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Abstract We use an integrated assessment model of climate change to analyze how
alternative decision-making criteria affect preferred investments into greenhouse gas
mitigation, the distribution of outcomes, the robustness of the strategies, and the
economic value of information. We define robustness as trading a small decrease in a
strategy’s expected performance for a significant increase in a strategy’s performance
in the worst cases. Specifically, we modify the Dynamic Integrated model of Climate
and the Economy (DICE-07) to include a simple representation of a climate thresh-
old response, parametric uncertainty, structural uncertainty, learning, and different
decision-making criteria. Economic analyses of climate change strategies typically
adopt the expected utility maximization (EUM) framework. We compare EUM with
two decision criteria adopted from the finance literature, namely Limited Degree of
Confidence (LDC) and Safety First (SF). Both criteria increase the relative weight
of the performance under the worst-case scenarios compared to EUM. We show
that the LDC and SF criteria provide a computationally feasible foundation for
identifying greenhouse gas mitigation strategies that may prove more robust than
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those identified by the EUM criterion. More robust strategies show higher near-term
investments in emissions abatement. Reducing uncertainty has a higher economic
value of information for the LDC and SF decision criteria than for EUM.

1 Introduction

Anthropogenic greenhouse gas emissions are projected to cause climatic changes
with non-trivial and likely overall negative impacts on human welfare (Nordhaus
2008; Bernstein et al. 2008). Reducing anthropogenic climate forcing is possible,
but requires significant investments. As one key objective, climate change strategies
can aim to choose a level of investment that appropriately balances the costs and
benefits of reducing emissions. The fact that current estimates of the impacts of
climate change and the costs of climate mitigation are deeply uncertain imposes
non-trivial methodological challenges (cf. Keller et al. 2008a; Lempert 2002). Deep
uncertainty (sometimes also referred to as ambiguity, Knightian uncertainty, or
imprecision) refers to a situation where the decision-makers do not know or cannot
agree on a single probability density function (PDF) of the outcomes (Lempert et al.
2003; Lempert and Collins 2007). Nonetheless, one prominent analytic approach
frames climate change decision-making as an inter-temporal optimization problem
where policy makers seek to maximize the discounted expected utility of current
and future generations (Nordhaus 2008; Keller et al. 2004). This expected utility
maximization (EUM) framing poses at least three potentially important problems:
(i) EUM poorly describes the actual decision rules people often use under conditions
of deep uncertainty (e.g. Ellsberg 1961, 2001), (ii) implementing EUM under condi-
tions of deep uncertainty raises important methodological challenges, for instance
how to aggregate differing expert estimates (e.g. Zickfeld et al. 2007), and (iii)
the specification of EUM strategies can be highly sensitive to mis-specification of
low-probability high-impact events (e.g. Keller et al. 2004). This paper explores
alternative decision criteria that may help overcome these challenges.

Integrated Assessment Models of climate change (IAMs) often adopt the classic
decision-making framework of expected utility maximization (Ackerman et al. 2009;
Bretteville Froyn 2005) that identifies an optimum strategy contingent on a single
best estimate joint probability distribution over the uncertain input parameters of
the model. EUM has at least two important advantages. The approach rests on a
solid theoretical foundation built on a small number of intuitive axioms. Computa-
tionally the approach is also relatively straightforward to implement (Quiggin 2008;
McInerney and Keller 2008; Tol 2003). However, as recently emphasized by the U.S.
Climate Change Science Program, for both theoretical and practical reasons, there
are limits to the applicability and usefulness of classic decision analysis to climate-
related problems (Morgan et al. 2009, p.25).

As one challenge, under conditions of deep uncertainty the EUM framework has
poor descriptive power (Ellsberg 1961). Empirical studies (Budescu et al. 2002; Du
and Budescu 2005) show that most decision makers are sensitive to the (im)precision
of the decision parameters. Typically, they are vagueness (ambiguity) averse and are
willing to pay a premium to avoid it, although in some cases they prefer small degrees
of imprecision. Decision problems involving long-term climate change strategies
are arguably better described as deeply uncertain (as opposed to just uncertain)
(Keller et al. 2008a; Lempert 2002; Welsch 1995). For example, risk estimates
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of potential low-probability high-impact events such as a shutdown of the North
Atlantic thermohaline circulation hinges critically on the highly diverging expert
priors (Zickfeld et al. 2007; Keller et al. 2000; Alley et al. 2002; Link and Tol 2004).

Analyzing climate change strategies using an expected utility maximization frame-
work also presents methodological challenges, such as the need to aggregate PDFs
from different sources, a step typically requiring strong assumptions (Keith 1996).
One typical approach to this aggregation step is to neglect the aspects of deep
uncertainty and pick just one example PDF (Nordhaus 2008; Keller et al. 2004).
Neglecting the effects of deep uncertainty can lead to inaccurate and over confident
predictions.

Finally, the expected utility maximization framework can suggest strategies that
prove vulnerable to mis-estimation of deeply uncertain low-probability high-impact
events (Peterson et al. 2003; Keller et al. 2004). This vulnerability can arise, for
example, when the EUM strategy is located at a narrow peak of the utility function
that is surrounded by a deep valley (a situation sometimes referred to as “dancing
on the top of a needle”). In this case, an alternative strategy that is located at a
slightly lower but much broader peak of the utility has the advantage of trading a
small amount of utility in the expected case for a considerable increase in utility if
the estimate of the expected case is slightly wrong.

