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Abstract Recent research indicates that monsoon rainfall became less frequent but more
intense in India during the latter half of the Twentieth Century, thus increasing the risk of
drought and flood damage to the country’s wet-season (kharif) rice crop. Our statistical
analysis of state-level Indian data confirms that drought and extreme rainfall negatively
affected rice yield (harvest per hectare) in predominantly rainfed areas during 1966–2002,
with drought having a much greater impact than extreme rainfall. Using Monte Carlo
simulation, we find that yield would have been 1.7% higher on average if monsoon
characteristics, especially drought frequency, had not changed since 1960. Yield would have
received an additional boost of nearly 4% if two other meteorological changes (warmer
nights and lower rainfall at the end of the growing season) had not occurred. In
combination, these changes would have increased cumulative harvest during 1966–2002 by
an amount equivalent to about a fifth of the increase caused by improvements in farming
technology. Climate change has evidently already negatively affected India’s hundreds of
millions of rice producers and consumers.
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1 Introduction

Rice is the most important crop in Asia, which is home to three-fifths of humanity. In India,
more than half of the annual rice crop continues to be grown during the summer monsoon
season (kharif), despite increased dry-season harvests made possible by expanded
irrigation. Recent research indicates that the monsoon has changed in two significant ways
during the past half-century: it has weakened (less total rainfall during June–September;
Ramanathan et al. 2005; Dash et al. 2007; Ramesh and Goswami 2007), and the
distribution of rainfall within the monsoon season has become more extreme (Goswami et
al. 2006; Dash et al. 2009). Here, we use a combination of statistical and simulation
methods to analyze the impacts of these changes on rice yield (= harvest per unit area) since
the 1960s. To our knowledge, such an analysis has not been previously conducted, perhaps
because the daily gridded rainfall data needed for measuring extreme rainfall in India
became available only recently (Ramesh and Goswami 2007).

The all-India mean of total June–September rainfall during 1961–98 was about 5%
below the mean for the previous 30-year period (Ramanathan et al. 2005). This reduction is
more than double the overall reduction since the late 1800s (Dash et al. 2007), thus
suggesting that the weakening of the monsoon has accelerated. During 1951–2003, the area
of India with monsoon rainfall one standard deviation below the mean for that period
expanded by nearly 50% (Ramesh and Goswami 2007). During roughly the same time
period (1951–2000), the frequency of heavy and very heavy rain events in central India
increased by nearly 50% and more than 100%, respectively, while the frequency of
moderate events decreased by about 10% (Goswami et al. 2006). For the country as a
whole, the frequency of days with low or moderate rainfall decreased significantly during
1951–2004, while the frequency of long rainy spells decreased and the frequency of short
rainy spells, dry spells, and prolonged dry spells all increased (Dash et al. 2009).

These changes raise concerns about food security. Numerous studies have demonstrated
that the kharif harvest is lower when total June–September rainfall is lower (Webster et al.
1998; Selvaraju 2003; Krishna Kumar et al. 2004). A drought during the summer of 2009
was one of the most severe in decades, with rice harvest declining by 14% (Commission for
Agricultural Costs and Prices 2010). Flooding associated with heavy rain events can also
damage crops (Goswami et al. 2006).

