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Abstract This article reviews the exploration of the climate dynamics of Brazil’s Nordeste
in the course of a century. The drought-prone and semi-arid northern Nordeste of Brazil
experiences a short rainy season around March–April, when the interhemispheric gradient
of sea surface temperature (SST) in the tropical Atlantic is weakest and the Intertropical
Convergence Zone (ITCZ) reaches its southernmost position in the course of the annual
cycle. The recurrent Secas (droughts) have a severe socio-economic impact. During drought
years, the interhemispheric SST gradient in the tropical Atlantic is steep and the ITCZ stays
far North, while the waters of the eastern equatorial Pacific tend to be anomalously warm.
Based on the extensive diagnostic exploration of the circulation mechanisms of interannual
climate variability, empirical methods have been developed for the forecasting of the
Nordeste rainy season. These have been applied in the real-time prediction of seasonal
rainfall anomalies throughout the last decade of the 20th century.

Abbreviations
SST Sea Surface Temperature
ITCZ Intertropical Convergence Zone
SMR Stepwise Multiple Regression
MOS Model Output Statistics

1 Introduction

The Nordeste, which actually constitutes the easternmost corner of the continent (Fig. 1) is
the region of earliest Portuguese colonization in the New World and has a long cultural
tradition. The Northern Nordeste has a semi-arid climate with a short rainy season centered
on March–April and large variations of rainfall from year to year. In its long history, the
recurrent “Secas”, or droughts, have had severe human impact. The region has been

Climatic Change (2012) 112:243–251
DOI 10.1007/s10584-011-0227-1

S. Hastenrath (*)
Department of Atmospheric and Oceanic Sciences, University of Wisconsin, 1225 West Dayton Street,
Madison 53706, USA
e-mail: slhasten@wisc.edu



appropriately highlighted as a “problem climate” (Trewartha 1962). Indeed, a series of
questions pose themselves: Why does the rainy season peak around March–April rather
than conforming to the notion of July–August and January–February as the extremes of the
annual cycle? Why do the rains fail in some years? How could one predict such climatic
disasters? The famous Sir Gilbert Walker, not content with his daunting tasks of forecasting
the Indian summer monsoon rainfall, devoted a meticulous paper to the Secas of Northeast
Brazil, published in a prestigious German journal (Walker 1928). In hindsight it is obvious
that Sir Gilbert did not have a clue. The pioneers of Brazilian meteorology pursued an
interest in the climate of the Nordeste (Sampaio Ferraz 1925; Serra 1956), drawing attention
to these issues. A recent book (Instituto Nacional de Meteorologia 2009) highlights the
amazing development of meteorology in Brazil over the past hundred years. The essentials
of circulation diagnostics and climate prediction for the Nordeste have been discussed in
books and journal articles (Hastenrath 1985, pp. 293–300, 363–365; 1995, pp. 302–309,
385–386; 1990, 2000). In the present essay, Section 2 traces the history of human impact;
Section 3 summarizes the progressive exploration in recent decades of the circulation
mechanisms of the annual cycle; Section 4 discusses the interannual variability, and based
on this Section 5 sketches the development of climate prediction methods and the
operational real-time forecasting of the Nordeste rainy season; and reflections on this
“problem climate” are expressed in the closing Section 6.

2 Human impact

A historical perspective of the human impact of the recurrent droughts is given in Carvalho
(1973, pp. 95–103, 179–192), Goncalves de Souza (1979, pp 73–83, 305–307), SUDENE
(1981, pp. 17–24), Hastenrath (1985, pp. 363–365), Davis (2001, pp. 79–90), and Aceituno
et al. (2009), while a short review must suffice here.

Reports of Secas and their severe socio-economic consequences exist ever since the
early century of Portuguese colonization. The Secas recurrently led to starvation and mass
exodus. The refugees may initially have hoped to return home after the drought, but many
stayed away forever. New settlements along rivers were founded by the “flagelados”. The
Secas were responsible for the emigration of Nordestinos to distant regions of Brazil. They
contributed to the labor force in the mines of Minas Gerais and the industrial hub of Sao
Paulo, and they were instrumental in opening up the western extremity of the Amazon
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Fig. 1 Orientation map showing the Northern Nordeste of Brazil and the rainfall stations Fortaleza (F)
and Quixeramobim (Q). Presented on the right are on top a 1912–1999 time series plot of rainfall in
the Northern Nordeste (March-April-May-June, normalized departure, index from 27 raingauge
stations; note the severe drought of 1958), and on bottom a diagram of the annual cycle of rainfall
at Fortaleza and Quixeramobim
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basin. Government initiatives to mitigate the effects of the droughts began in the 17th
century. These included public work projects for the unemployed refugees, the construction
of dams, plans for the exploitation of wind energy, and the development of alternative
settlements.

