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Abstract In this paper we apply a linear regression with spatial random effect to
model geographically distributed emission inventory data. The study presented is on
N2O emission assessments for municipalities of southern Norway and on activities
related to emissions (proxy data). Taking advantage of the spatial dimension of the
emission process, the method proposed is intended to improve inventory extension
beyond its earlier coverage. For this, the proxy data are used. The conditional au-
toregressive model is used to account for spatial correlation between municipalities.
Parameter estimation is based on the maximum likelihood method and the optimal
predictor is developed. The results indicate that inclusion of a spatial dependence
component lead to improvement in both representation of the observed data set and
prediction.

1 Introduction

This study focuses on a spatial aspect of inventories for atmospheric pollutants.
The study tackles situations where emission inventory is to be expanded beyond
its present coverage, where relevant activity data are missing. In the absence of
measured data (activities) contributing to emissions, proxy data about activities can
be used. The aim is to provide a tool to improve inventory developed with proxy
data, by taking advantage of the spatial correlation of an emission process.

In the case of greenhouse gases, spatial resolution is usually not crucial for the
emission effect as such. However, there are several situations where the spatial
dimension is needed. In elaborated models of climate change, for instance, model
HadAM3 of the British Meteorological Office (Pope et al. 2000), transport of
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greenhouse gases is modeled in a similar way to other pollutants, e.g. (sulfur oxides)
SOx and NOx. With growing resolution, for instance, in national models of this
kind, the need for a finer inventory data mesh becomes important. The proposed
method can be used for this purpose. Other examples include validations of regional
inventories by field measurements or by inverse modeling in top-down approaches
(Ciais et al. 2010; Rivier et al. 2010).

The topic of spatial heterogeneity of greenhouse gas (GHG) emissions and
sequestration can be addressed in various ways. For instance, the spatial distribution
of greenhouse gas emissions for Ukraine has been presented in Bun et al. (2010).
Theloke et al. (2007) develop a methodology for spatial (and temporal) disaggrega-
tion of GHG annual country totals. Van Oijen and Thomson (2010) used a process-
based forest model which accounts for spatial distribution of climate and soil; a
Bayesian calibration was employed to quantify uncertainties.

When performing a statistical inference of spatial inventory data, we account for
the fact that values at proximate locations tend to be more alike. This can be modeled
by using spatial statistics. Moreover, as for each grid cell we have information on
aggregated emission values, these are called areal data (also known as lattice data).
A popular tool for incorporating this kind of spatial information is the conditional
autoregressive (CAR) model proposed by Besag (1974). Unlike the geostatistical
models with spatially continuous data, the CAR models have been developed to
account for a situation where the set of all possible spatial locations is countable. The
idea is to define a model in terms of the conditional distribution of the observation
at one location given its values at other neighboring locations. Applications of the
CAR model include, among others, mapping diseases in counties as well as modeling
particulate matter air pollution in space and time (Kaiser et al. 2002).

The aim of the present paper is to demonstrate the usefulness of the CAR
model to analyze data from spatially distributed emission inventories. With available
proxy data related to emissions and an independent set of (modeled or measured)
emission assessments, one can build a suitable regression model. Inclusion of a
spatial component is intended to improve estimation results, compensating for the
weaker explanatory power of proxy information. Based on the model, we develop
the optimal predictor to extend the inventory.

The outline of the study is as follows. Section 2 presents an illustrative data set,
including an initial non-spatial model. As a next step, the model is enriched with
a spatial random effect. We use the conditional autoregressive structure to account
for spatial correlation between neighboring areas (municipalities, in this case). The
model is characterized in Section 3. It comprises model formulation, estimation and
prediction. Results are presented in Section 4; we fit the spatial model and assess its
predictive performance by means of a cross-validation procedure. Section 5 contains
final remarks.

