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Abstract This paper compares precipitation, maximum and minimum air temperature and
solar radiation estimates from the Hadley Centre’s HadRM3 regional climate model
(RCM), (50×50 km grid cells), with observed data from 15 meteorological station in the
UK, for the period 1960–90. The aim was to investigate how well the HadRM3 is able to
represent weather characteristics for a historical period (hindcast) for which validation data
exist. The rationale was to determine if the HadRM3 data contain systematic errors and to
investigate how suitable the data are for use in climate change impact studies at particular
locations. Comparing modelled and observed data helps assess and quantify the uncertainty
introduced to climate impact studies. The results show that the model performs very well
for some locations and weather variable combinations, but poorly for others. Maximum
temperature estimations are generally good, but minimum temperature is overestimated and
extreme cold events are not represented well. For precipitation, the model produces too
many small events leading to a serious under estimation of the number of dry days (zero
precipitation), whilst also over- or underestimating the mean annual total. Estimates
represent well the temporal distribution of precipitation events. The model systematically
over-estimates solar radiation, but does produce good quality estimates at some locations. It
is concluded that the HadRM3 data are unsuitable for detailed (i.e. daily time step
simulation model based) site-specific impacts studies in their current form. However, the
close similarity between modelled and observed data for the historical case raises the
potential for using simple adjustment methods and applying these to future projection data.
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1 Introduction

A major limitation in conducting site-specific climate change (CC) impacts studies is the
difficulty of determining daily data that are representative of the future climate for the site.
Data currently produced by climate models driven by global and regional scale land, ocean
and atmospheric processes aim to be representative at scales greater than those where
impacts studies may be required, such as farms, catchments or ecozones. Though it is
possible to generalise about regional level impacts, using mean monthly data provided by
global circulation models (GCM) and regional climate models (RCM), it is desirable to
assess the impacts at individual locations using data with daily time steps. In order to
properly assess potential CC impacts (CCI) and the responses of the subject represented in
the impacts study, it is necessary to downscale from global to local scales (Droogers and
Aerts 2005). Spatial and temporal differences between the coarse scale GCM and RCM
data and the fine scale requirements of site-specific CCI, particularly for natural systems, is
seen as a major limitation on the utility of such studies (Zhang 2005). Estimates of
alternative future climates derived from GCMs are associated with both significant scenario
uncertainty (Jenkins and Lowe 2003) and modelling uncertainty (Murphy et al. 2004).
Examples of scenario uncertainty include greenhouse gas emissions, economic and
policy environment and population growth. Modelling uncertainty includes factors such
as uncertainty about model parameter values and errors resulting from model structure,
both of which are reflected in the quality of individual weather variables. Moberg and
Jones (2004) stress the importance of knowing how well RCM’s estimate the present
climate in order to interpret projected data for future scenarios. It can therefore be argued
that the principal limitation in assessing CC impacts and adaptation strategies, is that the
uncertainties in the climate model estimates, arising from either scenario and/or
modelling uncertainty are either unquantified or so large that meaningful conclusions
should not be drawn from them. However, quantifying the modelling uncertainty for the
past climate becomes feasible by comparison between the models’ hindcast estimates
with observed data. This provides indications as to how, where and when biases in future
projections may appear, and importantly either what adjustments could be made to correct
them, or how CCI outputs should be interpreted when the degree of uncertainty in data
inputs are known.

Whilst RCMs are run for long time periods (i.e. hundreds of years) at fine time-scales
(i.e. 30 min steps), and representing processes at a range of spatial scales, disseminated
output data is generally in an aggregated form and presented as daily estimates for past (i.e.
1960–90) and future projections at set time slices (i.e. 2070–2100). Whilst the RCM aim to
represent the climate at the regional scale, the estimates for each cell within the model
(typically 50×50 km grid cells) aim to be representative of the mean weather conditions for
the mean topographical and geographical characteristics within it. As such, it is beyond the
RCM design remit to produce hindcast data identical to that for specific locations within
each cell. That said, it would be reasonable to expect that the RCM hindcast data at the grid
cell scale would be ‘characteristic’ of observed data from ‘typical’ individual sites within
the cell (i.e. having variables with similar temporal distribution patterns and value ranges).
Where cells contain large topographical diversity however, it may be expected that data
from meteorological stations at the extremes of that diversity are unlikely to show close
similarity with modelled data. Any discrepancies will be partially due to the site and cell
differing in terms of topography, altitude, aspect or distance to the sea. Differences may also
be attributable to the RCMs inability to adequately represent a particular cell due to
necessary assumptions or simplifications within the RCM modelling process.
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Improving the quality of daily weather variable estimates for future scenarios is vital in
order to better understand how biogeochemical processes will function under new climate
conditions. If appropriate CC mitigation strategies are to be developed, for example in
managing land uses to reduce greenhouse gas (GHG) emissions and increasing carbon
sequestration, it is essential to be able to predict reliably the dynamic responses (spatial and
temporal) of the key biogeochemical processes. Many CCI studies will take the form of
predictive modelling experiments, where simulations use RCM data as inputs. Unless errors
and other uncertainties in modelled weather data can be identified and quantified, the
reliability and utility of the projections and use within CCI will be less certain. Government
strategic plans to cope with CC would hence be based on potentially incorrect evidence
from impacts studies.