Previous analyses of decision-making under deep uncertainty have typically
addressed these two problems by employing alternative decision-making criterion
than EUM (cf. Borsuk and Tomassini 2005; Lempert and Collins 2007; Lange 2003;
McInerney and Keller 2008), by adopting alternative representations of uncertainty
than a single joint probability distribution (cf. Kriegler and Held 2005; Hall et al.
2007; Lempert and Collins 2007), or both. Such analyses have broken important new
ground, but they typically analyze highly stylized problems. For example, Lempert
and Collins (2007) use a simple model describing a lake that can abruptly turn
eutrophic if pollution concentrations exceed some unknown threshold in order to
compare the implications of alternative decision making criteria. The study compares
EUM and three types of robustness criteria, representing deep uncertainty with a set
of alternative probability distributions. The study finds robust strategies preferable
to expected utility maximization when deep uncertainty exists about potentially
catastrophic impacts and when decision makers have a sufficiently rich menu of
decision options to allow them to find one that is robust. Lange (2003) also analyzes
the effects of the limited degree of confidence decision criterion—which we will
employ below—on the preferred climate change strategies, but does not consider
the effects of a potential climate threshold response.

Our study expands on previous work in several ways. It explores alternative
decision criteria to EUM adapted from the literature, using the particularly stressing
case of an IAM with an uncertain, potentially abrupt climate threshold response.
It considers both parametric and structural uncertainty, where the former involves
uncertainty about input parameters to the model and the latter involves uncertainty
about the model itself. The study considers the effects of learning about the threshold
response. The study also demonstrates computational methods that can implement
these new decision criteria on a climate change IAM with abrupt changes.

With these resources, the study addresses three main questions. First, what are the
effects of considering a new set of decision-criteria adopted from the finance litera-
ture on the preferred climate change strategy? Second, what is the economic value of
information for these decision-criteria? Third, can relatively simple modifications of
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the decision-criteria be used to identify more robust decisions in a computationally
efficient way? Recognizing the aforementioned problems of applying EUM to the
analysis of climate change strategies, it is important to note that our study is silent on
the prescriptive questions of which decision-making criteria is the “best” or should
be applied by a decision-maker. We see the role of an analyst not as to make these
value judgements, rather to suggest the sensitivities and the trade-offs associated with
these judgements.

We analyze these questions in two ways. First, we modify the Dynamic Integrated
model of Climate and the Economy (DICE) to include the potential for a climatic
threshold response. These impacts, representing those that might occur from the
shutdown of the North Atlantic Meridional Overturning Circulation (MOC), are
considered to be deeply uncertain (Zickfeld et al. 2007; Keller et al. 2008a). Second,
we consider three decision-criteria that treat the uncertainty about the potential for
large climate impacts in different ways. We analyze expected utility maximization,
but given its potential problems, we also analyze two additional decision-criteria that
provide avenues to (i) represent the effects of the deep uncertainty on the decision-
making process and (ii) offer the possibility of improving the coherence between the
decision-making criterion adopted by real decision-makers and the decision-making
criterion used in Integrated Assessments Models of climate change (Budescu et al.
2002; Du and Budescu 2005).

These two alternative decision criteria, Safety First (SF) and Limited Degree
of Confidence (LDC), both balance the goal of maximizing the expected util-
ity with minimizing the worst-case performance (Aaheim and Bretteville 2001;
Bretteville and Froyn 2005). The LDC criterion maximizes a weighted average of the
expected utility and the utility in the worst-case futures. The SF criterion maximizes
the expected utility with the constraint that the utility in the worst cases exceed some
prescribed threshold. The properties of the three decision-criteria are summarized in
Table 1. The weighting in the LDC criteria can be interpreted as a measure of deci-
sion makers confidence in the best estimate probability distribution used to calculate
the expected value. The constraint used by the SF criterion can be interpreted as an
ethical requirement that one should maximize utility only after guaranteeing some
minimum level of utility (Rawls 1971). SF also has similarities with criterion from the
finance literature that combine expected utility with conditional value at risk to help

Table 1 Summary of the decision criteria considered in this study

Criteria Description Preference variable

Expected utility Maximize expected utility contingent None
maximization on best estimate joint probability
(EUM) distribution

Limited degree Maximize weighted average of expected 1. Weight (1 − β) on worst-case
of confidence utility and worst-case outcomes, as outcome
(LDC) measured by the Conditional Value 2. Percentile q that defines CVaR

at Risk. The CVaR is the expected
value of the worst q-th portion of the
distribution of utility

Safety first Maximize expected utility with the 1. Threshold W∗ that constrains
(SF) constraint that the CVaR is less than CVaR

some threshold value. 2. Percentile q that defines CVaR
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a firm, for example, maximize profits while holding the probability of bankruptcy
below some threshold. By placing weight on the performance in the worst-case
outcomes, the LDC criterion is similar to decision rules described by Hurwicz
(1951) and Ellsberg (1961). The former’s optimism–pessimism criterion prescribes
a weighted combination of the best case and worst-case outcome. Ellsberg (1961)
suggests that when making decisions under what he calls conditions of ambiguity,
people will use as their decision criteria a weighted combination of the expected
utility contingent on the best-estimate distribution and of the expected utility of
the worst case distribution, where the weighting is a function of decision makers
confidence in the available data.