Given that the monsoon has evidently already weakened and become more extreme, one
should be able to detect any resulting impacts on rice yield by analyzing historical data. To
do this, however, one must control for changes in agricultural technology. Planting of high-
yielding varieties (HYV) and application of agro-chemicals expanded greatly in India after
the advent of the “Green Revolution” in the mid-1960s. The positive impact of such
innovations on yield could mask the negative impacts of changes in the monsoon. One must
also control for other meteorological changes. Surface warming accelerated in India at the
end of the 20th Century, with minimum (nighttime) temperature (Tmin) rising 0.025°C/yr
during 1981–1990 and 0.056°C/yr during 1991–2000 (Padma Kumari et al. 2007). India’s
land surface also became dimmer, with surface solar radiation falling by about 5% during
1981–2004 (Ramanathan et al. 2005; Padma Kumari et al. 2007). These changes, and not just
changes in the monsoon, could contribute to any residual reductions in yield that are detected
after controlling for changes in technology. Rice yield tends to be reduced by higher
minimum temperature (Yoshida and Parao 1976; Seshu and Cady 1984; Peng et al. 2004;
Wassmann et al. 2009) and lower solar radiation (De Datta and Zarata 1970; Yoshida and
Parao 1976; Evans and De Datta 1979; Seshu and Cady 1984; Stanhill and Cohen 2001; Peng
et al. 2004; Praba et al. 2004), especially during the latter part of the growing season.
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In the statistical part of the study, multiple regression was used to determine the
sensitivity of yield to monsoon characteristics—extreme rainfall and drought, in addition to
total June-September rainfall—while controlling for potentially confounding technological
and meteorological factors. The sample consisted of 1966–2002 data for major agricultural
states in India where farms are predominantly rainfed. In the simulation analysis, we
combined these regression-based estimates of the climate sensitivity of yield with historical
climate data to predict the impacts of changes in monsoon characteristics on yield and to
compare them to the impacts of changes in other climate characteristics. We describe the
statistical analysis in the next section and the simulation analysis in the section after that.
We discuss implications and limitations of our findings in the final section.

2 Statistical analysis

2.1 Regression methods and data

The statistical analysis extended previous research on the impacts of weather on kharif rice
production by quantifying the impacts of monsoon characteristics other than just total June–
September rainfall. It used the following modified version of an existing statistical model of
state-level rice production in India (Auffhammer et al. 2006):

ln yitð Þ ¼ ci þ qt þ ϕit þ Xit b þ Zit g þ "it:

yit is yield in state i in year t; ci and θt are fixed effects for states and years (i.e., state- and
year-specific regression constants); ϕi is a state-specific parameter on the annual time trend
t; Xit denotes farm inputs; Zit denotes weather variables; β and γ are parameters on farm
inputs and weather variables, respectively; and εit is the error term. Boldface indicates
vectors. With one exception (discussed below), all variables in Xit and Zit were expressed as
natural logarithms. Nine states with predominantly rainfed rice production were included in
the analysis: Assam, Bihar, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Orissa, Uttar
Pradesh, and West Bengal. Nineteen sixty-six was chosen as the first year in the regression
sample because it was the year when HYV were introduced in India, and 2002 was chosen
as the final year due to data availability. The resulting estimation period was more than a
third longer than in Auffhammer et al.

The original model in Auffhammer et al. had the logarithm of harvest instead of the
logarithm of yield (= harvest per hectare) as the dependent variable, and it included the
logarithm of area harvested as an additional explanatory variable. When we estimated that
version of the model, we found that the parameter on the logarithm of area harvested was
not significantly different from one, which implies that the logarithm of yield can be used as
the dependent variable. In addition to being simpler, the latter specification avoids a
statistical problem (endogeneity; see Mundlak 2001) that could be caused by the
simultaneous determination of area harvested with quantity of rice harvested.

We included eight weather variables in Zit. Six of them were total rainfall, mean Tmin,
and mean surface radiation, each measured separately during two periods, June–September
and October–November. The earlier period is the standard definition of the monsoon
period, and it covers approximately the vegetative and reproductive growth phases of the
rice plant. The later period covers approximately the ripening phase, at the end of which
harvesting occurs. The correspondence between time periods and rice growth phases is only
approximate, because crop-establishment and harvest dates vary across states and years due
to variation in weather conditions.
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The remaining two weather variables measured two additional characteristics of
monsoon rainfall, extreme rainfall and drought. Extreme rainfall was defined as the sum
of June–September rainfall that occurred on days with rainfall that equaled or exceeded a
state’s 95th percentile daily threshold. Drought was a binary 0–1 variable that indicated
years when total June–September rainfall was at least 15% below a state’s mean for that
variable. The 15% threshold was determined statistically, as the value that had the most
statistically significant impact on yield. The drought variable was not expressed in
logarithmic form, given that it could have values of zero. The extreme rainfall variable had
values of zero in a few cases, so the number one was added before the variable was
converted to logarithms. Table 1 provides detail on data sources and construction of the
weather variables.