3 Annual cycle

The short rainy season of Brazil’s Nordeste is narrowly concentrated around March–April,
as is illustrated in Fig. 1 for two long-term stations. The causes for this peculiar seasonality
in rainfall could not well be appreciated without analyses of the large-scale circulation
setting. The annual cycle of circulation in the tropical Atlantic sector has first been
comprehensively documented in an atlas based on long-term ship observations (Hastenrath
and Lamb 1977). A limited selection of maps is presented in Fig. 2. The map Fig. 2a of sea
surface temperature (SST) shows a band of warmest surface waters across the tropical
North Atlantic, contrasting with a cold water tongue immediately to the South of the
Equator. A trough of lowest pressure (Fig. 2b) sits broadly over the warmest surface waters.
Embedded in the high pressure trough is the confluence between the Northeast trades and
the cross-equatorial airstream from the southern hemisphere (Fig. 2c). Somewhat to the
South of the wind confluence extends a zone of largest convergence (Fig. 2d), the
Intertropical Convergence Zone (ITCZ).

The SST maximum hydrostatically controls the low pressure trough, into which flow the
airstreams from the two hemispheres, and thus the position of the ITCZ (Hastenrath and
Druyan 1993; Hastenrath and Greischar 1993a). At the height of boreal summer, the

Fig. 2 Surface circulation over
the tropical Atlantic and eastern
Pacific, March 1958–97; (a) sea
surface temperature, with
isotherm spacing of 2°C and with
area above 28°C shaded; (b) sea
level pressure, with isobar
spacing of 2 mb, and with area
below 1012 mb shaded;
(c) resultant wind direction and
speed, with isotach spacing of
2 ms−1; confluence between
airstreams is indicated by bold
dashed line, repeated in panels a,
b and d; (d) divergence with
isoline spacing of 5×l0−6 s−1, and
convergence shaded; bold solid
line encloses Northeast Brazil
(Nordeste), and F and Q denote
the stations Fortaleza and
Quixeramobim
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interhemispheric SST gradient is steep, the band of warmest surface waters is located far
North, and along with that the near-equatorial low pressure trough and ITCZ. In the
progression from boreal summer to winter, the interhemispheric SST gradient weakens, and
the complex of SST maximum, low pressure trough, and ITCZ, shifts southward, reaching a
southernmost position around March–April. After that, the waters of the tropical North
Atlantic warm, the interhemispheric SST gradient steepens, and the complex of SST
maximum, pressure trough and ITCZ migrate northward. The ITCZ is the major rainbearing
system for the Nordeste and thus dictates the narrow concentration of the rainy season
around March–April (Fig. 1, right side).

4 Interannual variability

The cartoon in Fig. 3 compacts the results from diagnostic research spread over two
decades (Hastenrath and Heller 1977; Moura and Shukla 1981; Hastenrath et al. 1984;
Hastenrath 1985, p., 293–300; Hastenrath and Druyan 1993; Hastenrath and Greischar
1993a,b). The maps of Figs. 3a and b illustrate the departures in the large-scale atmosphere-
ocean setting characteristic of extremely DRY (Fig. 3a) and extremely WET (Fig. 3b) years
in the Nordeste.

Thus, Fig. 3a indicates for the DRY years surface waters anomalously warm in the
North and cold in the South, although what matters is the interhemispheric gradient of
SST. As a consequence, the confluence between the airstreams from the two hemispheres
sits far North, and along with that the rainbearing ITCZ. Fig. 3b for the Nordeste WET
years shows departures broadly opposite to those in the DRY years, namely weakened
interhemispheric SST gradient, more southerly ITCZ position, and cold Pacific waters. In
context with the discussion in Section 3 it is noted that the circulation departure patterns
characteristic of DRY and WET years broadly conform to the contrasts between the boreal
summer dry season and late boreal winter rainy season in the course of the annual cycle;
essential factors being the interhemispheric SST gradient and corresponding latitude
position of the ITCZ.