These three criteria (EUM, SF and LDC) can generate a wide range of recommen-
dations for emissions reduction policies depending on the preferences used in the
SF and LDC decision-criteria. The Safety First and Limited Degree of Confidence
criteria can recommend higher preferred investments in emissions abatement than
the EUM criterion, depending, in the former, on the prescribed threshold for worst
cases and, in the latter, how much confidence decision makers express in the best
estimate distribution. For the SF and LDC criteria we map out the tradeoff between
maximizing expected utility and minimizing the effect of the worst cases for a
range of preferences. We find that the tradeoff curves for the SF and LDC criteria
are equivalent for the considered decision problem, within numerical accuracy.
Moreover, the LDC and SF strategies that are at the same location in this tradeoff
curve show the same abatement strategy (again within numerical accuracy).

We then examine the robustness of various strategies. Specifically, we analyze how
well strategies that emphasize expected utility maximization perform in the worst
cases and how well strategies that emphasize worst-cases performance affect the
expected performance. We show how applying the two alternative decision-making
criteria can help identify strategies that decision makers may find more robust given
the range of impacts considered. Finally, we evaluate how the choice of decision-
criterion affects the choice of climate strategy given the potential for future learning,
as well as the expected economic value of climate information. We demonstrate that
constraining the worst cases (as implemented in the Safety First decision criterion)
can significantly increase the expected economic value of climate information. We
show that the expected value of information can be considerably higher using the SF
criterion, compared to the EUM criterion.

2 Alternative decision criteria

We implement the alternative decision criteria using a recent version of the Dynamic
Integrated model of Climate and the Economy (DICE-07) (Nordhaus 2007a). DICE
is a simple and transparent integrated assessment model that has been widely-
used (e.g. Popp 2004; Keller et al. 2004; Nordhaus 2007b; Tol 1994) and is well-
documented (Nordhaus 1992, 1994, 2008). In DICE, the objective is to determine
an optimal strategy that balances the uncertain costs of reducing greenhouse gas
emissions against the uncertain damages associated with climate change. This is
achieved by maximizing the discounted sum of utility W (Eq. 1 in the Supplementary
Material). We modify this model to (i) incorporate a representation of a potential
climate threshold response, (ii) allow for parametric uncertainty, (iii) consider the
potential to learn, and (iv) represent different decision-criteria under uncertainty.
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We note that while a number of studies have explored the importance of parametric
uncertainty in DICE (e.g. Nordhaus 2008; Keller et al. 2004), the publicly released
version of DICE-07 uses only single parameter estimates, so modifications as de-
scribed below were required to explore the effects of parametric uncertainty.

The DICE model is described in Section 1 of the Supplementary Material. The
modifications to this model are outlined in the remainder of this section. Technical
details on the numerical optimization used to determine optimal strategies, and
a list of all symbols used in this study, are provided in Sections 2 and 3 of the
Supplementary Material.

2.1 Representation of a potential climate threshold response

Keller et al. (2000) incorporate an MOC threshold into an earlier version of DICE
using a simple statistical parameterization of model results reported by Stocker and
Schmittner (1997). Specifically, Keller et al. (2000) define a critical equivalent CO2

concentration as a function of climate sensitivity. If this critical equivalent CO2

is exceeded an irreversible shutdown of the MOC is triggered. Associated with
this shutdown are persistent economic damages, θ3, expressed as a proportion of
economic output. This threshold representation is transparent and has been widely
used and investigated (Keller et al. 2004; Lempert et al. 2006; McInerney and
Keller 2008). The limitations of this MOC threshold representation are duly noted
(Zickfeld and Bruckner 2008). First, the real world MOC is likely sensitive to the
rate of temperature change as well as atmospheric CO2 concentrations (Stocker and
Schmittner 1997). Second, this analysis neglects uncertainty in the initial strength of
the MOC and the sensitivity of fresh-water forcing in the North Atlantic to changes
in temperature.

Here we adopt the basic structure of this simple representation but add one
additional factor representing the effects of structural model uncertainty. Structural
model uncertainty is important in the assessment of a future MOC threshold re-
sponse (Zickfeld et al. 2007). While the results of Stocker and Schmittner (1997)
suggest that the MOC is sensitive to climate change, other models report the presence
of stabilizing feedbacks that make the MOC virtually insensitive to global warming
(Latif et al. 2000). To account for this structural uncertainty, we introduce a binary
variable called the MOC sensitivity (pMOC, with values of either zero or one). The
MOC will shutdown when the critical threshold is exceeded and the MOC sensitivity
is one.

2.2 Three decision criteria

Here we describe the three decision criteria summarized in Table 1.

2.2.1 Expected utility maximization

The EUM criterion, often used in Integrated Assessment Models of climate change,
maximizes the sum of the product of the probability pi of each considered State of
the World (SOW) and the well-being Wi in this SOW

max {E[W]} = max

{
NSOW∑
i=1

piWi

}
.
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The well-being for each SOW is calculated using Equation (1) in the Supplementary
Material. As described in Section 2.3, it is convenient in this study to consider
states of the world defined by parameter intervals with different length, but of equal
probability. Thus the EUM criteria becomes

max {E[W]} = max

{
1

NSOW

NSOW∑
i=1

Wi

}
. (1)

2.2.2 Limited degree of conf idence

The limited degree of confidence (LDC) criterion, as discussed by Aaheim and
Bretteville (2001), Bretteville Froyn (2005) and Lange (2003), maximizes a weighted
average of the worst outcome, i.e., the maximin criterion, and the expected utility.
The maximin criterion ranks strategies according to their worst case outcomes, and
the strategy that maximizes the minimum utility is chosen:

max {min [W]} .