In this paper we compare the Hadley Centre’s RCM HadRM3 hindcast estimates of
precipitation, maximum (Tmax) and minimum (Tmin) air temperature and total downward
surface shortwave flux (direct and diffuse solar radiation, MJ m2 day−1), here referred to as
solar radiation (So), with observed data from 15 meteorological stations in the UK for the
period 1960–90 (Fig. 1.). For the reasons given earlier, we expect there to be differences
between the two data sets, as this is not a ‘like with like’ comparison, rather a ‘grid with
point’ one. However, if the differences are conservative, they can be used to identify
potential adjustments to future grid cell projections, and provide information as to how
errors may appear when used in CCI studies. It is argued that it is necessary to assess the
quality of the modelled climate estimates in advance, in order to determine the uncertainty
that will be introduced to any CCI study. If the assumption is made that the same modelling
errors existing in estimates of the past climate will also be present in future climate
projections, it is possible to appraise the usefulness of the future estimates, and potentially
adjust biases using appropriate methods. Once these steps have been taken more reliable
CCI studies should be possible.

2 Related research

Studies have sought to assess the performance of GCMs and RCMs at a range of spatial and
temporal scales (i.e. Peng et al. 2002; Antic et al. 2006). However, to date little work has
been done to compare RCM hindcast estimates with site-specific multiple variable observed
data (Moberg and Jones 2004). Exceptions include Bell et al. (2004), who performed a
model versus observed validation exercise as part of a larger study of growing season
length, extreme temperatures and precipitation in California. Long term data from 16
stations were compared with 15 years of modelled data from a modified version of
RegCM2, for sites where the actual and modelled elevation differed by no more than
100 m. These authors concluded that the RCM was able to make good estimates of seasonal
temperature and precipitation. One limitation of this study was that temperature based
assessments were distorted by the need to use proxy values for maximum and minimum
temperature (the model output values at midnight and midday, rather than providing the
absolute daily values). This indicates the need for careful consideration of what and how
data from RCMs are output and archived.

Moberg and Jones (2004) tested the HadRM3P model (closely related to the HadRM3
assessed here) estimates of daily maximum and minimum near-surface temperatures for the
period 1961–90 for 185 meteorological stations across Europe. The analysis was primarily
based on the model-minus-observed values for mean annual and seasonal temperature
differences, though results for daily differences (forming the annual temperature cycle)
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were given for six locations. These authors found large spatial variations in the ability of the
model to reproduce the historical weather well. It performed well in the UK and some other
locations between 50 and 55°N, with differences generally being ±0.5°C, but other areas
showed differences of up to ±15°C. This study provided valuable information about the

Fig. 1 Meteorological stations providing observed data and the position of their associated HadRm3 50×
50 km grid cell, with the station and mean cell elevations (m a.s.l.)
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degree of spatial variability in the quality of mean annual and seasonal temperature
differences at the regional scale, but did not cover site-specific multiple variable assessment.

Studies have compared estimates with observed data for individual weather variables at
larger spatial and temporal scales. For example, Mearns et al. (1995) assessed the quality of
estimates of precipitation by RegCM for a 42 month period. They stressed the importance
of models being able to reproduce the frequency and intensity of precipitation events, not
just the daily means. They also highlighted the limitations of statistical analysis of data sets
for periods of only a few years. Evans et al. (2005) tested four RCMs over a period of two
years at a site in Kansas, USA, and found no clear distinction in performance between the
models, which all had positive and negative attributes. Fowler et al. (2005) tested the
HadRM3 RCM for extreme rainfall events at 204 sites in the UK. Although the model
provided good estimates of return periods for up to 50 years, it exaggerated the west to east
rainfall gradient, leading to overestimations in some higher elevation western areas, and
underestimation in eastern rain shadow areas.

RCM estimates have been compared with regional scale aggregations of observed data
(i.e. Frei et al. 2002; Huntingford et al. 2003), or for time scales greater than individual days
(i.e. Vidale et al. 2003). In testing the Rossby Centre Atmospheric RCM, RCA2, Jones et
al. (2004) found that the model tended to overestimate the number of small precipitation
events, which impacted on surface temperatures and cloud-radiation interactions. Differ-
ences are not only found for temperature and precipitation. Kim and Lee (2003) found that
surface insolation was generally overestimated in an eight year hindcast simulation for the
Western USA with the differences being smaller over land than over the sea.

