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Abstract This work introduced a method to study river flow variability in response to
climate change by using remote sensing precipitation data, downscaled climate model
outputs with bias corrections, and a land surface model. A meteorological forcing dataset
representing future climate was constructed via the delta change method in which the
modeled change was added to the present-day conditions. The delta change was conducted
at a fine spatial and temporal scale to contain the signals of weather events, which exhibit
substantial responses to climate change. An empirical transformation technique was further
applied to the constructed forcing to ensure a realistic range. The meteorological forcing
was then used to drive the land surface model to simulate the future river flow. The results
show that preserving fine-scale processes in response to climate change is a necessity to
assess climatic impacts on the variability of river flow events.

1 Introduction

There is a broad consensus among global climate models that southwestern North America will
become increasingly drier in the 21st century (Seager et al. 2007). One of the most significant
impacts of such changes may be on hydrological processes and, particularly, river flow
regimes. Extreme events, which are typically small scale processes, are likely to respond
substantially to anthropogenically enhanced greenhouse forcing (Meehl et al. 2009). At
present, such events affect a wide variety of natural and human systems, and future changes
in their frequency could have dramatic ecological, economic, and sociological consequences.
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Many previous climate change impact studies have focused on assessing the potential
implication of global warming for water resources at a national or regional level (e.g. Arnell
et al. 1997). Despite their undeniable importance for long-term planning, changes in annual
or monthly runoff may give very little information on the changes in the extreme river flow
events. Assessing annual runoff can be done using simple monthly models. However,
continuous runoff modeling for river flow regime assessment requires input at sub-daily
time-step to resolve the extreme events (Prudhomme and Reynard 2002). Moreover, the
spatial scales of global climate models (GCMs) outputs are not sufficient for hydrological
simulations at sub-daily scales.

Dynamical downscaling, which downscales the output of GCMs by using Regional
Climate Models (RCMs), provides a way to overcome the drawbacks of GCMs. However,
model bias remains a critical problem (Cubasch et al. 1996; Mearns et al. 1999). The
quality of the absolute estimates of climate models calls into question the direct use of the
outputs for hydrological modeling. The delta change approach is a common transfer method
used to date for bias removal (e.g., Gleick 1986; Arnell 1996; Gellens and Roulin 1998;
Lettenmaier et al. 1999; Middelkoop et al. 2001; Bergström et al. 2003; Graham 2004). The
changes predicted by the climate models are more favored than the absolute values due to
the bias cancellation (Smith and Pitts 1997). The present conditions are then altered
according to the modeled changes. The delta-perturbed database is thereafter used to make
offline simulations with a hydrological model to provide a response to the future climate.
To reduce the noise, the model outputs were usually filtered or averaged over larger regions
and a longer period in deriving the delta changes (Andréasson et al. 2004; Graham et al.
2007a, b). A major drawback of this manipulation is that the representation of extremes,
especially for precipitation, from future climate scenarios was effectively filtered out in the
transfer process. Consequently, the extremes were simply the extremes from present climate
observations that have either been slightly enhanced or dampened according to the delta factors.
However, it is the extreme events that often cause significant impacts on human society.

This paper reports a method to project the change in short-term river flow events. We
chose a climate change scenario with a typically moderate change in precipitation and a
four-year period of observations for our exploration. Here we want to emphasize that this
choice is for illustrating our methodology rather than seeking comprehensive hydrological
predictions, since these predictions would require multi-model and multi-scenario
projections as well as a longer analyzing period.

Although our method is performed on one scenario, it should apply to different climate
projections. Since the extremes are short-term events, the essential part of the methodology
focuses on the skills to preserve the response of short term, fine-scale processes to climate
change through bias correction processes. The bias correction was performed after the
dynamic downscaling.

This paper provides the first study on the impacts of climate change on river flow in
south-central Texas at a sub-daily time scale. The data and methodology are described in
Section 2; the runoff calibration and future climate projections are presented in Section 3;
the conclusions and discussion are given in Section 4.