2 Preliminary explorations

Our illustration is provided with the data set on N2O (nitrous oxide) emissions re-
ported in 2006 for municipalities of southern Norway. In 2006 the main contributors
to the country total N2O emissions were as follows (National Inventory Report 2008).
Forty-seven percent of emissions were attributed to agriculture, with agricultural soil
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as the most important source. The second most important source was production
of nitric acid in two plants, which accounted for 37%. Nitric acid is used in the
production of fertilizer. Emissions from road traffic amounted to 4%. The remaining
12% included emissions from, for instance, manure management and waste-water
handling.

The considered map of southern Norway covers 259 municipalities out of
431 in the whole of Norway. The data come from the StatBank (available at
http://www.ssb.no) in Statistics Norway. According to the StatBank identification
system, the area of our interest covers the municipalities numbered 0101 to 1449.
One of the aforementioned nitric acid plants is operating in Porsgrunn municipality,
which is a relatively small municipality located near the southern coast of the area
considered, see also Perez-Ramirez (2007). Emissions from this kind of point source
are usually reported and there is no need to model them. In our analysis we do not
consider emissions from this source.

The municipalities have been chosen by StatBank as the smallest unit for geo-
graphical distribution of emissions. Details on the Norwegian emission model can be
found in Sandmo (2009).

Of the statistics available in StatBank at the municipal level, we consider the
following variables that might explain spatial distribution of N2O emissions. Figures
on livestock and detailed statistics on agricultural usage are the ones that are the most
relevant to the N2O emissions. However, these data sets contained a large number
of missing values, and as such were of poor quality. Emissions from agriculture can
generally be characterized with data on agricultural area in use as well as with data
on persons employed in agriculture. Regarding emissions from stationary and mobile
sources, data on population can be of use. Besides the Porsgrunn plant, emissions
from fertilizer production occurs in a small number of municipalities. There is a lack
of statistics on relevant production, financial data or employment at the municipal
level (Statistics Norway personal communication).

To determine the independence of the above-mentioned variables from the emis-
sion data the inventory preparers from Statistics Norway were consulted (personal
communication). We found out that for the municipal emission assessments they
used figures from the agricultural statistics that are both more detailed and more
comprehensive than those described above. In addition, a model that estimates
emissions of ammonia from agriculture were used, as were figures on energy use.

Let us denote1

yi N2O emissions (tonnes) (Table 03535), y = (y1, . . . , yn)
T

xi,1 agricultural area in use (decare) (Table 06462), x1 = (x1,1, . . . , xn,1)
T

xi,2 persons employed in agriculture (Table 03324), x2 = (x1,2, . . . , xn,2)
T

xi,3 population (Table 05231), x3 = (x1,3, . . . , xn,3)
T .

Figure 1 presents a scatterplot matrix for these data. We note that the relationship
between y and x1 is more pronounced than between y and x2, and there is a weaker
relation between y and x3. Our aim is to explore opportunities for improvements of

1In brackets we report a number of the table containing the data set available from the StatBank
Web site as of October 2009.

http://www.ssb.no
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Fig. 1 Scatterplot matrix showing plausible relations between data on: N2O emissions (y), agricul-
tural area (x1), persons employed in agriculture (x2) and population (x3) in municipalities

inventory prepared in the absence of information on agricultural area (x1) activity,
but using data on persons employed in agriculture (x2) as its proxy. Therefore we
define a multiple regression model

Yi = β0 + β2xi,2 + β3xi,3 + εi, (1)

where εi are independent random variables following normal distribution with mean
equal 0 and variance σ 2 and i = 1, . . . , 259 indexes municipalities. In the sequel we
compare results of the above model to the one with variable x1 instead of x2. We
distinguish between an observation (yi) and a random variable (Yi) generating this
observation. In the model (1) regression coefficients of the covariates x2 and x3

have p-values equal 2e–16 and 2.07e–09, respectively. The model explains 79% of
variability in N2O emissions—coefficient of determination is R2 = 0.79.
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Residuals of the model, that is, observations minus fitted values, are presented in
Fig. 2: a residual plot (a) and a map (b). From a residual map we can identify the
cluster of municipalities with underestimated emissions (yielding positive residuals)
in the eastern part; moreover municipalities with highly overestimated emissions
(yielding negative residuals) are located in the western region. In Fig. 2(a) residuals
are plotted against municipality numbers. As municipalities are not randomly num-
bered and neighboring areas usually have close identification numbers, we again note
that there are regions with underestimated and overestimated emissions.