2.1 Importance of daily site-specific data

As many biological and chemical processes can only be studied effectively at a scale of a
few hectares or less, there is a need to measure or otherwise provide weather data for the
exact location (Hoogenboom 2000). However, policy makers are typically concerned with
the outcomes of key elements such as production, i.e. crop yields, and processes like GHG
emissions, soil water balances and carbon sequestration, at regional (Holman et al. 2005),
national (Sperow et al. 2003) or even supranational (Nijkamp et al. 2005) scales. The
reliability of estimates of such process outcomes, however, depends on robustly
parameterised relationships between the driving climatic variables and the outcomes of
interest whilst incorporating anthropogenic factors such as adaptations of management
regimes (Rivington et al. 2007). Without site- or plot-specific data, unquantified
uncertainties are introduced into CCI studies and projections, making decisions based on
evidence from such studies as either unreliable, or if the uncertainties are unrecognised,
introduce biases that lead to erroneous decisions being made.

The uncertainty introduced into systems-model estimates due to the weather data source
can be significant (Rivington et al. 2006). Nonhebel (1994a) found that inaccuracies in
solar radiation measurement of 10% and of daily temperature of 1°C in data used within a
crop simulation model resulted in yield estimation errors of up to 1 t ha−1. Maintaining
meteorologically appropriate, synchronised relationships between individual weather
variables is essential for models that represent entities with non-linear responses to driving
variables such as biological systems (Nonhebel 1994b) and hydro-chemical processes
(Soulsby 1995; Creed et al. 1996). Thermal time accumulation, which depends not only on
the mean daily temperature but the difference between daily maximum and minimum
temperatures, is the key driver of plant and insect phenological development (Arnold and
Monteith 1974; Jarvis et al. 2003, respectively). Systematic errors in the estimation or
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synchronisation of either Tmax and Tmin will result in predictions of either faster (earlier) or
slower (later) development, with corresponding impacts on associated management (i.e.
crop) or behavioural (i.e. plant–insect–predator) responses.

While the examples above are drawn from the agro-climatic rather than climate change
literature, it seems reasonable to draw conclusions that, when using estimates of future
climate derived from RCMs, researchers should be as concerned with issues of driving
variable data quality. Hindcast RCM data provide a unique opportunity to assess the nature
of the uncertainty introduced to CCI studies, particularly systems models’ predictions by
the use of RCM rather than site specific information.

3 Materials and methods

Observed precipitation (mm), maximum (Tmax) and minimum (Tmin) air temperature (°C)
and total downward surface shortwave flux (direct and diffuse solar radiation, So, MJ m2

day−1) data for the period 1960–90 were provided by the British Atmospheric Data Centre
(BADC 2005) for 15 meteorological stations in the UK (Fig. 1). The criteria for selection of
sites was that their data record contained the maximum number of complete years for all
weather variables, and were sufficiently geographically dispersed to give a reasonable
spatial representation of the UK, but also did not exist at the extremes of topography within
each cell. The number of sites available for assessment was limited by the availability of So
data. Carnwath, despite not having So data, was included as it is a site of on-going CCI
modelling (paper in preparation). Observed data for precipitation, Tmax and Tmin, and So
were compiled within an Oracle database, with errors, duplicates and anomalies in the
original data being identified and corrected during the database loading process. Missing
observed values were filled using a search and optimisation method (LADSS 2007).

Modelled data used in this assessment is based on the hindcast simulations of the Hadley
Centre’s HadRM3 RCM, as used in the UKCIP02 climate change scenarios report for the
UK (Hulme et al. 2002). As an initial condition ensemble, five hindcast simulations
(starting from 1860) were produced by the HadRM3 in order to establish the 1960–90
climate normal period ‘baseline’ against which future projections were compared in the
UKCIP02 report. Each hindcast simulation varied slightly in their starting conditions, but
atmospheric CO2 and other GHG concentrations were varied to match the historical
concentrations. Future projections of GHGs, as per the Special Report on Emissions
Scenarios (SRES; IPCC 2000) were not applied until after 1990. This paper assesses two of
the hindcast simulation data sets that were used to compare with the SRES A2c (medium-
high) and B2 (medium low) future GHG emissions scenarios used in the UKCIP02 report.
These two hindcast data sets are herein referred to as the A2cIRH and B2IRH, where IRH is
the initial realisation hindcast (observed historical GHG concentrations). As such, this paper
assesses only two examples of the hindcast configuration of the HadRM3. The A2cIRH and
B2IRH (1960–90) data were also provided by the BADC.

Daily climate data for each variable were derived from the HadRM3 archive for 50×
50 km grid cells (the extent of each RCM cell used is shown in Fig. 1). Each meteorological
station was matched with its corresponding cell except in two cases where the stations were
within 2 km of the cell boundary (Auchincruive and Eskdalemuir), in which case the
opportunity was taken to use the closest neighbouring RCM cells for comparison as well.

The hindcast data produced by the RCM do not attempt to recreate synoptic conditions
for specific locations or years in the period 1960–90. Instead, the RCM outputs are similar
to those from weather-generators such as LARS (Semenov 2002) and CLIMGEN (Stöckle
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et al. 1999), in that they consist of time-series of data with the correct statistical properties
including correlations between variables. The RCM outputs represent the 50×50 km grid
cell as a whole rather than a specific site within it. RCM do not aim to reproduce the actual
weather for a specific day or year in the past, rather they aim to produce values of a variable
that are representative (by magnitude, variability and synoptic synchronisation) of a day at
any specific time of year. As such direct day or year specific model versus observed data
comparisons are impractical i.e. observed data for April 1st 1970 cannot be compared with
modelled data for April 1st 1970. Instead, mean daily, annual totals or maximum and
minimum values were used for comparisons between observed and RCM data. As the
HadRM3 model treats a year as having 360 days (i.e. twelve months of 30 days), the last
five days of the observed data were omitted from the analyses.