The original model in Auffhammer et al. did not include the extreme rainfall and drought
variables. Other differences were that it included total rainfall before the monsoon (March–
May), which we found to have an insignificant impact on yield, and mean surface radiation
during December, which is after the kharif harvest.

The modified model included the same four non-weather variables in Xit as in
Auffhammer et al.: area irrigated (although our analysis focuses on the kharif crop in
predominantly rainfed states, irrigation works can improve water management even during
the monsoon season), area in HYV, fertilizer use, and number of farm workers. Table 2
provides detail on these variables. Although most inputs of fertilizer and labor occur
months before harvest, one might argue that these variables are nevertheless endogenously
determined with yield. For example, an unobserved early-season shock that ultimately
affects yield might also influence use of fertilizer or labor. Failure to control for such
endogeneity could potentially bias the parameter estimates (Mundlak 2001). However, a
Hausman test did not reject the null hypothesis that fertilizer and labor were uncorrelated
with the error term at even a 10% level, and so we concluded that endogeneity was not a
significant concern. Along similar lines, one might argue that inclusion of the non-weather
variables causes the model to underestimate the impacts of weather on rice yield, as the
levels of these variables might be adjusted in response to weather conditions. To check this,
we also estimated the model with all the variables in Xit excluded—i.e., a specification that
included only the weather variables.

The fixed effects for states and (ci) and the state-specific annual trends (ϕit) implicitly
demeaned and detrended all the variables at the state level, thus controlling for unobserved
sources of variation in mean yield between states and, within each state, over time that
might potentially be correlated with the weather variables and thus could bias the parameter
estimates on them. The fixed effects for years (θt) controlled for additional unobserved
sources of variation that were common across states but varied nonlinearly over time. In
calculating the standard errors of the parameter estimates, we allowed the error term εit to
have different variances across states and nonzero covariances between states (unobserved
shocks could be spatially correlated). We also allowed for first-order serial correlation, but
we found that the serial correlation coefficient had a negligible value of 0.03 and so ignored
it in calculating the standard errors.

2.2 Regression results

Table 3 shows complete regression results. Results in the first two columns (parameter
estimates and P-values) were the source of parameters used in the simulation analysis. All
three monsoon characteristics were found to have significant impacts on yield at P<0.1, but
only total June–September rainfall and the drought indicator were significant at P<0.05.
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Table 2 Non-weather variables in regression model

Variable Description Source

Yield
(dependent
variable)

Rough rice yield, kharif season
(metric tons per hectare)

Ministry of Agriculture, India
(www.indiastat.com)

Area irrigated Share of rice area irrigated Ministry of Agriculture, India
(www.indiastat.com)

Area in HYV Share of rice area planted with high-yielding
varieties

Ministry of Agriculture, India
(www.indiastat.com)

Fertilizer N-P-K fertilizer (tons) used for all food crops,
prorated using rice’s share of total crop
area and expressed per hectare

Fertiliser Statistics Yearbook
(Fertiliser Association of India,
New Delhi, various years)

Labor Number of cultivators and agricultural laborers,
interpolated from 1960 to 2000 Censuses,
prorated using rice’s share of crop area, and
expressed per hectare

Census of India (Census Commissioner,
Office of the Registrar General,
New Delhi, various years)

All variables were constructed at the state level for each year during 1966–2002

Table 3 Parameter estimates on variables in regression model

All variables Exclude drought, extreme rainfall Exclude farm inputs

Variables Parameter
estimates

P-
values

Parameter
estimates

P-
values

Parameter
estimates

P-
values

Rainfall

June–September: total 0.20 (0.012) 0.31 (0.000) 0.19 (0.024)