2 Data and methodology

Figure 1 is a schematic diagram showing how regional climate model outputs were
obtained, bias-corrected, before their use to drive a land surface model (LSM) for river flow
simulations. A future meteorological forcing was constructed by using the delta change
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method and an empirical transformation technique. The meteorological forcing was then
used to drive an LSM to simulate the future river flow. The LSM derives river flow through
water-balance within the river basin (Lohmann et al. 1998). The LSM does not take into
account the municipal, industrial and agriculture withdrawals, which might contribute to
uncertainty in the river simulation. The projected streamflow was estimated from total
runoff for the whole basin based on the assumption that the net water outflow is nearly zero
everywhere except at the basin outlet (i.e. river mouth). Below is a further description of the
models, data and methodology that were used in this work.

2.1 The Noah land surface model and NEXRAD precipitation

The Noah LSM version 2.2 (Ek et al. 2003) was used to simulate runoff over the Guadalupe
River Basin, which has an area of 3,256 km2 and runs from Kerr County, Texas to San
Antonio Bay on the Gulf of Mexico as shown in Fig. 2. The Noah LSM is a state of the art
land surface scheme, which dynamically predicts soil temperature, soil water/ice, canopy
water, snow cover and surface and subsurface runoff. The Noah LSM is governed by mass
conservation and a diffusive form of the Richard's equation (Rosero et al. 2011). In the Noah
LSM, the predicted state variables are calculated by simultaneously solving energy and water
balance equations for a one dimensional soil-snow-vegetation column. The Noah LSM used in
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this paper was driven by seven meteorological forcing variables (precipitation, air temperature,
humidity, wind speed, surface pressure, and incoming short and longwave radiation
components), with a spatial interval of 0.9 km and a temporal interval of 3 h. All the variables
except precipitation were extracted from the North American Regional Reanalysis (NARR)
(Mesinger et al. 2006). NARR is a three-hourly, 32-km reanalysis dataset available from 1979
to present, and is arguably the best long-term dynamical reanalysis dataset for the continental
United States (CONUS), but the uncertainty may still exist (e.g., Berg et al. 2003). A linear
interpolation was applied to convert 32-km forcing data to 0.9 km Noah LSM grid. The river
flow simulation was calibrated using the U.S. Geological Survey daily discharge observations
at Victoria station, which is located at the mouth of the Guadalupe River (see Fig. 2).

Precipitation is the key for river flow modeling, so having a high-quality precipitation
dataset is crucial. The precipitation data used in this study came from the national
NEXRAD (Weather Surveillance Radar-1988 Doppler) remote sensing database. The
National Weather Service (NWS) NEXRAD has revolutionized the NWS forecast and
warning programs through improved detection of severe wind, precipitation, hail, and
tornadoes (Krajewski and Smith 2002). Efforts for validation of the NEXRAD Stage III
precipitation have been carried out in many regions and different climate regimes (Smith et
al. 1996; Young et al. 2000; Jayakrishnan et al. 2004; Xie et al. 2006). A recent study in the
San Antonio/Guadalupe River basin using 50 high-quality rain gauges to validate the
NEXRAD MPE (Stage III) precipitation of 2004, observed a correlation coefficient (r) of
0.80 for the entire year and 0.96 for the NEXRAD grid cell area where spatially uniform
precipitation events occurred (Wang et al. 2008). In this study, a physically-based
parsimonious multivariate-regression algorithm (see Appendix) was used to interpolate
the hourly 4-km NEXRAD precipitation between 2004 and 2007 to hourly 0.9 km to drive
the Noah LSM. The NEXRAD precipitation over the Guadalupe River Basin is shown in
Fig. 3. The NEXRAD precipitation can well record the rainfall events that occurred in this
region (Wang et al. 2008). Together with the daily river flow observation from USGS and
the NARR data, they construct high quality datasets used for the river flow calibration.

