impact assessment in UK.

In this study, a multi-site hybrid statistical downscaling procedure combining regression and
stochastic weather generation approaches is provided for multisite generation of daily precip-
itation. As a transfer function, Multivariate Multiple Linear Regression (MMLR) is tested for
simultaneous downscaling of daily precipitation occurrence and amount series for multiple
observation sites over southern Québec (Canada). The MMLR is a logical extension of the
multiple linear regression to allow for multiple response variables estimated from
different input variables. Unexplained temporal variability and spatial dependency by
the MMLRmodel are complemented by employing a stochastic weather generating technique.

This paper is organized as follows. Section 2 describes the methodology. Section 3
explains the study area and the procedure used to select the predictors. Section 4 contains
results of the study, and Section 5 provides the conclusion.

2 Methodology

2.1 Multivariate multiple linear regression

It occasionally arises that prediction of several dependent variables are required from a set of
independent variables. Statistical downscaling from multiple AOGCM predictors to numerous
meteorological observation sites is one of these situations. To analyze relationships between
multiple independent variables and multiple dependent variables, multivariate regression
approaches have been used in many diverse scientific areas. The MMLR estimates the same
coefficients and standard errors as one would obtain using separate MLRs by using the ordinary
least squares (OLS) estimate.

Suppose that there are multiple predictor variables matrix X of dimension n×k and also
multivariate predictand variables matrix Yof dimension n×m, where the measurement record
length n is larger than the dimension of the explanatory variables k. One can estimate
parameter matrix B of dimension k×m, which can define linear relationship between the
two matrices X and Y. Therefore, for the m dependent variables and k independent variables,
the MMLR can be expressed as:

Y ¼ X � Bþ E ð1Þ

where the E is the residual matrix of dimension n×m.
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The Ordinary Least Squares (OLS) estimates of the parameter matrix B in the k·n
parameter space is given by:

bB ¼ XTX
� ��1

XTY ð2Þ
Under the assumption that the errors be normally distributed, OLS is the maximum

likelihood estimators. The main concern of the MMLR is to find a parameter matrix B in
the k·n parameter space. One of the problems to the parameter matrix B of MMLR is multi-
collinearity which produces large standard errors of estimated parameters in the related
independent variables. In order to limit the influence of multi-collinearity, many methods
have been employed such as ridge regression, principal component regression, canonical
correlation regression, and stepwise regression. In this study, backward stepwise regression
(as in Hessami et al. 2008) was employed to deal with multi-collinearity problem and to
select optimal predictors. Backward stepwise regression is initiated with all predictors being
included in the model, and redundant predictors are eliminated one after the other based on
F-statistic and associated P-value (Chatterjee and Price 1977).

2.2 Regression-based downscaling method

The deterministic series of daily precipitation occurrence probabilities can be modeled using
the following MMLR equation and atmospheric predictors:

bO ¼ ba0 þ Xba ð3Þ
Where bOij , an element of the matrix bO , is the downscaled deterministic series of
precipitation occurrence probability on a day i (01, 2, …, n) at a site j (01, 2, …, m). X
[n×k] is normalized atmospheric predictor variable matrix. Constant term matrix ba0 n� m½ �
and the parameter matrix ba k � m½ � are estimated MMLR parameters by the OLS estimation
method.

If precipitation amount variable vector Yj for a site j is not normally distributed,
appropriate transformation should be performed before developing regression-based precip-
itation amount model. The gamma distribution has been often fitted to rainfall amounts in
many studies (Stephenson et al. 1999; Giorgi et al. 2001; Yang et al. 2005). Based on the
approach proposed by Yang et al. (2005), the Anscombe transformation is employed for
transforming the precipitation amount. If the vector Yj has gamma distribution, the distri-

bution of Rij ¼ Y 1=3
ij on a day i at a site j, where the Rs are called Anscombe residuals, is

normal as described by Terrell (2003) and Yang et al. (2005). The deterministic series of
transformed precipitation amount matrix R [n×m] can be modeled using the following
MMLR equation and atmospheric predictors:

bR ¼ bb0 þ Xbb ð4Þ

where the bR n� m½ � is the downscaled deterministic series of Anscombe residuals matrix of

precipitation amount. Constant term matrix bb0 n� m½ � , the parameter matrix bb k � m½ � are
estimated MMLR parameters by the OLS estimation method.