In this work, no a priori adjustments were made to the modelled data to take account of
differences in elevation or other topographically significant differences between the
meteorological station and the mean for the grid cell. Moberg and Jones (2004) found
that adjustments to modelled data based on temperature lapse rates resulted in changes of
just a few tenths of a degree K for the majority of sites they tested. The mean elevation for
each grid cell was estimated (see Fig. 1) and used as one of the explanatory factors for the
differences observed.

3.1 Precipitation

Histograms were created to show the frequency distribution of the magnitude of
precipitation events for all precipitation events (Fig. 2). The probability of excedence
(Pe), as a percentage, was calculated following Weibull (1961) for each precipitation event:

Pe %ð Þ ¼ m= nþ 1ð Þ � 100: ð1Þ

Fr
eq

ue
nc

y

11910285685134170

5000

2500

0

11910285685134170

5000

2500

0

8470564228140

4000

2000

0

8470564228140

4000

2000

0

706050403020100

4000

2000

0

706050403020100

4000

2000

0

7260483624120

4000

2000

0

7260483624120

4000

2000

0

988470564228140

4000

2000

0

988470564228140

4000

2000

0

544536271890

4000

2000

0

544536271890

4000

2000

0

706050403020100

4000

2000

0

706050403020100

4000

2000

0

544536271890

4000

2000

0

544536271890

4000

2000

0

Aberdeen Mod Aberdeen Obs Aberporth Mod Aberporth Obs

Aldergrove Mod Aldergrove Obs Auchincruive Mod Auchincruive Obs

Eskdalemuir Mod Eskdalemuir Obs Everton Mod Everton Obs

Rothamsted Mod Rothamsted Obs Suttton Bonington Mod Sutton Bonington Obs

Precipitation Amount (mm)
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Where m is the rank order of each precipitation event, with m=1 as the largest event and
m=n for the lowest, with n being the number of observations (in this case n=360 days×
31 years=11,160). This comparison enables the probability of occurrence to be determined
for each precipitation amount (Fig. 3a) while avoiding the problem of asynchronicity
between the observed and hindcast data. Subsequent to this, the actual difference (mm) and
proportional difference against observed events was estimated by ranking the events in
decreasing order of magnitude and taking the difference (modelled − observed; Fig. 3c)
then dividing by the observed value (Fig. 3b). The annual total, magnitude of largest event
and the number of days with no precipitation (dry days) were calculated for each year at all
locations tested. To assess the temporal distribution of events, plots of the 7-day (weekly)
means were made (Fig. 4).

3.2 Temperature

For Tmax and Tmin the mean daily values (for the 31-year period) were calculated and
plotted for the observed and estimated data (eight examples shown in Fig. 5). This enabled
the magnitude of differences to be visually identified, and their temporal distribution to be
observed. The differences between mean daily Tmax and Tmin were calculated and plotted
(Fig. 6), in order to assess the models’ ability to represent the daily temperature range. The
highest and lowest values for daily Tmax and Tmin were found and plotted (Fig. 7), to
evaluate the models’ ability to represent temperature daily variability and extreme ranges.
Accumulated thermal time (°Cday) was calculated as (Tmax + Tmin)/2 added to the previous
days’ accumulated thermal time (with a base temperature of 0°C; Fig. 8).

The annual total of Tmax, Tmin, highest and lowest temperatures, mean number of days
with Tmax>15°C, Tmin<0°C and Tmin−5°C were calculated (Tables 2 and 3). The annual
mean, standard deviation and paired Student’s t test of probability of equal means (P(t))
(where P(t)=1 shows equal means and P(t)=0 shows no similarity), were estimated for
daily values to determine their statistical similarity (Table 4).

3.3 Solar radiation

Observed solar radiation data records are often incomplete for the 1960–90 period, hence analysis
was limited to graphical representations using the difference D between mean daily observed
versus estimated solar radiation, which was calculated from all available years at each site:

D has elements di ¼ ei � oi ð2Þ
where ei is the mean estimated solar radiation for day i over n years, and oi is the mean
observed solar radiation for day i over n years with

ei ¼ 1

n

X

j¼1;n

eji ð3Þ

and

oi ¼ 1

n

X

j¼1;n

oji ð4Þ

where eji is the estimated solar radiation on day i of year j, and oji is the observed solar
radiation on day i of year j. This difference in daily means helps to illustrate the temporal
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Fig. 3 Probability of excedence (%) of modelled (red dots) versus observed (blue triangles) for individual
precipitation events (a); proportional difference ((modelled − observed)/observed) (b); and difference (mm;
modelled − observed) (c) plots against observed precipitation amounts (mm) for four example locations
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distribution of mean daily errors (over- and underestimations) over the period of a year,
indicating systematic model behaviour (Fig. 9). This approach was taken to allow direct
comparison of results with a previous study of solar radiation model performance by Rivington
et al. (2005).