2.2 Future climate simulation and bias correction

2.2.1 Dynamical downscaling

Jiang et al. (2008) described the method that produced the climate model outputs used in
this study. Present and future regional climate fields were obtained by dynamically
downscaling the NCAR Community Climate System Model version 3 (CCSM3) (Collins et
al. 2006) outputs to the regional scale. The horizontal scale of CCSM3 is T85 (~1.41°). The

Fig. 2 Map showing area of the
Guadalupe Basin and location of
Victoria Station in Texas. The
blue lines in the Guadalupe Basin
indicates Guadalupe River flow
network
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greenhouse gas concentrations during the CCSM3 simulation period used in this study
follow the IPCC Special Report on Emission Scenarios (SRES) A1B. The A1B scenario is
a mid-line scenario for carbon dioxide output and economic growth; the predicted carbon
dioxide emissions increase until around 2050. The downscaling was achieved by running
the Weather Research and Forecasting (WRF) Model with Advanced Research dynamic
core version 2.2 (Skamarock et al. 2005) at fine-scales of 18 km. The WRF receives its
lateral boundary conditions from a one-way link with climate variables that have already
been outputted by the CCSM3. The WRF is a next-generation, limited-area, non-hydrostatic,
with terrain following eta-coordinate mesoscale modeling system designed to serve both
operational forecasting and atmospheric research needs. The model output was saved
every 3 h, which was used as the input of the Noah LSM for the study of impact of the
climate change on the river flow. Note a linear interpolation was also performed to
convert 18-km forcing data to the Noah LSM model grid. Even if dynamical
downscaling improves the realism of simulated regional climate properties, some
important biases still exist in the model outputs, especially concerning precipitation. To
simulate realistically the regional hydrology after dynamical downscaling, raw RCM
model results have thus to be bias-corrected.

2.2.2 Bias corrections

The delta change approach was adopted in this paper to construct future climate forcing. In
this approach, the future and present downscaled outputs were used to derive the delta
change of future climate with respect to the present-day climate. To avoid losing signals of
short-term weather events, we applied the delta change approach at each 3-h time step
on each Noah LSM model grid cell. The advantage of performing the delta change at
fine-scales is that it can preserve the extreme weather events that occur on theses scales
to the fullest extent possible and therefore, it contained the signals of weather events,
which were mostly filtered out in previous studies (see also the discussion in Introduction).
This fine-scale construction is very computationally intensive. Considering the existing
computing resource and the availability of NEXRAD precipitation, we chose a 4-year
period for our experiment, which is long enough to observe the substantial change of
weather events in response to climatic change. Also, this step by step construction can
generate certain unrealistic values in the forcing, for example, negative precipitation. To
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Fig. 3 NEXRAD 3-h mean precipitation rate averaged over Guadalupe Basin in Texas between 2004 and
2007. Note the change of 4-year accumulated precipitation after 50 years was shown in lower panel in Fig. 7
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deal with this problem, an empirical transformation technique, i.e., 'quantile-based' bias
correction (which was discussed later in detail), was further applied to the constructed
forcing to ensure a realistic range. The 'quantile-based' technique does not alter the
relativity of the values (Boe et al. 2007) and largely remains the original signal of climate
change.

Before the delta change was extracted, the total modeled 4-year present precipitation was
scaled to match NEXRAD observation at each grid cell. The future precipitation at each
grid cell was adjusted by the same scaling factor correspondingly. This procedure is to
render the modeled precipitation to more realistic values. In the delta change approach, the
pre-corrected scenario time series Vpscen (t+50Y) are given by:

Vpscenðt þ 50Y Þ ¼ VobsðtÞ þ ðVfutðt þ 50Y Þ � VpresðtÞÞ ð1Þ

where Vobs denotes the observation (i.e., NEXRAD), Vfut denotes the modeled future
climate simulations, and Vpres denotes the modeled present climate simulations. (t+50Y)
denotes the time after a 50-year shift (which was admittedly arbitrary). Supposing the
model can realistically simulate the future climate, it would be able to realistically simulate
scenario time series according to Eq. (1). In reality, the delta change (the second term on the
right side) still have errors, especially concerning precipitation. To improve the realism of
the downscaled climate properties, a “quantile based” bias correction technique (Deque
2007; Reichle and Koster 2004; Wood et al. 2004) was used to translate Vpscen to a plausible
range and distribution density with respect to observations to improve the realism of
simulated regional climate properties. The ‘quantile-based’ correction would place further
constraints on the correction of the future scenario. Negative values of Vpscen are possible
during initial calculations. An anomaly (which is relative to the long time mean) was used
to allow for negative values in the quantile-quantile transformation. The time mean was
then added back after the transformation to ensure that there is no negative value inVpscen.
Therefore, in our application, the ‘quantile-based’ correction was also used to correct the
negative values. More details are described below.