In this study, the MMLR amount model was developed from all daily series including
zero values to downscale precipitation amounts conditional on nearby station being dry,
which usually have smaller amounts than corresponding amounts conditional on near
neighbors being wet. It also made it easy to reproduce cross-site correlation in the observed
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precipitation series by stochastic weather generation technique. The dry days at all obser-
vation sites were 25 % of the whole available days in the present study area. Therefore, the
downscaled precipitation amount series from the MMLR amount were underestimated and
had biases because of the inclusion of zero amounts of precipitation. Those biases should be
removed by employing an appropriate statistical adjusting technique. In our case, a probability
distribution mapping technique is used to deal with this problem.

2.3 Stochastic variation method

2.3.1 Precipitation occurrence

Residual (or error) matrix EO [n×m] of the deterministic series of daily probability of
precipitation occurrence is described below:

EO ¼ O� bO� �
ð5Þ

In the equation, O [n×m] is the observed binary (0 or 1) matrix of precipitation occurrence
where an Oij, an element of the matrix O, is 0 for dry day and 1 for wet day (measured

precipitation ≥1 mm) on a day i (01, 2… n) at a site j (01, 2… m). bO n� m½ � is the matrix of
deterministic probability series of precipitation occurrence by the MMLR and atmospheric
predictors.

Generally, the modeled probability matrix bO cannot represent the at-site temporal
variance and cross-site correlation of the observed matrix O. To reproduce those temporal
variability and spatial dependency of the precipitation occurrence, the residual matrixeEO n� m½ � is generated from a multivariate normal distribution having error variances
[VO] and correlation matrix [ΩO] of the residual matrix EO. Generated residuals are added

to the deterministic probability matrix of the precipitation occurrence bO as below:

eO ¼ bOþ eEO ð6Þ

The continuous probability series of each station in the matrix eO have normal distribu-
tion rather than uniform distribution [0, 1]. However, eventually, the generated continuous

probability matrix eO for precipitation occurrence should transport to the [0 or 1] binary
series by selecting an appropriate threshold. This study employed first-order Markov chain
model, which follows from the assumption that the probability of precipitation occurrence
depends only on whether precipitation occurred or not on the previous day. The first-order
Markov chain therefore involves two precipitation probabilities: (1) the probability of wet
day following a dry day (p01) and (2) the probability of wet day following a wet day (p11).
These transition probabilities are estimated separately for each observation site.

Let O
�

denote the binary matrix of precipitation occurrence and
�
OtðkÞ is a [0 or 1] binary

value of rainfall occurrence at location k on a day t. The
�
OtðkÞ is then determined as:

�
OtðkÞ

1; if eOtðkÞ � Φ�1ðkÞ 1� p01ðkÞ½ � and �
Ot�1ðkÞ ¼ 0

1; if eOtðkÞ � Φ�1ðkÞ 1� p11ðkÞ½ � and �
Ot�1ðkÞ ¼ 1

0; otherwise

������ ð7Þ

where Φ−1 (k) indicates normal cumulative distribution function which uses mean and

standard deviation parameter estimates from time series of eOðkÞ .
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One problem during the [0, 1] transformation is that the transferred binary series
�
O

cannot represent the original multisite cross-correlation in the eO , and also multisite cross-
correlation in the observed matrix O. To deal with this problem, empirical relationships of
cross-correlations between binary series (ξ(k,l)) and continuous series (ω(k,l)) at any locations k
and l should be derived (Wilks 1998). This study employed a simple power function to derive
the empirical relationships as below:

w k; lð Þ ¼ a� x k; lð Þb ð8Þ
The multisite correlation matrix [ΩO] of the residual matrix EO was adjusted using Eq. 8

to generate residuals eEO for reproducing multisite cross-correlation in the observed O
matrix to the transformed binary matrix

�
O . Therefore, the parameters a and b in Eq. 8 have

been estimated to yield the smallest RMSE between every m(m-1)/2 pair of cross-site
correlation coefficients in the observed binary series, and the same number of cross-site

correlation coefficients in the transformed binary series
�
O .

2.3.2 Precipitation amount

Residual (or error) matrix ER[n×m] of the deterministic series of daily precipitation amount
can be described as below:

ER ¼ R � bR� �
ð9Þ

where R[n×m] is Anscombe residuals matrix of the observed precipitation amount Y [n×m]

and bR n� m½ � is the matrix of deterministic series generated by the MMLR amount model

and atmospheric predictors. In general, the downscaled bR cannot represent at-site variances
and multisite cross-correlations of the observed matrix R. Therefore, the residual matrixeER n� m½ � is generated from multivariate normal distribution having error variances [VR]
and correlation matrix [ΩR] of the residual matrix ER. Generated residuals are added to the

modeled matrix bR as below:

eR ¼ bR þ eER ð10Þ

The generated precipitation amounts are calculated as below:

eYij ¼ eR3
ij ð11Þ

The eYij is counted as a nonzero precipitation amount only when the model described in the

occurrence model simulates to be wet [Y
�
ij
¼ O

�
ij
� eYij ].