Fig. 3 (continued)
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Fig. 4 Seven day (weekly) mean temporal distribution of modelled (red dashed line) versus observed (blue
solid line) precipitation (n=30 years) over a 1-year period from six selected locations
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4 Results

In comparing the A2cIRH and B2IRH configuration data, temperature estimates were similar
and only one location (Auchencruive: cells 4693 and 4694) showed substantially different
precipitation totals. Solar radiation estimates were similar between both scenarios. On the
basis of this similarity, only the A2cIRH graphical analyses results are presented in this
paper. Graphs illustrating the results of the B2IRH analyses can be found at http://www.
macaulay.ac.uk/LADSS/climate. The A2cIRH and B2IRH configuration data represents a
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two-member ensemble experiment for the 1960–90 period, which would provide useful
insights into the numerical uncertainty in modelling the climate system. However, it has
been beyond the scope of this paper to perform such a detailed evaluation of the numerical
differences between the two, but will form the basis for further research. Modelled Tmax

data for 1984 and 1985 were missing from the hindcast data set, and observed data for each
variable were missing for several years at some locations; hence sample sizes vary for some
of the comparisons. Few meteorological stations in the UK have recorded precipitation,
temperature and solar radiation together, particularly in the early part of the study period.

4.1 Precipitation

At all sites the model produces an excess of small precipitation events (<1 mm; Fig. 2), the
number of dry days being underestimated by an average of 60% (Table 1) for both A2cIRH
and B2IRH. This reflects the ‘drizzle effect’ whereby the model attempts to capture the
spatial distribution of very light rain across the entire cell. Whilst these are important in
terms of impact on factors such as soil wetting, they distort the daily distribution of rainfall
events. The model was able to make very good estimates, i.e. at Cawood there was a
difference of only 1 mm between observed and modelled A2cIRH mean annual total. Where
the model over-estimates the mean annual total, i.e. Auchincruive cell 4694 (Table 1), there
is a corresponding higher probability of modelled events occurring (Fig. 3a: Auchincruive),

Table 1 Difference between modelled and observed precipitation (mm; for A2cIRH and B2IRH
configurations) for mean annual total, maximum (largest) single event and number of days without
precipitation (dry days)

Mean annual total (mm) Maximum single
event (mm)

Dry days (0 mm)

A2cIRH B2IRH A2cIRH B2IRH A2cIRH B2IRH

Meteorological station
(cell)

Obs Model Diff Model Diff Obs Model Model Obs Model Model

Aberdeen (4273) 761 604 −157 595 −166 109 50 52 173 57 58
Aberporth (5434) 870 838 −31 845 −24 85 66 45 163 76 78
Aldergrove (4797) 845 814 −31 866 21 66 49 47 130 64 61
Auchincruive (4693) 936 1074 138 1691 756 72 59 73 156 48 45
Auchincruive (4694) 936 1597 662 1748 812 72 73 73 152 47 45
Bracknell (5757) 663 761 98 765 102 71 56 56 193 78 79
Carnwath (4589) 832 723 −109 745 −88 59 64 54 135 63 62
Cawood (5121) 536 535 −1 564 28 66 60 57 183 83 82
East Malling (5759) 650 547 −103 546 −104 82 63 42 193 95 98
Eskdalemuir (4695) 1534 1215 −319 1250 −284 95 66 70 127 48 46
Eskdalemuir (4801) 1534 681 −854 699 −836 95 48 57 127 77 74
Everton (5862) 738 777 40 780 42 56 55 97 203 63 65
Lerwick (3639) 1201 1057 −144 1079 −122 59 42 75 96 23 23
Mylnefield (4484) 692 500 −192 504 −188 49 73 37 175 79 77
Rothamsted (5652) 674 619 −55 637 −37 64 50 59 178 79 81
Sutton Bonington
(5333)

601 711 110 759 158 59 50 52 191 70 70

Wallingford (5650) 577 693 116 708 131 65 61 55 204 79 80
Mean 858 809 −49 869 12 72 58 59 163 67 66
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with a linear increase in error up to the 25 mm size events (Fig. 3c: Auchincruive).
Conversely for sites where the model under-estimates the mean annual total, i.e.
Eskdalemuir cell 4801, there is a reduction in the probability of events occurring
(Fig. 3a: Eskdalemuir), particularly in the range of 3–20 mm, with a linear increase in
the model-observed difference (Fig. 3c: Eskdalemuir).