We check spatial correlation in the residuals using the Moran’s I statistic

I = n
∑

i

∑
j wij

∑
i

∑
j wij(εi − ε̄)(ε j − ε̄)
∑

i(εi − ε̄)2 ,

where εi—a residual of linear regression in the area i, ε̄—the mean of residuals, wij—
the adjacency weights (wij = 1 if j is a neighbor of i and 0 otherwise, also wii = 0).
We consider two municipalities as neighbors if they share common border. Moran’s
I can be recognized as a modification of the correlation coefficient. It accounts
for correlation between residuals in area i and nearby locations and takes values
approximately on the interval [−1, 1]. Higher (positive) values of I suggest stronger
positive spatial association. Under the null hypothesis, where εi are independent and
identically distributed, I is asymptotically normally distributed, with the mean and
variance known (see e.g., Banerjee et al. 2004).

In the case of the residuals from model (1) with covariates on x2 and x3 Moran’s
I is equal to 0.2466. The corresponding test statistic z (Moran’s I standardized with
the asymptotic mean and variance) is equal to z = 6.6953 while zcr = 2.33 at the sig-
nificance level α = 0.01. Thus we reject the null hypothesis of no spatial correlation of
errors. Moran’s I is, however, recommended as an exploratory information on spatial
association, rather than a measure of spatial significance (Banerjee et al. 2004).
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Fig. 2 Residuals from the linear model with covariates on persons employed in agriculture (x2) and
population (x3)
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3 Modeling spatial correlation

In this section we develop a model to characterize the spatial distribution of N2O
emissions in municipalities. Further, we provide details on the model estimation,
prediction, and an applied cross-validation procedure. The calculations were accom-
plished using the statistical software R (R Development Core Team 2008).

3.1 The model

Following the notation already introduced, let Yi denote a stochastic variable associ-
ated with the observed emission (yi) defined at each spatial location i for i = 1, . . . , n.
It is assumed that the random variables Yi for i = 1, . . . , n follow normal distribution
with the mean μi and common variance σ 2

Yi|μi, σ
2 ∼ N

(
μi, σ

2) . (2)

The collection of all Yi is denoted as Y = (Y1, . . . , Yn)
T . Given the values of μi and

σ 2, the stochastic variables Yi are assumed independent, thus the joint distribution
of the process Y conditional on the mean process μ = (μ1, . . . , μn)

T is

Y |μ ∼ N
(
μ, σ 2 In

)
, (3)

where In is an identity n × n matrix.
Our approach to modeling the mean μi expresses the observation that available

covariates explain part of the spatial pattern in observations, and the remaining
part is captured through a regional clustering. To this extent we make use of the
conditional autoregressive model. The CAR structure is given through specification
of the full conditional distribution functions for i = 1, . . . , n

μi|μ j, j�=i ∼ N

⎛

⎝xT
i β + ρ

∑

j�=i

wij

wi+

(
μ j − xT

j β
)
,

τ 2

wi+

⎞

⎠ (4)

with wi+ = ∑
j wij being the number of neighbors of area i; xi is a vector containing

1 for the intercept β0 and k explanatory covariates of area i, for example population;
β = (β0, β1, . . . , βk)

T is a vector of regression coefficients and τ 2 is a variance
parameter. The variance is inversely proportional to the number of neighbors wi+.
The second summand of the conditional expected value of μi (a remainder) is
proportional to the average value of remainders μ j − xT

j β for those areas j which
are the neighbors of the site i (that is wij = 1). The proportion is calibrated with
parameter ρ. The parameter ρ is introduced into (4) in order to remedy singularity
of the covariance function in the joint distribution of μ; for more details see for
example Banerjee et al. (2004).

Given (4), the joint probability distribution of the process μ is the following
(Banerjee et al. 2004; Cressie 1993)

μ ∼ N
(
Xβ, τ 2 (D − ρW )−1) , (5)



Climatic Change (2010) 103:263–276 269

where X is the (design) matrix containing transposed vectors xi, i = 1, . . . , n

X =

⎡

⎢
⎢
⎢
⎣

1 x11 . . . x1k

1 x21 . . . x2k
...