The LDC criterion is a combination of EUM and maximin according to:

max {βE[W] + (1 − β) min[W]} . (2)

The decision-maker’s degree-of-confidence in the underlying probability distribu-
tions, β, lies between 0 and 1. For β = 0, this criteria reduces to maximin, while
β = 1 recovers the decision criterion of EUM. This criteria balances between the
EUM and maximin criteria, depending on the decision makers’ degree-of-confidence
in the underlying probability distribution. The LDC criterion is similar to the first
robustness definition used in Lempert and Collins (2007), which considers a robust
strategy to be one that may give up a small amount of optimum performance for less
sensitivity to assumptions. However Lempert and Collins (2007) use regret rather
than absolute performance to balance expected and worst case performance. Both
these approaches are premised on the notion that the distribution of outcomes may
be imprecise.

However, the implementation of the LDC criterion as discussed in Aaheim
and Bretteville (2001) and Lange (2003) poses two problems when applied to the
situation at hand. Lange (2003) analyzes a simplified analytical model with a fixed
upper bound for the environmental damages. This means that the worst case is
precisely known. In contrast, we do not know the upper bound for the considered
problem of abrupt climate change (cf. Keller et al. 2008a). In addition, for the
numerical approach used here, the worst case depends on the considered number
of states of the world (i.e., on the sampling resolution) (Tol 2003). As described in
Section 2.3, the PDFs of the MOC damages (θ3) and climate sensitivity (λ∗) both
contain high values with low probabilities, so that as more samples are taken, the
maximum sample from each distribution increases and does not converge to an
upper limit. If these samples correspond to the worst-case outcomes, the strategy
that maximizes the minimum utility depends heavily on sampling resolution (see Tol
2003, for a similar result). Second, a maximin decision criterion only considers the
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single worst outcome, i.e., it is blind to other poor outcomes. This may be a problem
when the worst outcomes correspond to different parts of the parameter space, where
improving the worst-case may not necessarily improve the second-worst outcome.
The maximin decision criterion does not include probabilistic information by design.

Rather than considering the minimum value of well-being (as in Eq. 2) we use
an alternative risk metric: the Conditional Value at Risk (CVaR). The CVaR is
the expected value of the worst q-th portion of the utility distribution, which we
denote E[Wq]. Wq is the portion of outcomes below what is known as the Value-
at-Risk for q. The CVaR is also known as the Mean Excess Loss or Mean Shortfall,
and has been previously applied to risk analysis in the energy sector (Fortin et al.
2007), the crop insurance industry (Liu et al. 2008), and financial markets (Andersson
et al. 2001; Alexander et al. 2006; Quaranta and Zaffaroni 2008). Using the CVaR
metric addresses our above concerns with using the minimum value, since it is less
dependent on sampling resolution than the minimum value; as the number of samples
increases, E[Wq] converges. We modify the limited degree of confidence criterion
as originally discussed, for example, by Lange (2003) by replacing the minimum
value metric with the CVaR metric and implementing a typical value of q = 0.01
(Andersson et al. 2001; Larsen et al. 2002; Krokhmal et al. 2002):

max {βE[W] + (1 − β)E[W0.01]} .

For the case where each SOW has equal probability this equates to

max

{
β

[
1

NSOW

NSOW∑
i=1

Wi

]
+ (1 − β)

[
1

0.01NSOW

0.01NSOW∑
i=1

Ŵi

]}
, (3)

where Ŵ is the same distribution as W, but sorted from lowest to highest values.

2.2.3 Safety f irst

The safety first (SF) criterion is an extension of the EUM criterion that imposes an
additional constraint on the lower tail of the strategy’s performance. The implemen-
tation discussed, for example, by Bretteville Froyn (2005) maximizes expected utility
with the additional constraint the probability that the well-being is less than a critical
value W∗ must be less than a certain value q:

max {E[W]} such that
{
Pr[W ≤ W∗] ≤ q

}
.

This criterion retains the best estimate probability distribution used by EUM but
adds a term sensitive to size of the impacts in the tails of the distribution. This
criterion is similar to the reliability constraint analyzed by McInerney and Keller
(2008) where the probability of an undesirable event such as an MOC shutdown is
constrained to be less than a certain threshold value.
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For reasons similar to above, we rewrite SF using CVaR with q = 0.01:

max {E[W]} such that E[W0.01] ≤ W∗,

which is equivalent to

max

{
1

NSOW

NSOW∑
i=1

Wi

}
such that

1

0.01NSOW

0.01NSOW∑
i=1

Ŵi ≤ W∗, (4)

for the case in this study where all SOWs are equally likely.

2.3 Implementing the Decision Criteria

To implement the decision criteria represented by Eqs. 1, 3 and 4 we re-wrote the
publicly available DICE-07 code in FORTRAN-90 in order to solve the (rather
demanding) numerical optimization problem. We consider uncertainty in four para-
meters that previous studies have identified as key drivers of preferred abatement
strategies (Nordhaus 1994, 2008; Keller et al. 2004; McInerney and Keller 2008).
These four factors are: (i) the climate sensitivity, λ∗; (ii) initial growth rate of
the carbon intensity, gσ (2005); (iii) the specific damages from crossing the MOC
threshold, θ3; and (iv) the sensitivity of the MOC to increasing atmospheric carbon
dioxide concentrations, pMOC. It is important to stress that these four parameters are
just a small subset of the relevant uncertainties (Nordhaus 1994; Keller et al. 2008a).