June–September: drought −0.12 (0.000) −0.14 (0.000)

June–September: extreme −0.022 (0.053) −0.020 (0.087)

October–November: total 0.031 (0.015) 0.026 (0.046) 0.031 (0.019)

Tmin

June–September 0.49 (0.380) 0.69 (0.240) 0.56 (0.330)

October–November −0.95 (0.000) −0.96 (0.000) −0.92 (0.001)

Surface radiation

June–September −0.75 (0.170) −0.85 (0.130) −0.73 (0.230)

October–November −0.15 (0.720) −0.32 (0.470) −0.16 (0.730)

Area

Irrigated 0.11 (0.023) 0.12 (0.013)

HYV 0.069 (0.007) 0.066 (0.011)

Other inputs

Fertilizer 0.070 (0.006) 0.093 (0.000)

Labor −0.32 (0.028) −0.41 (0.006)

Dependent variable (yield) and all explanatory variables except drought were in logarithmic form. In addition
to variables shown, model also included fixed effects for states and years and state-specific annual time
trends. P-values are rounded to 3 decimal places and refer to standard errors corrected for heteroskedasticity
and nonzero covariances between states. R2 : 0.91 for model with all variables, 0.90 for other two models.
Sample: 333 observations (= 9 states×37 years)
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Extreme rainfall was thus less significant than the other two characteristics. The magnitude
of its impact was also less. Because the dependent variable (yield) and all explanatory
variables except drought were in logarithmic form, parameter estimates bgð Þ for variables
other than drought equal elasticities: a 1% change in a weather variable has a bg% impact on
yield. In the case of the drought variable, the parameter estimate indicates the additional bg%
reduction in yield that occurred when total June–September rainfall dropped 15% below its
mean value for a given state. Using these relationships, the regression results indicate that
yield decreased 0.20% per 1% decrease in total June–September rainfall but only 0.022%
per 1% increase in extreme rainfall, and 12% when a drought occurred.

These results indicate that the monsoon’s impact was nonlinear—the negative impact of
reduced rainfall was amplified when rainfall was very low (drought), and the positive of
impact of higher rainfall reversed sign and became negative when the increase occurred as
extreme rainfall—but the nonlinearity related to drought was much more important than the
one related to extreme rainfall. The middle two columns of Table 3 show results for a model
that excluded the extreme rainfall and drought variables. The parameter on total June–
September rainfall was much higher in this model (0.31 instead of 0.20). Ignoring nonlinear
characteristics of the monsoon thus caused the estimate of this parameter to be biased
upward, which is consistent with the omitted impact of drought being much more
influential than the omitted impact of extreme rainfall.

Returning to the results in the first two columns, several of the controls for other weather
variables were also significant. As expected, October–November Tmin had a highly significant
(P<0.001), negative impact on yield, and the impact was large: a 1% increase was associated
with a 0.95% decrease in yield. Total October–November rainfall had a significant (P=0.015),
positive impact, but it was small compared to the impact of total June–September rainfall: a
1% increase was associated with just a 0.031% increase in yield, not much more than for
extreme rainfall. Neither of the surface radiation variables was significant, perhaps because
these variables were more aggregate (and thus measured less accurately) than the rainfall and
temperature variables (as explained in Table 1, they referred to northern and southern groups
of states, not individual states).

The parameters on several non-weather variables were also significant and had plausible
signs. Parameters on area irrigated, area planted with HYV, and fertilizer were positive and
significant (P<0.05). The parameter on labor was significant but negative, which perhaps
indicates that yield tended to be lower in states with smaller average farm size (i.e., more
labor per unit area, and thus a loss of scale economies). The last two columns of Table 3
show results for a model that excluded the non-weather variables. The exclusion of these
variables had very little impact on the parameters on the weather variables, which implies
that the levels of the non-weather variables were not very sensitive to weather conditions.