For the mean annual totals, the accuracy ranges from very good (i.e. Cawood, with
−1 mm and 28 mm difference for the A2cIRH and B2IRH scenarios respectively), to very
poor (i.e. Eskdalemuir cell 4801 with −854 and −836 and cell 4695 with −319 mm and
−284 mm difference for the A2cIRH and B2IRH scenarios respectively). There is a general
underestimation by the model at 10 of the 17 cells assessed (Table 1). Therefore, for sites
where the model under-estimates the mean annual total, whilst also over-estimating the
number of days on which precipitation events occur, the magnitude of each event
(particularly in the range of about 2–30 mm) is too small. The distribution of erroneous
modelled events is biased towards those of small magnitude. Considering the proportion-
ality of differences to the annual total amount, the errors occurring at the larger events are
smaller in relation to the importance of the errors for the much more frequent small to mid-
range events.

The largest single observed event was at Aberdeen (109.2 mm) where the model
estimated only 50 and 52 mm (A2cIRH and B2IRH respectively). The largest single event
was generally underestimated across all sites, with an observed mean of 72 mm compared
with 58 and 59 mm for the A2cIRH and B2IRH configurations respectively. The largest
modelled single event was 97 mm at Everton (B2IRH), where the observed was 56 mm. The
model’s ability to estimate the magnitude of the largest single event varied between sites,

Table 4 Comparisons of modelled (A2IRH configuration) and observed maximum (Tmax) and minimum
(Tmin) air temperature for means, standard deviation and probability of equal means (P(t)) using the paired
Student’s t test

Maximum air temperature (°C) Minimum air temperature (°C)

Mean St Dev P(t) Mean St Dev P(t)

Meteorological station (cell) A2IRH Obs A2IRH Obs A2IRH Obs A2IRH Obs

Aberdeen (4273) 10.38 11.08 4.11 4.22 0.010 4.95 4.83 3.63 4.83 0.659
Aberporth (5434) 12.26 12.12 3.04 3.99 0.558 10.31 6.29 2.92 3.53 0.000
Aldergrove (4797) 11.72 12.36 3.95 4.45 0.022 5.75 5.57 3.48 3.65 0.491
Auchincruive (4693) 11.18 9.71 4.42 3.54 0.000 4.56 4.50 3.88 2.98 0.808
Auchincruive (4694) 10.52 9.71 4.36 3.54 0.001 4.57 4.50 3.81 2.98 0.782
Bracknell (5757) 13.58 13.62 5.40 5.45 0.893 6.19 5.37 4.27 3.88 0.007
Carnwath (4589) 10.90 11.08 4.51 4.96 0.548 4.74 2.87 3.86 3.77 0.000
Cawood (5121) 12.42 12.51 4.99 5.14 0.811 5.34 5.03 4.11 3.66 0.291
East Malling (5759) 13.96 14.02 5.41 5.44 0.863 6.97 6.05 4.39 3.95 0.003
Eskdalemuir (4695) 9.09 9.13 4.17 4.46 0.887 4.52 2.86 3.85 3.10 0.000
Eskdalemuir (4801) 11.54 9.13 4.62 4.46 0.000 4.40 2.86 4.12 3.10 0.000
Everton (5862) 13.71 13.75 5.30 4.81 0.886 5.80 6.81 4.52 3.85 0.001
Lerwick (3639) 9.58 9.19 2.18 3.27 0.044 8.28 4.71 2.28 3.12 0.000
Lerwick (3640) 9.45 9.19 2.81 3.27 0.215 8.25 4.71 2.35 3.12 0.000
Mylnefield (4484) 11.39 11.46 4.62 4.50 0.788 5.01 4.94 3.94 3.74 0.764
Rothamsted (5652) 13.68 13.15 5.49 5.55 0.136 6.21 5.32 4.33 4.00 0.004
Sutton Bonington (5333) 12.69 13.12 5.09 5.19 0.201 5.59 5.43 4.13 3.80 0.607
Wallingford (5650) 11.79 11.08 5.01 4.22 0.005 6.11 4.83 4.21 3.69 0.000
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with a general under-estimation by about 20% of the observed, with 11 of the 17 sites
having lower maximum single events than the observed. Only at Mylnefield (A2cIRH), and
Everton and Lerwick (B2IRH) did the model overestimate the largest single precipitation
event by more than 10 mm (Table 1).

The model was generally able to replicate well the patterns of mean weekly precipitation
(Fig. 4), i.e. Aberporth, Rothamsted and to a lesser extent Auchincruive (cell 4693). No
sites had substantially different patterns of mean weekly precipitation.

4.2 Air temperature

The annual cycle of mean daily air temperatures shows that the difference between the
RCM estimates and the observations ranges from very low, e.g. Aberdeen and Mylnefield,
to high, e.g. Aberporth (Fig. 5). Overall the model tends to estimate Tmax well but to
overestimate Tmin, although this is not true of all sites. The diurnal range is too small
(Fig. 6), particularly in the spring and summer. The main discrepancies in Tmax are under-
estimates in the autumn and over-estimates at the beginning of the year. At Aldergrove,
however, the modelled Tmin matches the observed values well, but Tmax is under estimated,
except in January and February.