We adopt the empirical distribution of Andronova and Schlesinger (2001) for
climate sensitivity, and adopt subjective estimates for the distributions of gσ (2005),
θ3, and pMOC. The mean value of gσ (2005) follows its original value in DICE-07
(−0.073 per decade). We adopt a uniform PDF for this parameter and assign bounds
of 50% and 150% of this mean value, equivalent to −0.11 and −0.04 (−0.073 ± 0.5 ×
0.073). While MOC specific damages are deeply uncertain (Nordhaus 1994; Keller
et al. 2000; Alley et al. 2002; Link and Tol 2004), we follow Keller et al. (2004),
McInerney and Keller (2008) and Tol (2003) and assign a mean value of 1.5% gross
world product (GWP) to MOC specific damages. To allow for low-probability high-
impact outcomes, we use a Weibull distribution with a large standard deviation (3.7%
GWP) about this mean value. Finally, we adopt a binary distribution of the MOC

Table 2 Summary of the considered uncertain parameters

Parameter Symbol Units Distribution Mean Standard 90% confidence
deviation interval

Climate λ∗ ◦C Empirical 3.4 3.3 [1.0,9.4]
sensitivity

Initial carbon gσ (2005) Per decade Uniform −0.073 0.021 [−0.11,−0.04]
intensity
growth

MOC specific θ3 % Economic Weibull 1.5 3.7 [0.001,6.9]
damages output

MOC pMOC Dimensionless Bernoulli 0.5 0.5 [0,1]
sensitivity

MOC Meridional Overturning Circulation. See text for details
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Fig. 1 Cumulative density functions (CDFs) for the considered uncertain parameters. Shown are:
a the climate sensitivity (λ∗), b the initial growth in carbon intensity (gσ (2005)), and c the damage
associated with an MOC shutdown (θ3). The stars on the horizontal-axis denote the locations of the
sampled parameter values. See text for details on the sampling procedure

sensitivity with equal prior weight, resulting in a mean of 0.5. As a result, it is equally
likely that the MOC is sensitive or insensitive to anthropogenic climate forcing.

The properties of these distributions are summarized in Table 2 and the cumula-
tive density functions for λ∗, gσ (2005) and θ3 are displayed in Fig. 1. We draw eleven
equally likely samples from these three distributions using the technique described
in McInerney and Keller (2008). These samples are marked by the star symbols in
Fig. 1. After drawing eleven samples from each of these three distributions, and
allowing the MOC to be either sensitive or insensitive to anthropogenic warming,
there are NSOW = 11 × 11 × 11 × 2 = 2662 equally likely states of the world (SOWs).
The number of SOWs considered in this study is much larger than previous studies
that consider EUM only. This is because the LDC and SF decision criteria require
the lower tail of the utility distribution to be resolved by the sampling procedure,
while EUM simply requires resolution of the expected value.

The same set of 2662 parameter combinations (SOWs) is used to calculate optimal
solutions for the EUM, LDC and SF criteria; the differences between solutions are
driven by the choice of objective function in the optimization problem. Section 2
of the Supplementary Material provides details on the numerical optimization
procedures used.

3 Results and discussion

We first analyze the effects of the climate threshold and uncertainty on optimal
abatement with the EUM criterion. We then characterize the effects of using the
two alternative decision criteria on (i) preferred abatement, (ii) the distribution
of outcomes, (iii) the tradeoffs between the expected utility and the utility in the
lower tail, (iv) the robustness of the strategies with respect to uncertainty about key
parameters, and (v) the economic value of information.
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Fig. 2 Preferred abatement
strategies for the expected
utility maximization criterion
without uncertainty and
without the climate threshold
(circles), with the climate
threshold but without
uncertainty (crosses), and
considering both the climate
threshold and uncertainty
(squares)
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3.1 Effects of the climate threshold and uncertainty using the expected
utility criteria

With perfect information (no structural or parametric uncertainty) and no climate
threshold, optimal abatement rises from 15% in 2015 to around 60% in 2150 (Fig. 2,
circles). With the climate threshold and perfect information, optimal abatement
remains the same within the numerical accuracy of our optimization (Fig. 2, crosses).
In this case the climate threshold proves inconsequential because it is not crossed
during the considered time horizon. This result differs from previous studies (e.g.
Keller et al. (2004), Fig. 5) where an identical MOC representation increases optimal
abatement in an attempt to avoid or delay the threshold crossing. This difference
is due to the reduction in baseline CO2 concentrations between DICE-94 and
DICE-07, a result of a complex mixture of changes in the utility function, the pure
rate of social time preference, and the carbon intensity (Nordhaus 2008).

Adding parametric and structural uncertainties to the case with a climate thresh-
old also has a small effect for the EUM decision criterion (Fig. 2, squares). Optimal
abatement increases only by a few percentage points by 2100. With EUM, the
potential for an MOC shutdown has little effect on the optimal near-term abatement
strategy in DICE-07.