For a forcing variable, the Cumulative Density Function (CDF) of the anomaly was
generated at each grid cell from NEXRAD data (for precipitation) or NARR reanalysis.
This CDF was used to remove the bias for the corresponding anomaly of Vpscen at the same
grid cell as described in Fig. 4. For the anomaly value V 0

pscenðt þ 50Y Þ of the variable x at
the time (t+50Y) in the pre-corrected climate scenario, the corresponding CDF Ppscen is
found on the CDFpscen (which is the CDF of the pre-corrected scenario simulation). Then,
the value V 0

scenðt þ 50Y Þ of x such as Po=Ppscen is searched on the CDFobs (which is the
CDF of the observations). This value (i.e. V

0
scen t þ 50Yð Þ) is finally used as the corrected

anomaly value in the climate scenario. Finally, the time mean of the observation was added
back to V 0

scenðt þ 50Y Þ to produce the final scenario forcing value Vscen (t+50Y). A few
values in the climate scenario may exceed the greatest value found in the observations. In
these cases, we preserved the values without change.

3 Results and discussion

3.1 Stream flow validation

The river flow was simulated using the Noah LSM driven by NEXRAD precipitation and
NARR meteorological forcing. Figure 5 shows daily averaged Guadalupe river flow and
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observed river flow at Victoria station (the first two months was used as spin-up period and
not shown in the Fig. 5). The observed river flow exhibits various typical large and small
peaks (events) and low flow periods, offering a good opportunity to test the performance of
the simulation. The general quality of river flow simulation lies in how well the model
captures the river flow events as well as the timing to capture the events. It can be seen
from Fig. 5 that the model is able to capture most of the large river flow events with little
delay. For example, the large river flow event around the 200th day was nicely modeled in
terms of the strength, duration and timing. The correlation between the simulated and
observed river flow is 0.83. The model simulates the high-flow variability better than the
low-flow variability. The simulation of the low-flow variability is more challenging for all
models due to its relative small variability. However, we are more interested in extreme

obsCDFpscenCDF

pscenP
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0 0
)50(' YtV scen +)50(' YtV pscen +

x x

Fig. 4 Principle scheme of bias correction using quantile–quantile mapping technique. V 0
pscenðt þ 50Y Þ is

the anomaly value of the variable x at the time (t+50Y) in the pre-corrected climate scenario. CDFpscen is the
CDF of the pre-corrected scenario simulation. CDFobs is the CDF of the observations. V

0
scen t þ 50Yð Þ is the

corrected anomaly value in the climate scenario. See more discussion in the text body
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Fig. 5 Daily mean Guadalupe River flows from observation (black line) and simulation (blue line). The
correlation between observational and projected flows is 0.83. The modeled Nash–Sutcliffe efficiency
coefficient is 0.71
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events (which are short-term large amplitudes of river flow events) since they have more
significant influence on society. The Nash–Sutcliffe Efficiency (NSE) was calculated for
this period. The NSE is generally used to assess the predictive power of a model. It is
defined as:

E ¼ 1�
PT

t¼1 Qt
o � Qt

m

� �2

PT
t¼1 Qt

o � Qo

� �2 ð2Þ

where Qo is observed discharge, and Qt
m is modeled discharge, Qt

ois observed discharge at
time t. Nash–Sutcliffe efficiencies range from −∞ to 1. The second term in Eq. (2) is the
ratio between the variance of observation-model difference and the variance of the
observation. This measure is used to describe the predictive accuracy of the model as long
as there are observed data to compare with the model results. The closer the model
efficiency is to 1, the more accurate the model is. The NSE of the simulation is 0.71.
Essentially, it represents the proportion of variability in a dataset that is accounted for by the
model (i.e., the coefficient of determination R2). The resulted NSE suggests that the model
captured the most variability of the observed river flow. Note the LSM relates to the rainfall
to river flow via water-balance within the river basin, which allows for losses along the
river path. Yet there are mismatches in some small river flow events. The model does not
consider the base flow variability and municipal and agriculture withdrawals. There might
be more ground water storage or withdrawals during the rain events and more return flows
during low flow conditions. These factors can modify the river flow and should be
considered in more sophisticated models in operational practice. Note again that the paper
is to illustrate our methodology rather than pursue comprehensive predictions. We believe
that our approach is suitable for the purpose of this study, considering the relatively good
correlation and performance of the model in simulating the river flow events.