Fig. 3 Schematic illustration of
the characteristic circulation
departures during (a) DRY and
(b) WET years in Northern
Northeast Brazil. During DRY as
compared to WET years the
interhemispheric SST gradient
is enhanced, the Northeast
tradewinds weaker, the cross-
equatorial airstream from the
Southern hemisphere stronger,
and the enclosed wind confluence
along with the ITCZ are
displaced northward. Along with
this the pre-season rainfall in the
Nordeste is reduced, and the
equatorial Pacific waters are
anomalously warm
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As indicated in Fig. 3a, the surface waters of the eastern equatorial Pacific tend to be
anomalously warm during Nordeste drought years; the atmospheric circulation mechanisms
leading from Pacific SST anomalies to those in the Atlantic have been progressively
elucidated in a sequence of studies (Covey and Hastenrath 1978; Egger 1977; Horel and
Wallace 1981; Hoskins and Karoly 1981; Nobre and Moura 1984; Curtis and Hastenrath
1995; Hastenrath 2000a,b; 2006; Kucharski et al. 2008). During El Nino years, an upper-
tropospheric wave train extends from the equatorial eastern Pacific to the tropical North
Atlantic, affecting the pattern of upper-tropospheric topography and divergence, and hence
of vertical motion over the Atlantic. This leads to a weaker meridional pressure gradient on
the equatorward flank of the North Atlantic subtropical high, weaker North Atlantic trade
winds, an anomalously far northerly ITCZ position, conducive to Nordeste drought. Thus,
this ENSO teleconnection leads into the known Atlantic circulation mechanisms of
Nordeste drought.

Complementing these diagnostics of year to year variability, findings on variations
on longer time scales are of interest (Chu 1984; Hastenrath 1985, pp. 314–315). Thus,
in the rainfall of Northern Nordeste and in the circulation over the adjacent equatorial
Atlantic a marked preference for variability around 13–14 years has been found, phase
relationships between the rainfall and circulation variations being plausibly consistent. A
concentration of spectral power in rainfall is further indicated around double that period,
namely around 27–28 years. Such preferred time scales of variability are apparent in the
time series plot in Fig. 1.

5 Climate prediction

The diagnostic research into the circulation mechanisms of interannual rainfall variability
described in Section 4 forms the basis for the development of climate prediction methods.
The characteristic departure patterns in the SST and surface wind fields discussed in
Section 4 evolve gradually, and this offers the prospect of developing quantitative
relationships to the subsequent rainfall conditions. The most pertinent predictors include
pre-season rainfall in the Nordeste itself, the interhemispheric SST gradient and meridional
wind component in the tropical Atlantic sector, and SST in the eastern equatorial Pacific.
Expanding on the diagnostic insight into circulation mechanisms mentioned in Section 4,
established statistical techniques were used to formulate quantitatively the relationships
with the subsequent rainfall conditions. The proposition is to use information to the end of
January to forecast the March to June rainfall. Techniques include stepwise multiple
regression (SMR), linear discriminant analysis and neural networking. It is essential to keep
a clear distinction between the dependent portion of the record (or training period) used for
the method development, and the independent portion of record reserved for the verification
of forecast performance. Such is the groundwork essential for the subsequent application of
the forecasting method in real time.

The intrinsic feasibility of climate prediction for the Northern Nordeste was documented
in the early 1980’s, with particular attention to the severe drought of 1958 indicated in
Fig. 1 (Hastenrath 1984; Hastenrath et al. 1984). However, a major practical challenge
remained, namely to acquire the necessary input information in a timely manner. Thus, the
observations through the end of January must be in hand by the first days of February, so
that the prediction can be produced with useful lead time. It took the better part of a decade
to overcome this logistic challenge. In tandem with this, methods were progressively
improved (Hastenrath 1990; Hastenrath and Greischar 1993b). Then the time was ripe for
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real-time application. A decade-long record of real-time forecasting bears out sustained
performance (Ward and Folland 1991; Folland et al. 1993, 2001; Greischar and Hastenrath
2000; Moura and Hastenrath 2004: Hastenrath et al. 2009). The admirable motivation of
local colleagues since the mid 1980’s ensured the prompt transmission of pre-season rainfall
measurements in the Nordeste—well before the era of fax and Email. While communication
technology has advanced admirably since then, by the end of the millenium it proved no
longer possible to obtain the necessary pre-season raingauge data in time. As a
consequence, the operational real-time forecasting of the Nordeste rainy season, maintained
for a decade at the University of Wisconsin, was discontinued.