Both A2cIRH and B2IRH tended to overestimate the highest Tmax event at most locations,
by an average of 5.5°C (excluding Aberporth and Lerwick), though at some, i.e.
Aldergrove, the estimates were very close. For the lowest estimates of Tmax, the model
under-estimates by an average of 1.5°C, but does not manage to replicate the lower
observed Tmax values, i.e. at Carnwath (Table 2). The model underestimated the number of
days when Tmax was >15°C by an average of 13–14 days, but by as much as 36 days
(Auchincruive: cell 4694).

The highest Tmin events tend to be overestimated by an average of 4°C, but as high as
9°C, i.e. Eskdalemuir and Everton. For Aberdeen both the A2cIRH and B2IRH were exactly
right (Table 3). However, for the lowest Tmin events, neither configuration managed to
represent the most extreme observed low values, being on average 6–7°C to high. From
Figs. 5 and 7, the Tmin often do not match those of the observed mean daily temperatures in
the winter period. Conversely Everton (Fig. 5), over-estimates the A2cIRH the lowest Tmin

by 2°C and generally produces Tmin data that is too low (cold) in the winter, which is
surprising considering the cell contains approx. 30% sea coverage. The lowest observed
Tmin event of −25°C was at Carnwath, where the model only managed a −12°C estimate.
The model underestimated the total number of days below 0°C in some locations and
overestimated in others. Deviations ranged from −45 (Carnwath) to +31 days (Everton). A
similar pattern is seen in the estimates of days below −5°C, with under- and over-estimates
of −21 days (Carnwath) and +17 days (Everton).

Figure 7 uses two locations’ results to illustrate that there are locations where the model
is able to represent the temporal distribution and magnitude of highest and lowest values of
Tmax and Tmin well. For Aberdeen there is a very close match between the observed and
modelled lowest values of Tmax. The model generally slightly under-estimates the highest
values for the majority of the year, but with several larger over-estimates in early August.
Also at Aberdeen, the model performs well for the highest values of Tmin throughout the
year and for the lowest values except during the winter period. At Bracknell the model
over-estimates the highest values of Tmax during the summer but under-estimates them in
the early spring, whilst there is a very good match for the lowest Tmax values (other than
during early winter). For the highest Tmin values, the model again over-estimates in the
summer but shows a good match throughout the rest of the year. The modelled lowest Tmin
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values do not represent well the extreme observed lows at Bracknell and the spring and
summer values are generally overestimated. These two locations represent better examples
from the 17 assessed.

The match between observed and modelled mean thermal time accumulation (TTA;
Fig. 8) varies considerably, i.e. Bracknell and Wallingford having only a −6 and −33°Cday
difference in mean TTA on the last day of the year, respectively. Carnwath was
overestimated by 257°Cday, and Auchencruive (cell 4694 – coastal) underestimated
by −480°Cday. However, data from 13 of the 17 cells showed a close match with the
observed TTA rate during the key growing season period. The largest error was at Lerwick
(island location) which overestimated by 649°Cday.

The mean annual totals of Tmax and Tmin, whilst not meaningful in terms of detail of
model estimates, do provide a quantifiable indication of any substantial differences between
the modelled and observed data. Annual total Tmax is generally underestimated by a small
amount (121°C for the A2cIRH and 92°C for the B2 IRH configurations), but the total Tmin is
overestimated by an average of 254°C for A2cIRH and 307°C for B2IRH (Tables 2 and 3).

The mean annual Tmax and Tmin (Table 4), as assessed by the paired Student’s t test (P(t))
confirms that the model is better able to represent Tmax than Tmin. Five locations have P(t)
values exceeding 0.80 for Tmax compared with only one for Tmin. The higher P(t) values for
Tmax are generally found at coastal locations (i.e. Everton) or those in lowland central
England (i.e. Bracknell), but some nearby locations also had low P(t) values (e.g.
Wallingford). Locations that had higher P(t) values for Tmax tended to have very low ones
for Tmin, with the opposite occurring when P(t) values for Tmin were high. Only Mylnefield
had high P(t) values (>0.78) for both Tmax and Tmin.

Generally the temporal distribution of mean daily Tmax and Tmin is modelled adequately,
based on the synchronisation of temporal distributions seen in Fig. 5, but with some
exceptions, particularly for Aberporth and Lerwick. In both these cases the cells can be
classified as ‘sea cells’ as they contain large areas of sea. The modelled data show the
characteristics of a sea area rather than that of land, with a small range between Tmax and
Tmin. As such, it is not appropriate to make direct comparisons between land based
observation station data and modelled grid cell data where the cell contains a certain
percentage of sea. Further work is required to determine what that critical percentage of sea
cover is.

Locations on the boundary between two cells could show contrasting results. For
example Eskdalemuir (cells 4695 and 4801) had similar temperature results (not shown),
but a marked difference in precipitation (Table 1). Hence care has to be taken in deciding
which cells’ data are most representative of sites on cell boundaries, i.e. through the use of
pre-defined criteria, or multiple cell analysis.