3.2 The projected changes

Assessment of impact of climate change on river flow events requires input forcing that has
a substantial response to climate change at daily or even hourly step. This is because river
flow events are driven by the weather events that occur on these fine-scales. This section
gives more attention to precipitation since it is the most critical forcing that affects river
flow simulation. Figure 6 shows the 3-h mean projected precipitation over Guadalupe Basin
from 2054 to 2057.

It can be seen that the projected precipitation exhibits many short-term events. Here we
emphasize again that the application of delta change at fine-scales, i.e., scales at which
short- and small-scale weather events occur, is the key for projecting these events. Please
note Fig. 6 is not the forecast of future precipitation although future weather events have to
be expressed at these scales. However, we do expect the scenario forcing that contains fine-
scale processes can carry the information on the trend of the future climate in this region,
such as the change of probability and distribution of precipitation. It is shown later in this
paper that the response of fine scale processes to climate change is critical for the
assessment of the impact of climate change on river flow.

Quantifying the uncertainty of climate change is difficult because of the inaccessibility
of the future climate. But it is reasonable to compare the result to other relevant projections.
Figure 7 gives the four-year accumulated precipitation and the decrease of the future
precipitation. The total precipitation decrease is about 10% of the NEXRAD precipitation.
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This result is agreeable with the prediction from 19 climate models under the same scenario
that southwestern North America (which includes the Guadalupe Basin) is in an imminent
transition to a more arid climate (Seager et al. 2007). The precipitation decrease has a
moderate range between 0 and 30% of the NEXRAD precipitation. The pattern of
precipitation change exhibits an interesting geographic variation. The most apparent feature
of the four-year accumulated NEXRAD precipitation is the strongest precipitation at the
southeastern Guadalupe Basin, which is about twice of the other regions due to the
adjacency to the Gulf of Mexico. Correspondingly, the largest projected decrease of
precipitation also occurs at the southeastern Guadalupe Basin. The NEXRAD precipitation
is not dynamically constrained by any climate models. The sensible agreement in the
accumulation patterns between precipitation change and the NEXRAD observation implies
the soundness of the projection.

Figure 8 shows the annul cycle of 2-m air temperature. The temperature of the
Guadalupe Basin has a moderate increase in the next 50 years. The change of temperature
peaks around 200th day (which is about 2.5°C degree), decreases gradually, and is stable at
about 1.7°C degree after 270th day. This indicates a relatively larger temperature increase in
the first 6 months. It can be seen that the temperature apparently has a more regular change
than that of precipitation. The relationship between precipitation changes and temperature
changes is not clear. If we pick 2.0°C as a temperature threshold value, it suggests a
decrease in precipitation when the temperature increase is above 2.0°C, and a
corresponding increase in precipitation when the temperature below is below 2.0°C.
Actually, many climate model predictions suggest the existence of similar temperature
threshold values (e.g. 2.5°C) for the 21th century.

3.3 Impacts on the river flow

Assessing climate change impacts on river flow events relies on the scenario forcing that
resolves short-scale weather events, which was achieved by preserving the fine-scale
processes in the climate change. Figure 9 shows the present and projected Guadalupe river
flow (the first 2 months was used as spin-up period and not shown in Fig. 9). River flow
events are essentially the responses to weather events in certain complex way. It can also be
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Fig. 6 Projected 3-h mean precipitation rate averaged over Guadalupe Basin in Texas between 2054 and 2057
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seen that there are substantial new river flow events (peaks) appear in the scenario river
flow. Although some present river flow variability was passed into the scenario river flow,
most of them are largely altered. Since river events have a time scale as short as 1 day, the
scenario river flow containing these short time changes has a tremendous advantage in
studying the impact on river flow events.