3.2 Effects of the confidence in the PDF estimate on preferred abatement
and the distribution of utilities

The potential MOC shutdown has significantly more salience with the LDC and
SF decision criteria. The weight that the decision-maker assigns to the worst case
scenarios for the LDC criterion (β in Eq. 3) has a considerable effect on the near-
term preferred abatement (Fig. 3). When the decision-maker has no confidence in
the underlying parametric distributions (i.e., β = 0) and thus maximizes the expected
utility of the worst 1% of cases (i.e. E[W0.01]) the preferred abatement increases
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Fig. 3 Preferred abatement
levels for expected utility
maximization (circles),
intermediate-confidence
(crosses) and zero-confidence
(squares) decision criteria.
This result considers both the
climate threshold and
uncertainty, but neglects
future learning

EUM
Intermediate-confidence
Zero-confidence

100

80

60

40

20

0

A
ba

te
m

en
t (

%
)

2005 2050 2100 2150
Year

considerably compared with the EUM case (Fig. 3 squares vs. circles). In this “zero
confidence” case (squares), abatement increases steadily from more than 20% in
2015 to around 80% in 2100, and reaches 100% around 2135. By comparison, EUM
abatement rises from around 15% in 2015 to 40% in 2100 (circles).

Figure 4a and b show the improvement obtained by maximizing expected utility
instead of following a business-as-usual (BAU) path, where no GHG abatement
is employed. The expected value of the distribution of utilities (solid vertical line)

Fig. 4 Probability density
functions (PDFs) of the
discounted sum of utility
for a business-as-usual,
b expected utility
maximization, c intermediate
confidence, and
d zero-confidence decision
criteria in the absence of
future learning. The solid
vertical lines indicate the
expected value of these
distributions (E[W]) and
dotted lines show the expected
value of the worst 1% of
outcomes (E[W0.01]). Utilities
have been rescaled to 100%
of the business-as-usual
(BAU) range
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improves, and the variance in the distribution is also reduced. Importantly, the
worst cases are greatly improved; the expected value of the worst 1% of outcomes
(E[W0.01]), marked by the dotted vertical line, increases significantly. (The raw
values for discounted sum of utility are not particularly meaningful; for the BAU
strategy they range between 1.38 × 105 and 1.52 × 105. Therefore, we have linearly
scaled all utilities so that a rescaled utility of 0 corresponds to the minimum value of
BAU utility, while 100 scales to the maximum value of the BAU utility.)

The EUM and zero confidence criteria differ primarily with respect to how much
importance they assign to the expected utility of the worst cases, as seen Fig. 4b
and d. In each case, the distribution is left-skewed due to the low-probability, high-
impact events (panels a and c in Fig. 1). The spread of this distribution is smaller for
the zero confidence case, with a noticeable improvement in the worst case outcomes
and hence the expected value of the worst 1% of outcomes. However, the decision
maker must sacrifice some of the expected utility of the entire distribution for this
improvement of the worst cases.

3.3 Tradeoff between expected utility and worst cases performance

Implementing the LDC and SF criteria with a range of preferences for improving
the worst case outcomes allows us to examine the tradeoff between expected utility
and utility averaged over the worst case outcomes (Fig. 5). For the LDC criterion, we
choose samples for β in Eq. 3 of 0, 0.1, . . . , 1, and additional values 0.95, 0.97 and 0.99
to increase the resolution of the trade-off curve (Fig. 5, crosses). As we move from
left-to-right in this figure, we move from β = 1 (EUM) to β = 0 (zero-confidence).
Similarly, the tradeoff curve for SF can also be mapped out by considering a range
of values for the threshold W∗ in Eq. 4 based on values from the EUM and zero-
confidence strategies (Fig. 5, circles). Interestingly, the LDC and SF results appear
to lie on the same trade-off curve, and abatement for SF and LDC strategies that
lie in close proximity are almost identical. For example, Fig. 6 (circles and crosses)
displays abatement for the right-most SF point (with W∗ = 63) and the closest LDC

Fig. 5 The tradeoff between
the expected utility (E[W])
and the expected value of the
lowest 1% of utility
(E[W0.01]). Preferred
strategies determined using
the limited degree of
confidence criterion are
marked by the crosses, while
those obtained using the safety
first criteria are marked by
circles. This result considers
both the climate threshold and
uncertainty, but neglects
future learning. Utilities have
been rescaled to 100% of the
business-as-usual (BAU)
range
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Fig. 6 Preferred abatement
levels obtained using the safety
first criterion with W∗ = 62
(circles), and the limited
degree of confidence criterion
with β = 0.8. See the main text
and Eqs. 3 and 4 for a
description of these variables.
This result considers both the
climate threshold and
uncertainty, but neglects
future learning
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point (with β = 0.8). Note that the analysis of Krokhmal et al. (2002) [Theorem 3]
implies that if E[W] and E[W0.01] are convex functions, the tradeoff curves for SF
and LDC will in fact be equivalent. Despite the potential for non-convexity in E[W]
and E[W0.01] due to the climate threshold response, for practical purposes these
criteria produce equivalent strategies. This allows combining the two sets of points
and tracing out this curve with higher resolution (solid line in Fig. 5).

For the LDC criterion, we may interpret the points on the tradeoff curve as
follows. The preferred solution with β = 1 (i.e., expected utility maximization)
corresponds to the point on the curve which has the maximum value in the
y-direction, i.e. the maximum value in the [0, 1] direction in Cartesian coordinates.
For β = 0 (i.e., zero-confidence) the preferred solution corresponds to the point with
maximum value in the x-direction, i.e., in the direction [1, 0]. Similarly, values of β

between 0 and 1 correspond to the point on the curve with the maximum value in the
direction [1 − β, β]. For example, when β = 0.5, the preferred solution corresponds
to the maximum point in the [0.5, 0.5] direction, i.e. along the axis that runs at 45◦
to the positive x-axis. For the SF criterion, the interpretation is more intuitive: the
parameter W∗ in Eq. 4 corresponds to the value of E[W0.01] on the curve.