One problem is that generated precipitation series in the Y
�

generally have different
statistical properties (e.g. mean and standard deviation) than the observed precipitation
amount series for each observation site. The main reason of these differences is that the
Anscombe residuals R from the observed precipitation amount are not exactly normally

distributed, and the modeled Anscombe residuals bR from the MMLR are biased estimators.
Moreover, this study included zero precipitation amounts to calibrate MMLR amount model.
Therefore, residual matrix ER of each site is not generally normally distributed and has skew.
To overcome this problem, probability distribution mapping technique was adapted and the
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generated precipitation amount was adjusted. The precipitation amounts for each site in the

Y
�

are fitted to gamma distributions and their cumulative probabilities are calculated.
Subsequently, precipitation amounts are recalculated with the gamma distributions fitted to

observation data for each site using the calculated cumulative probabilities from the Y
�
.

Figure 1 describes schematically the procedure of the multi-site hybrid model calibration of
daily precipitation series

3 Model application

3.1 Study area and data

Figure 2 shows the area over eastern Canada where the studied meteorological stations are
located. We have focused on the southern part of the province of Québec. As predictands,
this study used daily precipitation data from Environment Canada station, which have been
rehabilitated by Mekis and Hogg (1999). Small amount of missing data (less than 5 %) were
excluded in this study. Table 1 reports names and latitude-longitude locations of the selected
meteorological stations, as in Fig. 2 these stations are mapped with respect to their numbers
given in the Table.

3.2 Predictors source and selection

Predictors are derived from the National Center for Environmental Prediction (NCEP)/
National Center for Atmospheric Research (NCAR) reanalysis datasets (e.g., Kalnay et al.

- Precipitation occurrences
at multi-sites
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- NCEP/NCAR predictors 
on multiple GPs

X [n× k]

- Pocc MMLR calibration
Deterministic series, Residual

aXaO ˆˆˆ
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O
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E
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O
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R [n× m]           

AΩ
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~
E
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~
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ijij RY =

Y

~ ~ ~

~ ~ ~

~

Fig. 1 Procedure to calibrate the multi-site hybrid model
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1996; Kistler et al. 2001) over the period from 1961 to 2000. The NCEP/NCAR reanalysis at
the horizontal original resolution of 2.5 latitude×2.5° longitude have been interpolated onto
the Canadian coupled AOGCM version 3 (i.e. CGCM3) grid which has a horizontal
resolution of 3.75° latitude×3.75° longitude (about 400 km). Indeed, as the ultimate goal
of SD application is to develop climate change information, all reanalysis predictor products
used for the calibration of the SD model need to be re-gridded at the resolution of the
AOGCM that we use as source of predictors to simulate climate change daily values. As in
the following work, we will use the CGCM3 predictors to generate climate change daily
information, the NCEP predictors used here to calibrate and evaluate our downscaling
approach come from the atmospheric variables interpolated onto the CGCM3 grid size.
These reanalysis data usually mimic the temporal distribution of observed atmospheric

Labrador Sea

Atlantic
Ocean

Gulf of St. Lawrence

Fig. 2 Locations of CGCM3 grid points and observation stations of daily precipitation

Table 1 List of the 9 stations used in this study

No. Site # Name of station Latitude (°N) Longitude (°W)

1 7031360 Chelsea 45.52 75.78

2 7014290 Cedars 45.30 74.05

3 7025440 Nicolet 46.25 72.60

4 7022160 Drummondville 45.88 72.48

5 7012071 Donnacona 2 46.68 71.73

6 7066685 Roberval A 48.52 72.27

7 7060400 Bagotville A 48.33 71.00

8 7056480 Rimouski 48.45 68.53

9 7047910 Seven Islands 50.22 66.27
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variables, and they are used to calibrate SD model. They are developed from a high-
resolution global atmospheric model and use a data assimilation system from observed
measurements (i.e. from near surface and tropospheric column). Table 2 lists 25 predictor
variables of NCEP/NCAR interpolated on a CGCM3 grid. In our study area, there are six
grid points and 150 predictor variables. In the Fig. 2, the 6 grid points are represented as GP1 ~
GP6.