...
...

1 xn1 . . . xnk

⎤

⎥
⎥
⎥
⎦

;

D is an n × n diagonal matrix with wi+ on the diagonal; and W is an n × n matrix
with adjacency weights wij.

3.2 Estimation

Estimation of unknown parameters β, ρ, σ 2 and τ 2 is based on the maximum
likelihood approach. From (3) and (5) we obtain the joint unconditional distribution
of Y

Y ∼ N (Xβ, M + N) , (6)

where for notational simplicity M = σ 2 In and N = τ 2 (D − ρW )−1 were introduced.
To see this let us write (3) as Y = μ + υ, where υ ∼ N (0, M) and (5) in the form
of μ = Xβ + ν, where ν ∼ N (0, N). Together we obtain Y = Xβ + ν + υ, which
is a sum of a constant and two independent normal random variables with the
distribution ν + υ ∼ N (0, M + N). Compare also the lemma of Lindley and Smith
(1972).

The log likelihood associated with (6) is, see, for example, Papoulis and Pillai
(2002)

L
(
β, ρ, σ 2, τ 2) = − 1

2
log (|M + N|) − n

2
log (2π)

− 1
2

(y − Xβ)T (M + N)−1 (y − Xβ) , (7)

where |·| denotes the determinant and y is a vector containing the observations yi,
i = 1, . . . , n. With fixed ρ, σ 2 and τ 2, the log likelihood (7) is maximized for

β̂
(
ρ, σ 2, τ 2) = (

XT (M + N) X
)−1

XT (M + N) y, (8)

which substituted back into (7) provides the profile log likelihood

L
(
ρ, σ 2, τ 2) = − 1

2
log (|M + N|) − n

2
log (2π)

− 1
2

(
y − X

(
XT (M + N) X

)−1
XT (M + N) y

)T

× (M + N)−1

×
(

y − X
(
XT (M + N) X

)−1
XT (M + N) y

)
. (9)

Further maximization of L
(
ρ, σ 2, τ 2

)
is performed numerically. One also needs to

ensure that the matrix D − ρW is non-singular. This is guaranteed if λ−1
1 < ρ < λ−1

n ,
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where λ1 < . . . < λn, λi �= 0, i = 1, . . . , n are the eigenvalues of D−1/2W D−1/2, see
Banerjee et al. (2004) and Cressie (1993). Our optimization procedure takes this
constraint into account.

3.3 Prediction

Consider a random variable Y0 associated with emissions at an unobserved location
and let μ0 denote its mean value. We assume that the distribution of Y0|μ0 is of
the form (2) and the distribution of μ0|μ is of the form (4). The predictor of the
observation Y0, that is optimal in terms of minimum mean squared error, is given
by E(Y0|y). It should be stressed that knowledge on covariates x0 is required to
calculate the predictor in the location considered.

To begin with, we derive the conditional distribution of μ|y based on (3), (5) and
(6) using the Bayes rules

μ|y ∼ N (BC, B) (10)

with B = (
M−1 + N−1)−1

and C = M−1 y + N−1 Xβ.
Next we develop the predictor E(Y0|y), see also Kaiser et al. (2002). In deriving

the formula we will make use of the following property of the conditional expected
value: Y0 = E(Y0|μ0) and analogously μ0 = E(μ0|μ). We have

E(Y0|y) = E
[
E (Y0|μ0) |y] = E

[
μ0|y

] = E
[
E (μ0|μ) |y]

= E

⎡

⎣xT
0 β + ρ

∑

j

w0 j

w0+

(
μ j − xT

j β
)

|y
⎤

⎦

= xT
0 β − ρ

∑

j

w0 j

w0+
xT

j β + E

⎡

⎣ρ
∑

j

w0 j

w0+
μ j|y

⎤

⎦ . (11)

We use the expression (10) to calculate the rightmost expectation in the last equality
of (11) and denoting the jth element of the vector BC with l j, we get the predictor