3 Simulation analysis

3.1 Simulation methods and data

The impact of monsoon changes on rice yield depends on not only the sensitivity of yield to
monsoon characteristics but also the magnitude of changes in these characteristics. The
simulation analysis integrated these two sets of factors. Specifically, it addressed the
question, “How would rice yield have differed during 1966–2002 if climate had remained
the same as before 1960?” Nineteen-sixty was chosen as the historical dividing line due to
the evidence of a reduction in monsoon rainfall since then (Ramanathan et al. 2005).
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Using estimated parameters from the statistical model, rice yield was predicted for a
representative kharif rice-growing region in the predominantly rainfed areas of India under
two climate scenarios, with climate change and without climate change. Denote the value of
weather variable j in year t under the former scenario by zjt and its value under the latter
scenario by ezjt, where t refers to a year during 1966–2002. Holding the non-weather
variables at their historical values, and expressing the weather variables in original units
(not logarithms), the ratio of predicted yield without climate change (eyt) to predicted yield
with climate change (byt) is given by

eytbyt ¼
Y
j

ezjt
zjt

� �bgj
;

where the exponent bgj is the parameter estimate on weather variable j from the regression
model. For expositional simplicity, this expression ignores the drought dummy, which enters
as an exponential term; this variable was however included in the simulation.

Applying this expression required data on zjt andezjt . We focused on the five weather
variables that were significant at P<0.1 in the regression model that included the full set of
variables (the first two columns in Table 3). Data on zjt were simply the actual 1966–2002
state-level weather observations, aggregated to form estimates for a representative kharif
rice-growing region in the country by using 1966–2002 mean areas harvested of the nine
states as weights. For the total June–September and October–November rainfall variables,
we used monthly series from the Indian Institute of Tropical Meteorology instead of the
daily gridded data from the India Meteorological Department that we used in the regression
model. We did this to obtain longer time series: as discussed in the next paragraph, we
based the counterfactual weather variablesezjt on pre-1960 weather observations, and the
daily rainfall series were available only since 1951.

Data onezjt are obviously not observable. We used Monte Carlo techniques to simulate
them. Exact prediction of the post-1960 weather realizations that would have occurred in
the absence of climate change is impossible, but the Monte Carlo analysis enabled us to
characterize their expected values. We determined the means, variances, and covariances for
the five area-weighted weather variables for the pre-1960 period, using 1930–60
observations where available. We assumed that, in the absence of climate change, the
1966–2002 realizations of the ezjt variables would have been drawn from a multivariate
normal climate distribution having these pre-1960 characteristics.

The means and variances of three variables inezjt—total June–September rainfall, and
total rainfall and mean Tmin during October–November—were set equal to the means and
variances of the observed 1930–60 values, which are shown in Fig. 1. In view of the much
shorter time series for June–September extreme rainfall, which was available only from 1951,
we used a different approach based on regression analysis, which related the observed values of
this variable to a time trend. We also used a regression-based approach for June–September
drought, which related the observed values to total June–September rainfall. Table 4 provides
details on the construction of all theezjt variables, with Online Resources 1–2 providing details
on the regression results for June–September extreme rainfall and drought.