The MMLR parameters for precipitation occurrence and amount models were estimated
separately for each month by using predictands and predictors from 1961 to 1990. The
calibrated monthly MMLR models were validated with respect to observed data, by using
predictors over the independent time window between 1991 and 2000. As the downscaled
results are highly sensitive to the selection of predictor variables (Wilby et al. 2002), this
choice needs to be carefully addresses (see further discussion in Wilby et al. 2004; IPCC
2001, 2007; and over southern and northern Canada in Choux 2005, and Dibike et al. 2008,
respectively). Over the same area, Jeong et al. (2012) reported that the mean sea level
pressure, specific humidity, geopotential heights, U- and V- components, at various pressure
levels are important predictors for daily precipitation occurrence and amount. They also
reported that these last variables are the most sensitive variables to potential changes in
climate conditions based on CGCM3. These circulation and moisture related variables are
both connected to large scale circulation precipitation occurrence and amount, at the scale of
NCEP reanalysis data. Indeed, occurrence and intensity of precipitation are controlled by
complex mechanisms which may be linked to: large-scale upward or downward motion of a
relevant air mass; small-scale processes, such as localised convection; cloud development;
turbulent motion of wet or dry air in the boundary layer; orographic effects, including
convergence of an air mass, which may induce upward motion on a windward slope area.
Hence, considering the coarse scale resolution of NCEP and its sub-grid scale parameteri-
zation, the regional scale predictors are not explicitly taken into account in the list of
predictors used in this study.

Table 2 NCEP/NCAR predictor variables

No. Predictors (unit) No. Predictors

1 Mean sea level pressure (Pa) 14 500-hPa Divergence (s−1)

2 1000-hPa Wind speed (m/s) 15 850-hPa Wind speed (m/s)

3 1000-hPa U-component (m/s) 16 850-hPa U-component (m/s)

4 1000-hPa V-component (m/s) 17 850-hPa V-component (m/s)

5 1000-hPa Vorticity (s−1) 18 850-hPa Vorticity (s−1)

6 1000-hPa Wind Direction (° from North) 19 850-hPa Geopotential (m)

7 1000-hPa Divergence (s−1) 20 850-hPa Wind Direction (° from North)

8 500-hPa Wind speed (m/s) 21 850-hPa Divergence (s−1)

9 500-hPa U-component (m/s) 22 500-hPa Specific Humidity (kg/kg)

10 500-hPa V-component (m/s) 23 850-hPa Specific Humidity (kg/kg)

11 500-hPa Vorticity (s) 24 1000-hPa Specific Humidity (kg/kg)

12 500-hPa Geopotential (m) 25 Temperature at 2 m (°C)

13 500-hPa Wind Direction (° from North)

The original units of each variable are given, but normalized values are used, i.e. all predictors variables
(except wind direction) are standardized with respect to the means and standard deviations of the 1961–1990
reference period (see DAI CGCM3 predictors, 2008)
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As a statistical criterion, the backward stepwise approach was employed to select
predictors from the potential predictor set during the calibration period from 1961 to
1990. As stated before, the backward stepwise approach starts with the all available potential
predictors and successively eliminates redundant or non-significant predictors, one at a time.
The backward stepwise approach was preferred to the forward method of predictor selection
in order to give an initial equal change of selection to all predictors, as recommended by a
number of authors (see McCuen 2003; Goyal and Ojha 2010). For the daily precipitation
series of the nine observation sites, the optimal combination of predictors among the 150
NCEP/NCAR variables was identified by backward stepwise regression approach without
monthly consideration. As a first step, the same combination of predictors is selected
through the year to develop monthly downscaling models. Table 3 reports the selected 28
predictor variables of each grid point (GP1~GP6) and each predictor variable for precipita-
tion modeling. The selected predictors by the backward stepwise approach are acceptable to
calibrate statistical downscaling models and also projecting future climate scenarios by
including sensitive predictors to climate changes such as specific humidities and geopoten-
tial heights (Boé et al. 2006; Dibike et al. 2008; Jeong et al. 2012) and predictors frequently
employed in other downscaling studies over various regions across Canada such as mean sea
level pressure and wind components (e.g. Hessami et al. 2008; Dibike et al. 2008; Jeong et
al. 2011).