E(Y0|y) = xT
0 β + ρ

∑

j

w0 j

w0+

(
l j − xT

j β
)

. (12)

In order to assess the quality of the prediction we perform a leave-one-out cross-
validation procedure. The idea is to fit a model to a data set from which a single
observation was dropped. This observation is considered as unobserved and its value
is calculated using the predictor (12). The operation is repeated for each observation
(n times). The difference between the observation yi and the prediction y∗

i , di = yi −
y∗

i , constitutes a base to quantify prediction error. We summarize it forming the mean
squared error

mse = 1
n

∑

i

(
yi − y∗

i

)2
, (13)
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Table 1 Model comparison
for the linear regressions (LM)
and the spatial model (CAR)

Model −L AIC

LM(x2, x3) 1,622.27 3,252.55
CAR(x2, x3) 1,552.32 3,116.65
LM(x1, x3) 1,281.98 2,573.97

which should be as low as possible, indicating how well a model predicts data. We
report also the minimum and maximum value of di, average values of the absolute
differences |di|, and the sample correlation coefficient r between the predicted and
observed values.

4 Results

The spatial CAR model has been applied to the emission data. In addition, we esti-
mate the linear regression (1) denoted LM(x2, x3), as well as the model LM(x1, x3)
with the variable on agricultural area (x1) instead of the number of people employed
in agriculture (x2).

The results are compared using the Akaike Information Criterion (AIC), which
is a suitable tool for comparison of models estimated with the maximum likelihood
method. The AIC is calculated as a sum of twice the negative log likelihood L (θ)

and twice the number of parameters p:

AIC = −2L (θ) + 2p.

The term −2L (θ) measures how well the model fits the data; the larger this value, the
worse the fit. Model complexity is summarized by the number of parameters p. The
idea of the AIC is to favor a model with a good fit and to penalize for the number of
parameters. Thus models with smaller AIC are preferred to models with larger AIC.

For the estimated models both the negative log likelihood and AIC are displayed
in Table 1. The applied spatial structure improved the results considerably. The
negative log likelihood −L decreased from 1,622 for the linear regression LM(x2, x3)
to 1,552 for the spatial model with the same set of covariates CAR(x2, x3). The
spatial model includes only two parameters (ρ and τ 2) more than its linear regression
counterpart. In terms of the AIC criterion the spatially enriched model is preferred
(has a lower AIC), since the decrease in the negative log likelihood overwhelms
increased model complexity.

To put this improvement into a perspective, we present results for the non-spatial
model LM(x1, x3) with the variable on agricultural area. Spatially explicit model
CAR(x2, x3) with the proxy is still much worse than the model LM(x1, x3). The latter
has −L = 1,282 and AIC = 2,574. In terms of the negative log likelihood −L, the
gain achieved by taking into account a spatial correlation can be summarized as a

Table 2 Estimated parameter values

Model β0 β1 β2 β3 σ 2 ρ τ 2

LM(x2, x3) −1.882 − 0.129 0.00012 15.494 – –
CAR(x2, x3) −1.965 – 0.128 0.00013 15.127 0.9984 0.6186
LM(x1, x3) 0.177 0.0007 – 0.00031 15.494 – –
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Table 3 Cross-validation
results

Model mse avg(|d|) min(d) max(d) r

LM(x2, x3) 134.67 7.06 −44.63 58.03 0.877
CAR(x2, x3) 115.38 6.87 −41.57 46.60 0.896

20.5% improvement over the initial model. Parameter estimates for the models are
reported in Table 2.