The abatement strategy that corresponds to the SF point in the middle of the
trade-off curve, found by constraining W∗ = 55, is displayed in Fig. 3. The abatement
for this strategy lies between expected utility maximization and zero-confidence,
and we will refer to this as our “intermediate-confidence” strategy. This strategy
greatly improves the worst case outcomes compared with EUM, but maintains a high
expected utility (Fig. 4c).

The tradeoff curve is also useful for identifying “sweet spots” in the tradeoff
between expected utility and minimizing the worst cases. At the right-hand end of
the curve we see a sudden drop off in expected utility. In this region, we must make a
large sacrifice in expected utility to obtain a small improvement in the worst cases. A
decision-maker might prefer abatement strategies at the top of this “cliff” compared
to strategies that are at the bottom.
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Fig. 7 Expected utility for the three considered decision criteria as a function of a climate sensitivity
(λ∗), and b MOC specific damages (θ3), when these parameters are known precisely. The other
uncertain parameters are still sampled over their range (see Table 1 and Fig. 1)

3.4 Robustness of the preferred strategies

The LDC and SF criteria can be used to derive strategies that may prove more robust
with respect to deeply uncertain parameters than the strategy that derives from EUM
(Fig. 7). Here we define an increase in robustness with respect to a deeply uncertain
parameter as a decreased slope of the expected performance of the strategy over
the considered parameter range. Figure 7 demonstrates this effect for (a) climate
sensitivity, λ∗, and (b) threshold specific damages, θ3. Each panel shows a sensitivity
study with expected utility as a function of the considered parameter and all other
parameters sampled over their distribution. The two panels are plotted such that an
increase of the parameters implies an increase in climate change damages. The fact
that the high climate sensitivity values coincide with the lowest values of the utility
function for each strategy (c.f. Fig. 4) shows that the current fat high tail of the climate
sensitivity (Knutti and Hegerl 2008; Urban and Keller 2009, 2010) is the dominating
factor explaining the worst case scenarios in our analysis. Over the considered ranges
of the parameter values, the EUM strategy has the steepest overall slope, followed
by the intermediate and zero-confidence strategies (the same strategies as analyzed
in Figs. 3 and 4). To some extent, this ranking of slopes is expected given the tradeoff
between the expected utility and the expected utility for the worst case scenarios
(which are located at the far right of these two panels). What is perhaps surprising
is that the curves cross over. This results in a reversal of the strategies ranking with
respect to the expected utility for the best case and the worst case scenarios. For
example, the expected utility maximizing strategy has the highest utility for the best
case scenarios (left hand side of panel a) but has the worst expected utility for the
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worst case scenarios (right hand side of panel a). This result also shows that the
SF criterion can identify strategies in a high dimensional decision-space that may
increase robustness relative to EUM.

3.5 Effects of learning

Learning has a significant impact on the abatement paths for the SF and LDC
criteria, but not for the EUM criterion. The results thus far have neglected any
learning. However, uncertainties in the natural and human systems will often de-
crease over time as observations are made (cf. Keller and McInerney (2008) and
Ricciuto et al. (2008), but see also Oppenheimer et al. (2008) for counter examples).
To explore the importance of learning we consider a scenario where decision makers
instantaneously learn about the MOC sensitivity in the year 2075. Prior to this time
a single abatement path is followed. After 2075 if the MOC is sensitive to climate
change decision makers will follow one abatement path, and follow a different path
if they learn otherwise. Obviously, this representation is unrealistic; the learning
process will likely happen gradually as observations are made (Keller and McInerney
2008; Keller et al. 2007a). However, it proves sufficient to yield interesting results.

Figure 8 shows preferred abatement for three decision criteria with learning: (a)
EUM, (b) intermediate-confidence, and (c) zero-confidence. As before, the inter-
mediate confidence strategy is determined using safety first criteria with E[W0.01] =
55. Learning about the MOC in 2075 has only a small effect on the EUM and
zero-confidence criteria (panels a and c). The expected utility maximizer is not
particularly sensitive to the MOC threshold (c.f. Fig. 2), so will not significantly

Fig. 8 Preferred abatement
levels under uncertainty with
learning about the MOC
sensitivity in 2075. Decisions
are based on a expected
utility maximization,
b intermediate-confidence,
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alter the abatement path at the time of learning. On the other hand, the decision-
maker with zero-confidence in the underlying parameter distributions is trying to
avoid the worst case outcomes at all cost. Whether or not the MOC proves sensitive
to warming, the worst case outcomes will still occur when the climate sensitivity
is largest. Since high abatement levels will help improve these outcomes, the zero
confidence decision maker will pursue a high abatement path regardless of what they
learn about the MOC.

In contrast, the abatement path for the decision-maker with intermediate
confidence (Fig. 8b) is noticeably different after the time of learning. If learning
reveals that the MOC is sensitive to climate change, the intermediate-confidence
decision maker will increase abatement to avoid or delay an MOC shutdown. If
learning reveals that the MOC is insensitive, abatement levels will decrease shortly
after the time of learning since the economic damages for an MOC shutdown will no
longer be a concern.