4 Results

For stability and robustness of the stochastic weather generating results of the hybrid model,
50 realizations are generated of the precipitation series of length equal to the precipitation
record from 1961 to 2000. Hence, results of the hybrid model presented in this section were

Table 3 Selected NCEP/NCAR predictors for MMLR model at each CGCM3 grid point

GP1 GP2 GP3 GP4 GP5 GP6

Mean sea level pressure √
1000-hPa Wind speed √ √
1000-hPa V-component √ √ √
1000-hPa Wind Direction √
500-hPa Wind speed √
500-hPa U-component √
500-hPa Vorticity √
500-hPa Geopotential height √ √ √ √
850-hPa U-component √ √
850-hPa V-component √
850-hPa Vorticity √
850-hPa Geopotential height √ √ √
850-hPa Divergence √
500-hPa Specific Humidity √ √ √
850-hpa Specific Humidity √
1000-hPa SpecificHumidity √ √
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evaluated from the 50 realizations of precipitation occurrence and amount series. Note that
the daily MMLR and the hybrid models were developed separately for each month.

4.1 MMLR models

Figure 3 presents explained variance of the daily MMLR occurrence and amount models for
the whole series (annual, i.e. considering all 12 months together), spring (March, April, and
May), summer (June, July, and August), autumn (September, October, and November), and
winter (December, January, and February) during the calibration period (1961~1990) and
for the whole series (annual) during the validation period (1991~2000). The R-squares of
precipitation occurrence by the MMLR were varied from 0.16 (site 8) to 0.22 (site 9) for
annual during the calibration period, and from 0.10 (site 2) to 0.20 (site 9) for annual during
the validation period. The R-squares of precipitation amount by the MMLR were varied
from 0.13 (site 2) to 0.25 (site 9) for the whole series during calibration period and from 0.09
(site 8) to 0.20 (site 9) for the whole series during validation period. Spatially, observation
sites located in the eastern part of study area have larger values of R-squares for the MMLR
than those in the western part except site 8 (Rimouski), which is the only observation station
located in the Lower St-Lawrence valley, on the south shore. In general, the relative low R-
square values of (i.e. between 0.1 and 0.3) underline the difficulty to downscale precipitation
series. However, in the case of daily rainfall, and considering the stochastic character of
daily rainfall, these values are quite respectable. At most sites, R-squares for summer and
winter months were smaller than those for spring and autumn. Summer local convective
activities and their associated intense rainfall events are not well captured at the scale of
global NCEP reanalysis products, as compared to large-scale meteorological synoptic
systems more explicitly resolved in that model and during fall through spring.
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4.2 Precipitation occurrence

Figure 4 shows scatter plot of observed and generated total number of wet days (≥1 mm/day)
by the hybrid and the MMLR models at all 9 stations and 12 months over the calibration
(1961~1990) and (1991~2000) validation periods, where each point represents a month and
station. For the hybrid model, 95th percentile, median, and 5th percentile values from 50
realizations are presented under the form of whisker plots. As can be seen from the figure,
the hybrid model reproduces the observed total number of wet days fairly well for all months
and all stations during both calibration and validation periods. However, the MMLR model
tends to underestimate this value, and the difference is large when there is relatively small
number of wet days of an observation site. This suggests that the hybrid model benefits from
the stochastic weather generator procedure with respect to the single use of deterministic
component in the MMLR model. Note that the wet day was determined when deterministic
series of daily probability of precipitation occurrence by the MMLR occurrence model was
larger than the threshold 0.5.

Figure 5 shows cross-site correlation coefficients between pairs of daily precipitation
occurrence series versus their station distance for all possible combinations of station pairs
for the whole series (annual), during the calibration and validation periods and for July and
October during the calibration period. The hybrid model was able to reproduce the cross-site
correlation of the series fairly well on both calibration and validation periods (see Fig. 5a and b).
This reveals the effectiveness of the stochastic weather generation procedure and the simple
power function described in Eq. 8 to derive the empirical relationships between cross-site
correlations between binary series and continuous series. The MMLR model showed more
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Fig. 4 Scatter plot of observed and modeled total number of wet days by hybrid and MMLR models at all
stations and 12 months, where black solid and open circles are values of hybrid model for the calibration (cal.)
and validation (val.) periods and gray solid and open triangles are values of MMLR for the calibration and
validation periods, respectively. Note that the numbers of wet days of calibration period (i.e. 30 years) are
larger than those of validation period (i.e. 10 years). a Calibration (Annual) b Validation (Annual) c
Calibration (July) d Calibration (October)
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difficulty in representing the cross-site correlation of precipitation occurrence series which were
consistently over-represented for almost all pairs. This is not surprising, since the MMLR
occurrence model is able to explain only a part of observed variability of precipitation
occurrence series from NCEP/NCAR coarse-scale predictors.