Seasonal forecasting for Brazil’s Nordeste has received increased attention in recent
years (Nobre et al. 2001; Druyan et al. 2002; Misra et al. 2003; Sun et al. 2005, 2006;
Leroy and Ceron 2007; Sun et al. 2007). A synergy of empirical and numerical modeling
approaches is most desirable.

In our work at the University of Wisconsin, the period 1921–57 was the dependent
portion of the record or “training period”, 1958–89 served as independent portion of the
record or “verification period”, and the real-time forecasting continued to 2000 (although
for that last year rain gauge measurements were no longer received for verification. Thus
the years 1958–99 are available for verification of forecast performance.

A recent note (Hastenrath et al. 2009) compared the performance of numerical modeling
and general-circulation-based empirical methods. The numerical model used was
ECHAM4.5 (Roeckner et al. 1996). The years 1958–67 served for MOS (model output
statistics) regression postprocessing. The empirical method used as input predictors to
stepwise multiple regression (SMR) four indices, namely of pre-season rainfall, meridional SST
gradient and meridional wind component in the tropical Atlantic, and SST in the eastern
equatorial Pacific. Complementing this, an experiment was undertaken with pre-season rainfall
as sole predictor. This is favored by the precursory ITCZ latitude position and then may (Paulo
Nobre, pers. comm.) through local soil moistening and evapotranspiration processes favor the
subsequent rainfall activity. Fig. 4 compares the predictions with the observed rainfall during
1969–99. Results are presented in part b for the numerical modeling and in part a for the
empirical method with four predictors. Over the 32 year verification period the numerical
modeling captures 49% of the variance as compared to 59% by the empirical method. As

Fig. 4 Time series plots of
March–June precipitation indices
in mm. a empirical predictions
E* dots, and gridded observations
O* open circles. b predictions
from numerical modeling with
regression MOS postprocessing
(M) dots, and gridded
observations O* open circles
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noted by a reviewer, for extreme dry and wet years Fig. 4 shows higher performance for the
numerical modeling than the empirical method. Remarkably, the measurements of pre-season
rainfall in the region itself used as sole predictor, can explain 35%. Consistent with these
results for Brazil’s Nordeste, a series of publications on tropical climate prediction conclude
that numerical modeling does not surpass the performance of empirically based prediction
(Barnston et al. 1994; 1999; Webster et al. 1998; Anderson et al. 1999; Bamzai and Shukla
1999; Cavalcanti et al. 2006; Lorenz 2007). Concerning expectations from downscaling in
numerical modeling appreciation is in order for precision versus accuracy, an issue meriting
further attention.

6 Concluding remarks

The recurrent Secas of Brazil’ s Nordeste, their severe human impact, and the possibility of
their prediction, have long intrigued climatologists (Walker 1928; Sampaio Ferraz 1925;
Serra 1956). Appropriately, Trewartha (1962, pp. 50–54) highlighted the Nordeste as a
“problem climate”. Seasonal forecasting for the Nordeste in real time is an important task,
to be tackled on the grounds of the known circulation diagnostics. The annual cycle of
rainfall in the region is an elementary issue, but it can only be understood from the
documentation of the annual cycle of circulation in the tropical Atlantic sector (Hastenrath
and Lamb 1977). The departure patterns of the large-scale circulation during DRY as
compared to WET years in the Nordeste are broadly in the sense of the contrast between the
dry versus the rainy seasons in the annual cycle (Hastenrath and Heller 1977; Hastenrath
and Greischar 1993a,b; Hastenrath and Druyan 1993). Such circulation anomalies evolve
gradually, which offers the prospect for empirically-based climate prediction (Hastenrath et
al. 1984). Essential is the diagnostic understanding of circulation mechanisms; statistical
techniques merely serve to quantify the predictive relationships. The prediction efforts have
been carried to successful real-time application over a decade (Greischar and Hastenrath
2000; Folland et al. 2001; Moura and Hastenrath 2004; Hastenrath et al. 2009). The
precipitation departures depend prevailingly on the anomalous behavior of a single quasi-
permanent circulation system, the Atlantic ITCZ. As a consequence, the interannual rainfall
variability in this semi-arid region is large and the human impact severe. Fortunately, the
known circulation mechanisms are favorable to seasonal forecasting for the northern
Nordeste. For most other regions of the tropics the prospects are remote.
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