The historical weather series that we used in the simulation analysis exhibited several
notable changes over time (Fig. 1). The direction of these changes was consistent with ones
reported in previous studies, but the magnitudes were not necessarily the same due to
differences in areas analyzed: we used weather observations from just the rice-growing
portions of states when we constructed the state-level weather variables (Table 1); and we
weighted the state-level weather variables by mean harvested areas when we formed the
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aggregate, “India”-wide variables shown in Fig. 1 (Table 4). Weather trends reported in
previous studies have not referred so specifically to rice-growing areas. The mean of total
June–September rainfall fell from 1259 mm to 1211 mm between 1930–60 and 1961–2002,
while the mean of total October–November rainfall fell from 128 mm to 109 mm. Trends in
these variables within either the 1930–60 or 1961–2002 periods were not significant at P<
0.05, but the trend in June-September extreme rainfall was significant during 1961–2002,
rising 0.67 mm/year. The annual probability of one of the states in our sample experiencing
a drought according to our definition (i.e., total June–September rainfall being at least 15%
below a state’s mean) increased from 8.6% during 1930–60 to 16.4% during 1961–2002.
October–November Tmin did not have a significant trend during 1930–60, but it rose 0.025°C/
yr during 1961–2002 (P<0.01). In the absence of these changes, the average predominantly
rainfed rice-growing area in India would have had a stronger monsoon, with a lower risk of
drought and less extreme rainfall, and more rain and cooler nights during October–November.

Consideration of covariances among the ezjt variables is potentially important, as
individual aspects of weather do not change in isolation. For example, cooler periods tend
to be wetter. To investigate the importance of covariances, we constructed two versions of
the variance-covariance matrix for the ezjt variables (Online Resource 3): a diagonal matrix
that assumed covariances equaled zero (Version A), and version that used the pre-1960
observations to calculate nonzero covariances (Version B). Both versions omitted June–
September drought, which as noted above was directly related to the Monte Carlo draws of
total June–September rainfall. We ran the Monte Carlo analysis using each matrix. The
mean predicted impacts on yield were virtually identical for the two matrices, differing by
at most 0.04 percentage points. The results presented in this paper refer to draws from
matrix B.

Ten thousand draws for 1966–2002 were taken from the pre-1960 climate distribution
for a given simulation. For each year in a draw, the ratio of yield without climate change (ey,
based on the simulated weather realizations ez) to yield with climate change (by, based the
observed weather realizations z) was calculated. The ratios were then averaged across
draws. Simulations were run with different combinations of weather variables included, to
determine the individual and combined impacts of the variables.

Fig. 1 Historical weather observations for a representative kharif rice-growing region in predominantly
rainfed areas of India. Observations were constructed by weighting state-level weather variables by 1966–
2002 mean areas harvested. Dotted lines show trends. a Total June–Sep. rainfall (blue, left axis); total Oct.–
Nov. rainfall (red, right axis,); June–Sep. extreme rainfall (green, right axis). b Oct.–Nov. Tmin
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Table 4 Construction of counterfactual weather variables in simulation model

Variable Time period
(s)

Description Data source

Total rainfall
(mm)

June–
September,

October–
November

1. For each year during 1930–60, summed
monthly data for meteorological subdivisions
within the rice-growing region of a state
across the months in the period.

Kothawale et al. (2006)

2. Calculated state-level weighted-average of
data from step 1, using rice-growing portions
of subdivision areas as weights.

3. Calculated India-level weighted-average of
state-level data from step 2, using mean
1966–2002 harvested areas as weights.

4. Set mean and variance of counterfactual total
rainfall equal to mean and variance of data
from step 3.

Drought
(fraction,
0–1)

June–
September

1. For each year during 1966–2002, calculated
total area in India affected by drought by
summing areas harvested across states where
drought variable used in regression equaled
1 for that year.

2. Converted areas from step 1 to shares by
dividing by sum of harvested areas across
states (drought plus non-drought).

3. Regressed share variable from step 2 on
India-level total June–September rainfall
(= weighted-average of state-level variables,
using mean 1966–2002 harvested areas
as weights; Online Resource 2).

4. Used parameter estimates from regression in
step 3 to predict drought share for
counterfactual total June–September rainfall.

Extreme
rainfall
(mm)

June–
September

1. For each state and each year during
1951–2002, summed June–September daily
rainfall that equaled or exceeded the state’s
95th percentile threshold (Table 1).

India Meteorological
Department
(www.imd.ernet.in/
nccraindata.htm)

2. Calculated India-level weighted-average of
state-level data from step 1, using mean
1966–2002 harvested areas as weights.