Cross-site correlation between pairs of daily precipitation occurrence also showed obvious
seasonal variability. In Fig. 5c and d, observed cross-site correlations between pairs are weaker
in July than for the annual results, while they are stronger in October than for the whole year. As
mentioned before, the weaker cross-site correlations in July is likely related to the effect of
localized convective activities during summer. The stronger cross-site correlations in October
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Fig. 5 Cross-site correlations between pairs of daily precipitation occurrence series versus their station
distance for all possible combinations of station pairs for the whole series (annual) during the calibration
and validation periods and for July and October during the calibration period as shown in Fig. 4. In this figure,
black solid and black dotted lines represent exponential decay functions with interception of one on the y-axis
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and in fall/winter/spring months are notably associated with the large-scale precipitation events,
mostly caused by synoptic low pressure systems rather than mesoscale events more prominent
in summer. However, the hybrid model reproduced the cross-site correlations well in both
months.

Figure 6 shows scatter plots of wet spell probabilities between observation and generation
by the hybrid and the MMLR models for (a) a day, (b) 2~3 days, and (c) 4~6 days for the
nine observed sites. The cases of the consecutive wet days for the the different periods from
1 to 6 days and then the probabilities have been calculated by the counted cases divided by
the total number of possible cases for each site. The hybrid model reproduced one-day, 2~
3 days, and 4~6 days wet spell probabilities fairly well for all stations, with a weak
underestimation for shorter duration and a weak overestimation for longer duration. The
MMLR model tended to consistently underestimate all wet spell probabilities. Spatially, sites
4, 5, 7 and 9, which are located in the eastern part of the study area (Near Lake St-Jean and
the North shore of the St-Lawrence River), showed larger probabilities then the other sites at
the 2~3 and 4~6 wet spell days and the hybrid model reproduced those spatial variability
relatively well.

Figure 7 shows scatter plots of Lag-1 autocorrelation of daily precipitation occurrence of
the hybrid and the MMLR models for each station and for each season during the calibration
period. Each point on the figures represents a month and a station. Although, the hybrid
model showed good ability in representing consecutive wet days, it yielded few over-
estimated values for all seasons. However, of the hybrid model yielded better performance
than the MMLR model except in spring. In spring, the hybrid model and the MMLR yielded
similar performance. The hybrid model showed best performance in winter, and worst
performance in spring. Lag-1 autocorrelation of daily precipitation occurrence showed
obvious seasonal variability which was stronger in spring, weaker in summer than that in
autumn and in winter. However, the hybrid model represents the seasonal variability fairly
well.

4.3 Precipitation amounts

Figure 8 shows scatter plot of the observed and generated mean intensity of precipitations
per wet days (≥1 mm/day) by the hybrid and the MMLR models at all stations and
12 months, for both the calibration (1961~1990) and the validation (1991~2000) periods.
The hybrid model reproduced quite well the precipitation amount per wet days for the
calibration period; furthermore, the 95th and 5th percentile values of 50 realization series
were almost similar. For the validation period, the median values of 50 realizations of the
hybrid model showed more scatter values than for the previous period. One reason of this
scatter in the validation period is the differences of observed mean precipitation per wet days
between the calibration and validation periods because of sampling errors. Note that the
observed wet day means between calibration and validation period are slightly different. The
MMLR model yielded large negative biases and tended to strongly underestimate the
amount per wet days. This underestimation of precipitation amount by the MMLR is not
surprising, because the MMLR amount model uses zero values in the predictand variables
for model calibration.

Figure 9 shows scatter plot of observed and modeled standard deviation of wet day
precipitation amounts by the hybrid and the MMLR models at all stations and over the
12 months. Again, for the hybrid model, 95th median, and 5th percentile values of 50
realizations are presented during the calibration period while median values of 50 realiza-
tions are presented during the validation period. The hybrid model showed fairly accurate
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values with respect to observed ones during the calibration period while it showed some
scatter during the validation period. Similar to the mean precipitation per wet days, the
MMLR model showed stronger under representation of the standard deviation of wet day
precipitation amount, and yielded large negative bias in this statistic.