We regard the method as a tool that can help to extend spatial coverage of
inventories in a situation where the inventories are based on proxy data. The
motivation behind it is that proxy data are more frequently available than measured
data. This task calls for prediction. To evaluate the predictive performance of the
method, we use a cross-validation technique. The procedure was applied to the
spatial model and its non-spatial counterpart with the same set of proxy variables, see
Table 3. We note again that observation yi is not accounted for in the construction
of the predictor y∗

i , thus a model is re-estimated for each observation separately. In
the case of the spatial model, it is a time-consuming procedure.
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Fig. 3 Predicted values in the model CAR(x2, x3) (a); predicted values in the linear regression
LM(x2, x3) (b); observed emission (c)
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Fig. 4 Residuals from cross-validated values for the model CAR(x2, x3) (a); and for the model
LM(x2, x3) (b)

Cross-validation results are also displayed in Fig. 3 as predicted values for the
respective models, along with the observations. It can be noted that the spatial
model predicts the original data slightly better. However, we suspect that some of
the differences might have been masked because the mapped values are binned
into nine classes. Therefore, in Fig. 4 we present the model residuals di. Here we
can clearly see that for the linear regression in the eastern part there is a cluster of
municipalities with highly underestimated values (positive residuals). Application of
the spatial random effect to some extent remedied this deficiency.
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Fig. 5 Predicted values vs. observed values for the model CAR(x2, x3) (a); and for the model
LM(x2, x3) (b)
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Values for analysis of prediction error for the two models are given in Table 3.
The spatial model showed noticeable improvement over the linear regression. In
particular, the mean squared error was reduced by about 15% from 135 to 115. A
smaller reduction is noted for the average in absolute residuals. With inclusion of
spatial dependence we obtain higher minimum and lower maximum residuals, which
yields a reduction of over 14% in a spread of differences di.

In Fig. 5 predicted values y∗
i are plotted against the observations yi for the two

models. An overall impression is that the spatial model provides better predictions.
This is confirmed by a higher value of sample correlation coefficient r, see Table 3.
It should be noted, however, that small value observations (i.e., below ca 10 tonnes)
are predicted more accurately with a linear regression approach. This observation is
related to a general feature of the conditional autoregressive models, which tend to
over-smooth data.

5 Concluding remarks

The goal of this study was to demonstrate that emission inventories may be improved
by making efficient use of spatial information. We consider a case study with a
geographically distributed inventory for N2O. Let us suppose that we wish to spatially
expand the inventory beyond the present coverage. We have some proxy data
available both for the present inventory area and in a predictive capacity. The proxy
data is, however, of limited adequacy.

The idea is to take advantage of potentially existing spatial correlation to im-
prove the outcome. First, the task includes model estimation based on available
measured/modeled inventory. Second, an appropriately constructed predictor is used
to produce an emission assessment from the proxy information. To model spatial
dependencies we make use of the conditional autoregressive structure, which was
introduced into a linear regression as a random effect.

The results indicate that inclusion of a spatial dependence component lead to
improvement in both the representation of the observed data set and the prediction.
Specifically, the introduction of spatial random effect into a model with less adequate
covariate (on number of people employed in agriculture) improved estimation
results by over 20% of what would have been obtained using more relevant activity
data (on agricultural area). In terms of prediction, a 15% reduction in the mean
squared error was achieved.

The presented application of the method seems to be particularly suitable to N2O
emissions, as N2O emission pathways include, among other things, agriculture and
soil emissions. These factors tend to be spatially correlated and have quite often been
modeled with spatial tools, for example Sigua and Hudnall (2008). Based on a study
of 15 national greenhouse gas inventories, Leip (2010) note that N2O emissions from
agricultural soils dominate the uncertainty of not only the agricultural sector, but also
the overall greenhouse gas inventory for many countries.

Accounting for spatial scale of inventories may have one more aspect. One may
compare estimation results for alternative proxy data used and try to conclude on
their relevance. This kind of analysis has been already performed in some studies,
see Winiwarter et al. (2003). In that study two sets of data on NOx (nitrogen oxides)
emissions over the same spatial grid for the Greater Athens, Greece, were compared.
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The authors examine significance of area, line, and point emission sources on the
basis of statistical exploratory tools and a visual comparison of maps. In the case
study presented here, we believe the problem is more of data availability than lack of
knowledge on the relevant covariates. Therefore, our focus remains on prediction.

The applied spatial model proved to be especially successful when dealing with
underestimated emission assessments. Further developments of the method would
be required to deal with the problem of over-smoothed values for low emission
observations.
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