3. Regressed India-level data from step 2 on a
constant and a 1961–2002 annual time trend
(Online Resource 1).

4. Set mean of counterfactual extreme rainfall
equal to regression constant, and variance equal to
squared standard error of the regression.

Minimum
temperature
(°C)

October–
November

1. For each year during 1930–60, averaged
monthly gridded (1°×1°) data across grid
cells within the rice-growing region of a state
and days in the time period.

Mitchell and Jones
(2005)

2. Calculated India-level weighted-average of
state-level data from step 1, using mean
1966–2002 harvested areas as weights.

3. Set mean and variance of counterfactual
minimum temperature equal to mean and
variance of data from step 2.
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3.2 Simulation results

The results shown in Table 5 are for a series of simulations that started with just total June–
September rainfall and progressively added the remaining four weather variables. Results
were virtually identical if the variables were added in the reverse order, thus implying that
the order of addition did not matter.

The results indicate that average yield during 1966–2002 would have been higher in the
absence of climate change, with all five weather variables contributing to the increase. Yield
would have been roughly 2% higher if monsoon characteristics had not changed. The
increase in total June–September rainfall and the reduced frequency of drought each would
have accounted for about half of the increase, with the impact of reduced extreme rainfall
being negligible. The increase in total October–November rainfall would have increased
yield by about a third as much as the improved monsoon conditions.

The decrease in October–November Tmin would have had an even greater impact, 50%
larger than the combined impact of the four rainfall variables. Average yield during 1966–
2002 would have been nearly 6% higher if none of the five weather changes had occurred.

4 Discussion and conclusions

Actual cumulative kharif rice harvest during 1966–2002 in the 9 states in our study was
1,322 million tons. Our simulation results imply that the cumulative harvest would have
been 5.67% higher in the absence of climate change, or 75 million tons. This amount can be
compared to a back-of-the-envelope estimate of the increase caused by the actual increase
in yield. Average yield across the nine states during 1961–65, before the introduction of
HYV, was 0.89 tons per hectare. If yield had stayed at that level, then cumulative harvest
during 1966–2002 would have been just 967 million tons. (This calculation takes into
account the roughly 10% increase in harvested area between the mid-1960s and early
2000s.) The difference between the actual cumulative harvest and this amount, 355 million
tons, represents the impact of the actual increase in yield, which resulted from such changes
in farming technology as the introduction of HYVand greater use of irrigation and fertilizer.

Table 5 Predicted impact of historical absence of climate change: percentage difference between rice yield if
1966–2002 weather had been drawn from 1930–60 climate distribution, and rice yield under actual 1966–
2002 weather realizations

Weather variable Individual effect (%) Combined effect (%)

Monsoon rainfall (June–September)

Total 0.84 0.84

Extreme 0.10 0.94

Drought 0.77 1.71

Rainfall: October–November 0.55 2.26

Tmin: October–November 3.41 5.67

Values refer to representative kharif rice-growing region in predominantly rainfed areas of India. Predicted
weather from 1930–60 climate distribution is mean of 10,000 draws from Monte Carlo analysis. Actual
1966–2002 weather realizations are shown in Fig. 1. Sensitivity of yield to weather variables was based on
parameter estimates in Table 3 (the “All variables” model). The last column (“Combined effect”) shows the
sequential sum of the individual effects from the first row to a given row
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The boost in yield from a better climate thus would have increased cumulative harvest by
about a fifth as much as improved farming technology did.

Another way to gauge the simulated 5.67% increase in yield is to compare it to
predictions of the future agricultural impacts of climate change. Guiteras (2009) predicted
that climate change will reduce rice yield in India by 4.5–9% by 2039, while the Fourth
Assessment Report of the IPCC reported that net production of cereals (not just rice) in
South Asia could decrease by 4–10% by 2100 even under “the most conservative climate
change scenario” (Cruz et al. 2007, pp. 480–1). Our results indicate that impacts of these
magnitudes already occurred during 1966–2002.