Figure 10 shows cross-site correlations between pairs of daily precipitation amount series
versus station distances for all possible combinations of station pairs for the whole series
(annual) during both the calibration and validation periods, and for July and October during
the calibration period. Although, the hybrid model tended to under-estimate this spatial
dependency of precipitation series for most station pairs for the whole year results during
both calibration and validation periods, it reproduced the cross-site correlations of precipi-
tation series fairly well (see Fig. 10a and b). This result implies that the stochastic weather
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Fig. 7 Scatter plots of lag-1 autocorrelation of daily precipitation occurrence of hybrid and MMLR models
for each station and for each month, where results are presented for each season during calibration period.
Numbers in the figures represent observation sites
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generation procedure employed in the hybrid model is able to reproduce spatial dependency
of the observed precipitation amount series fairly well. However, the MMLR model
showed difficulty in representing the cross-site correlation of precipitation amount series
which were consistently over-represented for almost all pairs. In Fig. 10c and d,
observed cross-site correlations between pairs are weaker in July than in annual, while
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Fig. 8 Scatter plot of observed
and modeled mean precipitation
of wet days by hybrid and MMLR
models at all stations and
12 months. Solid symbols are
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at all stations and 12 months.
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they are stronger in October than in annual. Again, the hybrid model reproduced this
seasonal variability in the cross-site correlations well in both months. However, the
difference between 95% and 5% values of this statistic in bothmonths were larger than those in
annual.

Figure 11 shows scatter plots of maximum 3-days precipitation total amounts of the
hybrid and the MMLR models for each station, where results are presented for each season
during the calibration period. The hybrid model reproduced the maximum 3-days precipi-
tation total amount fairly well; however, the statistic had large differences between 5 % and
95 % at site 9 in spring and autumn, when the observed value of this statistic was large. The
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MMLR model showed best performance in winter while it showed worst performance in
summer. As shown in Figs. 8, 9, 10 and 11, the hybrid model reproduced daily precipitation
amount and extreme values fairly well at all stations. Those results verify the effectiveness of
stochastic weather generation procedure and probability distribution mapping technique in
the hybrid model.

The specific RMSE values of the provided scatter plots of the diagnostic indices of
precipitation occurrence and amount are summarized in Table 4. As described above, hybrid
model yielded better performance than MMLR for all indices except for the lag-1 autocor-
relation in spring. The two models yielded similar values of RMSEs for the lag-1 autocor-
relation in spring.
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Fig. 11 Scatter plots of maximum 3-days precipitation total amount of hybrid and MMLR models for each
station and for each month, where results are presented for each season during calibration period. Numbers in
the figures represent observation sites. a Annual total precipitation of site 1 (Chelsea) b Annual maximum
daily precipitation (mm) of site 1 (Chelsea)

Climatic Change (2012) 114:567–591 585



5 Discussion

In general, the variability of a local predictand as precipitation is explained only a part by
regression-based downscaling mapping from coarse-scale predictors (Wilby et al. 2002;
Cannon 2009). As mentioned by von Storch (1999), predictors generated from synoptic-scale
field cannot represent all variability at the sub-grid scale. Furthermore, spatial dependency
amongmultisite local predictand variables are not reproduced accurately by regressionmapping
from large-scale predictors (Wilby et al. 2003; Harpham and Wilby 2005; Bürger and Chen
2005). In this study, cross-site correlations of precipitation occurrence and amount among the
observation sites are obviously over-estimated (see Figs. 5 and 10) and this over-estimation is
evident that one cannot reproduce local-scale spatial dependency by simply using coarse
NCEP/NCAR predictors. Therefore, this study provided a statistical weather generation pro-
cedure based on randomization approach, which reproduced the cross-site correlation of
precipitation occurrence and amount among the observation sites. However, reproducing
cross-site correlation of precipitation amount (see Fig. 10) is more difficult than that of
precipitation occurrence (see Fig. 5), because ultimately determined precipitation amount
results are affected by the precipitation occurrence results.

Even though, a part of generated precipitation occurrence and amount series of the hybrid
model are from the MMLR regression-based models using large-scale predictors, it is still
much smaller than that from stochastic weather generation. Figure 12 shows scatter plots of
(a) annual total precipitation and (b) annual maximum daily precipitation of the hybrid and
the MMLR models at site 1 (Chelsea) over the entire period (1961–2000). As shown in the
two panels of this Figure, the hybrid model and also the MMLR model shows difficulty in
reproducing time-domain variability of these two statistics, and reproduces only average

Table 4 RMSEs of diagnostic indices for MMLR and hybrid models of nine observation sites during
calibration period, where the RMSEs of the hybrid model were calculated from median values of 50
realizations

Index MMLR Hybrid

Occurrence No. of wet days (day) 80.4 7.4

Wet spell probability (p)