Figure 9 maps the tradeoff between E[W] and E[W0.01] for the cases without
learning about the MOC in the considered time-horizon and with learning in
2075. The end points of these curves, corresponding to EUM (left end) and zero-
confidence (right end) are similar, which is expected since the abatement strate-
gies are almost the same. However, the intermediate-confidence strategies, with
E[W0.01] = 55, shows a marked improvement in expected utility due to learning. This
improvement is even greater for values between 55 and 62.

The difference in expected utility between the two tradeoff curves can be trans-
lated into an economic value of information (VOI). We approximate the VOI in the
optimal growth model by the difference in 2005 consumption that would equalize the
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Fig. 9 The tradeoff between expected utility (E[W]) and expected value of the lowest 1% of utility
(E[W0.01]) for the cases with no learning during the considered time-horizon whether the MOC
is sensitive to warming (solid), and with learning about this sensitivity in the year 2075 (dashed).
Preferred strategies for each case are determined using both the limited degree of confidence and
safety first criteria with results for each case collated onto single curves. Both the climate threshold
and uncertainty are considered, and utilities have been rescaled to 100% of the business-as-usual
(BAU) range
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Fig. 10 The economic value of
learning about the Meridional
Overturning Circulation
(MOC) sensitivity in 2075. We
consider the effect of
constraining the expected
value of the worst 1% of
utilities (E[W0.01]) to a range
of values using the safety first
criteria
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objective function for the case with and without the additional information. Figure 10
expresses the VOI for various values of E[W0.01] as percentage points of 2005 GWP.
For reference, 1% of 2005 GWP in DICE-07 is approximately 600 billion US dollars.
For the intermediate-confidence criteria, this value is around 20% of GWP, and is
larger for values of E[W0.01] between 55 and 62. If learning occurs at an earlier time,
this value will likely be greater (Keller et al. 2007b).

4 Caveats

Our results derive from the analysis of a simple Integrated Assessment Model of
Climate Change. The model’s simplicity enables a transparent analysis, but at the
cost of neglecting many, potentially important, issues. Integrated Assessment Models
of Climate change have many limitations (e.g. Ackerman et al. 2009; Weyant 2009;
Nordhaus 2008; Goes et al. 2011; Schienke et al. 2011). We focus here on key issues
that are specific to (i) the ethical framework underlying the DICE model, (ii) the
only partial representation of climate threshold responses, and (iii) the limited set of
options as well as uncertainties considered in this analysis.

First, the DICE model employs a discounted utilitarian and consequentialist
framework (i.e., future utilities are discounted in the model at a social rate of
time preference). Choosing a value for the social rate of time preference poses
nontrivial ethical and analytical challenges. Ramsey (1928) called the approach to
“discount later enjoyments in comparison with early ones [. . . ] a practice which is
ethically indefensible and arises merely from the weakness of the imagination”. It is
important to note, however, that the adopted representation of discounting may be
a reasonable description of observed behaviors, that discounting is one dominant
and codified approach to assessing climate change strategies, and that there are
several reasons that argue for positive social rates of time preference (cf. EPA
2010; Nordhaus 1994; OMB 2003; Stern 2008). Of course, the descriptive approach
to choosing a value for the social rate of time preference is not equivalent to a
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prescriptive statement (cf. Bradford 1999; Schienke et al. 2011). Furthermore, this
brief discussion is not to distract from the fact that different and arguably more
refined approaches to discounting exist and that our results are likely sensitive to
the discounting implementation (cf. Arrow 2009; Weitzman 2001).

Second, our study only analyzes one example of many potential climate thresh-
old responses. Our conclusion may well change for other climate thresholds. For
instance, a disintegration of the Greenland Ice sheet might be triggered much
earlier than the considered example of a shutdown of the North Atlantic Meridional
Overturning Circulation (Keller et al. 2008b; Schneider et al. 2007).

Third, our analysis neglects back-stop technologies, induced technological change
(Keller et al. 2008a), and samples only a small subset of the parametric and structural
uncertainties. For example, we hypothesize that the consideration of CO2 sequestra-
tion as a backstop technology would increase both E[W] and E[W0.01]; however, the
cost and global acceptance of this technology is deeply uncertain.

5 Conclusion

We modify a relatively parsimonious integrated assessment model of climate change
to include simple representations of a potential climate threshold response, structural
uncertainty, and learning. We use this model to analyze the effects of alternative
decision-criteria on preferred strategies, the distribution of outcomes, the robustness
of the strategies, and the economic value of information. The simplicity of the model
enables an arguably transparent analysis, but it also imposes considerable caveats.
Subject to these caveats, we draw four main conclusions.

First, choosing decision criteria that put greater weights on the performance
under the worst-case scenarios compared to expected utility maximization acts to
increase the preferred investments in abating anthropogenic climate forcing. This
increase in near term preferred abatement occurs for scenarios with and without
learning. Second, increasing the relative importance of the worst-case scenarios is
a promising conceptual and computational technique for identifying strategies that
may prove more robust, in the sense that they trade off a small decrease in the
expected performance for a sizable increase in the performance under the worst-
case scenarios. In particular, we show that it is possible to identify such strategies in
a numerically efficient way for relatively high dimension dynamic and non-convex
decision problems such as the ones posed by anthropogenic climate change. Third,
decision criteria that place higher importance on a strategy’s performance under
worst-case scenarios compared to expected utility maximization can considerably
increase the economic value of learning about the sensitivity of the MOC to climate
change. Finally, a key policy relevant conclusion that follows from our analysis is that
increasing near term investment in reducing anthropogenic climate forcing may be a
promising avenue for increasing the robustness of climate strategies.
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