To quantify the impact of the climate change on river flow, we define three interesting
river flow levels: large flow, modest high flow and low flow. The large flow, which can
cause harmful flooding, is defined as the flow which has a discharge that is nine times

Fig. 7 Upper panel: accumulated precipitation in Guadalupe Basin from NEXRAD for period from 2004 to
2007; Lower panel: the decrease of accumulated precipitation in Guadalupe Basin after 50 years. Note the
ranges of colour bars are different. Unit: mm

974 Climatic Change (2012) 113:965–979



larger than that of the four-year mean flow; the low flow, which represents drought
condition, is defined as the flow which has a discharge that is smaller than half of that of the
mean flow; the modest high flow, which might cause modest flooding, is defined as the
flow which has a discharge that is in the range between three and nine times of that of the
mean flow. There is no uniform definition of river flow levels. Although somewhat
subjective, we defined the levels according to river flow records and the corresponding
flood and drought conditions in this region. The probability of a river flow event is
estimated as the ratio of the day amount in that level divided by the total four year days.
The change of day amount in a river flow level represents the change of the probability of
that river flow event. Figure 10 illustrates how the climate change impacts the river flow. It
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shows that the probabilities of harmful large flows increases from 0.4% to 0.6%; the
probability of modest high flows decline from 3.3% to 0.7%; the probability of low flow
(which indicates the drought condition) increases from 0.6% to 0.7%. Our results show that,
in a warmer world, river flow tends to be concentrated into more intense events, with longer
periods of low flow in between. The likelihood of the modest large flow actually tends to
decline. Please note the uncertainty of the above probability is still unknown. It needs to be
cautious when dealing with small probability changes. However, we believe it is a good
way to quantify the impacts on the river flow events, considering the annual or monthly
river flow would give very little information in the river flow regime, especially extremes.

4 Conclusions and discussion

Obtaining sub-daily weather events in response to climate change is of great challenge for
future climate projection, and is critical for studying the hydrological impacts of the climate
change. This work introduced a method to retain the signals of weather events in scenario
forcing, which made it possible to explore the variability of river flow events in response
the change of climate. The delta change approach method was performed at each 3-h time
step on each Noah LSM model grid cell to preserve the signals of extreme weather events
that occur on theses scales. An empirical transformation technique was further applied to
the constructed forcing to ensure a realistic range. It was shown that the response of fine
scale processes to climate change is critical for the assessment of the impact of climate
change on river flow events.

Here we want to emphasize again that the choice of a moderate climate change scenario
is for methodological exploration rather than the real prediction. Although the research of
individual projections for specific scenarios is important, we think it is also useful to have
an effective method to evaluate the impact of any scenario. The method presented in this
paper is still tentative. The performance of the method will finally depend on the quality of
climate change projections. But one point embodied in this study can be important
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reference for future research, i.e., preserving the response of fine-scale processes to climate
change is a necessity to assess its impact on the variability of river regime events.
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Appendix

Physically-based parsimonious multivariate-regression algorithm

Physically-based parsimonious multivariate-regression algorithm is an statistical
algorithm used to downscale low-resolution spatial precipitation fields (Guan et al. 2009).
This algorithm auto-searches precipitation spatial structures (rain-pixel clusters), and
orographic effects on precipitation distribution without prior knowledge of atmospheric
setting. It is composed of three components: rain-pixel clustering, multivariate regression,
and random cascade. The first step is clustering, which separate the rain pixels into
different clusters by rain rates and their spatial connections, because the storm structure
and the associated physical processes are believed to be more similar within one raining
pixel cluster than between clusters. The second step is to examine alternative cluster
structures, and find the one having the best agreement between the regression estimates
and the original NEXRAD pixel values. For all identified clusters, ASOADeK regression
[Guan et al. 2009, 2005] is applied,

P ¼ bo þ b1X þ b2Y þ b3XY þ b4X
2 þ b5Y

2 þ b6Z þ b7 cosa þ b8 sina

where P is precipitation rate, X is the longitudinal geographic coordinate, Y is the
latitudinal coordinate, Z is the elevation, α is the terrain aspect, and the bi are fitted
coefficients. After regression, the sum of precipitation for the small pixels (calculated
from the regression function) is compared to the original large pixel value, and their
correlation coefficient is calculated for each cluster and assigned to each large pixel
and small pixels within the cluster. Guan et al. (2009) demonstrated the good
performance of the algorithm for downscaling NEXRAD precipitation at both daily and
hourly temporal resolutions for the northern New Mexico mountainous terrain and the
central Texas Hill Country.
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