The simulated yield impacts in Table 5 probably understate the actual impacts of
historical climate change on rice harvests in India. The simulation analysis ignored potential
responses by farmers to the improved weather conditions they would have faced in the
absence of climate change. Farmers might have been able to achieve even higher yields by
adjusting their use of fertilizer and other inputs, which were held constant at historical
levels in the simulations. Moreover, the impacts in Table 5 refer only to changes in yield,
while the percentage change in harvest is given by the sum of the percentage change in
yield and the percentage change in area. Previous research indicates that an increase in total
June–September rainfall has an even larger impact on area than on yield (Kanwar 2004;
Auffhammer et al. 2006). An increase in rice area would, however, come at the expense of
other crops and non-farm land uses. Hence, the area-related portion of an increase in rice
harvest would not represent as unambiguous an increase in overall economic output as the
yield-related increase reported here.

There is another, more purely statistical reason for expecting the estimated impacts
to be understated: measurement error. The regression model in this study, like those
in several others on the impacts of climate change on agriculture in India (e.g.,
Kanwar 2004; Auffhammer et al. 2006, including the sources cited on p. 19670;
Guiteras 2009), was based on a combination of two types of data, agricultural and
meteorological. The agricultural data were reported at the state level, while the
meteorological data were reported at more disaggregated levels. As indicated by Table 1,
a series of steps were needed to make the meteorological data conform to the agricultural
data. The resulting, aggregated meteorological variables suffer from an unknown, but
surely nonzero, amount of measurement error as indicators of weather in the
predominantly rainfed areas of the states. The usual consequence of measurement error
in an explanatory variable is to cause the regression parameter on that variable to be
biased toward zero (Greene 2008, pp. 325–327). For this reason, the actual yield impacts
of some of the weather variables in our regression models could therefore be greater than
the parameters in Table 3 indicate.

Our statistical results indicate that monsoon rainfall is not the only weather variable
affecting the kharif rice yield in India. In fact, our simulation results indicate that nighttime
warming at the end of the growing season had an even greater impact on yield during
1966–2002 than changes in monsoon characteristics. Regarding monsoon characteristics,
both our statistical and simulation results confirm the usefulness of the standard summary
measure of the strength of the monsoon, i.e. total June–September rainfall, for predicting
rice yield. Our statistical results indicate that this variable is significantly correlated with
rice yield and that it can be used to generate a simple drought indicator that is also
significantly correlated with yield. Our simulation results indicate that changes in total
June–September rainfall and drought frequency had about equal impacts on rice yield
during 1966–2002. In contrast, our statistical results indicate that a second nonlinear
characteristic of the monsoon, the amount of extreme rainfall, is less significantly correlated
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with yield, and our simulation results indicate that its impact on yield during 1966–2002
was much smaller than the impacts of the other two monsoon characteristics.

The historical changes in India’s climate analyzed here were purely observation-based—
a statistical comparison of weather realizations before 1960 to realizations after that date—
not the result of climate model runs. The analysis thus provides no basis for determining the
extent to which the observed changes were due to human activity. The changes are,
however, consistent with climate model predictions of the combined effects of increased
global concentrations of greenhouse gases and increased regional concentrations of aerosols
(“brown clouds”) (Ramanathan et al. 2005; Ramanathan et al. 2008). Mitigating emissions
of greenhouse gases and aerosols might therefore confer benefits on India’s hundreds of
millions of rice producers and consumers. Moreover, climate models predict that the
monsoon will continue to weaken (Kripalani et al. 2007) and that the global area affected
by drought will likely increase in the future, with the frequency of heavy precipitation
events very likely to increase over most areas (Pachauri and Reisinger 2007). Future
impacts of these changes on rice yield in India would thus likely be larger than the historical
ones estimated here.
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