1 day 0.019 0.004

2~3 days 0.023 0.011

4~6 days 0.006 0.004

Lag-1 autocorrelation (p)

Spring 0.064 0.065

Summer 0.102 0.053

Autumn 0.098 0.059

Winter 0.066 0.039

Amount Mean precip. of wet days (mm/day) 5.30 0.05

Standard deviation of wet day precipitation (mm/day) 6.77 0.71

Maximum 3-day precip. total amount (mm)

Spring 44.8 15.2

Summer 58.2 16.4

Autumn 49.6 16.4

Winter 42.0 16.0
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values of them. The hybrid model is however more able to reproduce the annual total and
annual maximum of precipitation than the MMLR model, as in this last case, the simulated
values are strongly underestimated with respect to observed ones. If the MMLR model could
explain more variability on the precipitation series using NCEP/NCAR predictors, the
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hybrid and MMLR models also can represent more time-domain variability in the annual
total or annual extreme precipitations.

6 Conclusion

For multisite downscaling of daily precipitation, this study provided a hybrid statistical
downscaling procedure combined by regression-based and stochastic weather generation
approaches. The developed hybrid procedure was then applied to generate daily precipita-
tions of nine observation sites located in southern Québec (Canada). Application results of
the hybrid model were compared with those of the regression-based MMLR model without
stochastic variation, to explain abilities of stochastic weather generating scheme in the
hybrid model.

The regression-based MMLR model yielded R-squares of 0.16~0.22 for daily precipita-
tion occurrence series, and of 0.13~0.25 for daily precipitation amount series during the
calibration period. The MMLR model showed difficulty in reproducing cross-site correlation
among multiple observation sites, and systematically over-represented the spatial dependency
of daily precipitation occurrence and amount. These low explained variances and over-
representing of spatial dependency of observed daily precipitation from local observation sites
underline the difficulty to downscale precipitation series from large-scale predictors using
regression-based downscaling approaches. The daily MMLR occurrence and amount models
were developed separately for each month to take into consideration seasonal variability of
precipitation. These MMLR models showed clear different performance for each month. On
average, the MMLR models showed worse performance in summer than in the other seasons.

In generating daily precipitation occurrence, the hybrid model showed good reproduction
ability for number of wet days, cross-site correlation, and probabilities of consecutive wet
days for various periods of observed precipitation occurrence series for all observation sites.
These results indicate that the stochastic weather generation procedure and the first-order
Markov chain model are successful in reproducing the temporal variability and spatial
dependency of the observed precipitation occurrence. Although, the hybrid model repro-
duced various durations of wet days fairly well, it reproduced little over-represented values
for lag-l auto-correlations. The hybrid model also reproduced seasonal variability of cross-site
correlation, and lag-1 auto-correlation fairly well.

In generating daily precipitation amount, the hybrid model reproduced mean precipitation
and standard deviation of wet days, cross-site correlation, and maximum 3-days precipitation
total amount reasonably well for all observation sites. These results indicate that the
stochastic weather generation procedure and probability distribution mapping technique
are successful in reproducing the temporal variability and spatial dependency of the ob-
served precipitation amount. However, this model tended to slightly under-estimate cross-
site correlation coefficients of precipitation amounts of most station pairs. Unsurprisingly,
the MMLR model yielded highly biased results for these statistics. The MMLR included
zero amounts of precipitations for calibration so as to downscale precipitation amounts
conditional on nearby station being dry which usually have smaller amounts than
corresponding amounts conditional on near neighbors being wet. The hybrid and also the
MMLR models however showed difficulty in reproducing time-domain variability of the
daily precipitation series and represented only average values of them (see Fig. 12). How-
ever, the reproducing ability of the hybrid model for time-domain variations can be im-
proved, if the MMLR model could explain more variance of the observed precipitation series
by using both large and regional scale predictors. This can be done in further works, using
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regional reanalysis products available over the whole North America at higher resolution
than global-scale NCEP/NCAR products (i.e. NARR products, e.g. Mesinger et al. 2006), in
order to incorporate into the deterministic part of the MMLR model more spatial and
temporal dependency between precipitation values over the area of interest. Some promising
results (see Gachon et al. 2011) have been recently obtained over one specific Canadian
station (Ottawa) when using regional-scale predictor variables from NARR (with respect to
NCEP/NCAR) in the SD process, in order to improve both median and quantile values of
daily precipitation amount and its variability. Further steps will also consist to evaluate the
hybrid approach developed in our study using both global and regional climate models for
climate change applications.
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