4.3 Solar radiation

The HadRM3 model systematically over-estimates So (Fig. 9). However, the model does
perform very well at some locations, such as Aberdeen and Aldergrove. At these locations
the distribution of estimate errors is similar to that from data derived from specialist
radiation models, i.e. the Donatelli–Bellocchi model (Donatelli and Bellocchi 2001;
Rivington et al. 2005). The HadRM3 model estimates at these locations are in the order of
only ±1 MJ m−2 day−1 larger than those from models like the Donatelli–Bellocchi model,
but are much larger at other locations, i.e. Eskdalemuir (cell 4695) where the largest single
error was 7.65 MJ m−2 day−1. However, specialised models such as the Donatelli–Bellocchi
make both over- and under-estimates, leading to compensating errors (i.e. when used in a
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crop model), whereas the HadRM3 estimates are consistently overestimated. The model
over-estimates So particularly in the late summer to autumn period, when actual values are
likely to be high, but there appears to be a characteristic shift towards either accurate or
under-estimates in the spring to early summer period (i.e. Everton, Sutton Bonington,
Wallingford).

4.4 Relationships between variables

The comparisons were not designed to estimate the quality of the correlation between daily
variables, rather variables were assessed individually. However, the results produced do
provide some evidence of the models’ overall performance and relationships between
variables. There does not appear to be a consistent pattern whereby if the model makes
good estimates of one variable it makes equally good estimates of another. At no location
does the model produce high quality estimates for all variables assessed. For example, the
model estimates Tmax and Tmin very well at Mylnefield, but under-estimates precipitation
and over-estimates So. Similarly at Cawood, the estimates of total annual precipitation are
nearly exact with a close approximation of the largest single event, but under-estimates the
number of dry days by 100, whilst Tmax and Tmin are estimated well (except Tmin in the
summer) but So is overestimated. At Aberdeen the model performs very well for Tmax, Tmin

and So but under-estimates the total amount of precipitation and was particularly bad for
producing too many days when precipitation occurs (Table 1).

5 Discussion

5.1 Implications for interpreting climate change projections

These results have implications for the interpretation of future projections of climate change
and impacts studies. One of the aims of this work has been to identify differences between
RCM estimates at the grid cell scale and site-specific observed data, and as such indicate
that potential exists to correct biases. We recognise that the comparison is not a ‘like with
like’ one, but it reflects the importance of being able to provide appropriate data for site-
specific climate change impacts studies. Bridging the spatial gap between grid cell scale
and specific locations within the cell in terms of data quality will present many challenges.
Assessing RCM estimates of the past climate is an essential first step in order to evaluate
the utility of future projections in CCI studies. This work has highlighted that the use of
RCM data in CCI studies may only be appropriate when some form of bias correction has
been conducted and when the specific site is similar to the mean topographical
characteristics of the cell.

A fundamental issue with evaluating the quality of future projections by comparing
estimates made at the grid cell scale of the past climate with site-specific observed data, is
that of knowing whether errors existing in past climate estimates are maintained (or even
propagated) into the future projections. Given the aim of identifying bias correction
potential between the cell and specific sites within it, then if the assumption holds true that
errors present in the hindcast estimates will also exist in the same approximate form in
future projections, then using a standard approach of taking the differences between
hindcast and future modelled data and applying those differences to observed data will
result in the transfer of the errors to the adjusted observed data. Hence we argue that it is
better to identify differences between modelled hindcast and site-specific observed data,
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then adjust the future projections based on those differences. For example, if there is a mean
over-estimation of minimum temperature of 1.5°C in the hindcast data for a particular
location and at a certain time of year, a refined form of estimate for future projections will
be the modelled estimate minus 1.5°C. This method is independent of whether the source of
the error is either structural (within the RCM), representational (the difference between the
50 km cell and the site attributes), or RCM input data or parameterisation. However, it does
not take account of the dynamics affecting model response to greenhouse gas forcing. It
simply provides a means by which empirically derived correction factors can be derived.
However, if the assumption is unfounded, then adjustment of future projection data based
on hindcast versus observed differences may not be appropriate.

On the basis that the assumption is correct (but not considering GHG forcing responses),
when the bias based constraints of the modelled data have been identified, it becomes
possible to determine where and when it is appropriate to use the future projection data in
site-specific impacts studies. Based on our analysis, future projections for the RCM and
scenarios tested, as currently published, of precipitation, extreme summer Tmax, mean Tmin,
lowest Tmin and So are potentially unreliable at some locations. Conversely the indication is
that mean Tmax, the lowest Tmax and highest Tmin estimates are reliable. These issues
indicate that there is a need for more comparisons between RCM estimates and observed
data, to identify the characteristics of combinations of weather variables and locations
where RCMs perform poorly and to suggest corrections that can be applied.

5.2 Precipitation

The occurrence of too many modelled small precipitation events (<0.3 mm) may not be
significant in terms of the overall soil water balance, as the amount of water added to the
surface layer is very small but sufficient to give a surface ‘wetting’ effect. However, it is
likely that they will adversely affect estimates of evapotranspiration due to cooling the soil
surface and vegetation canopy temperatures. This in turn will affect soil water balances as it
will be the wetted surface water that is evaporated rather than water drawn up from lower
levels. Estimates of pest and pathogen responses will also be distorted by the inaccuracy of
dry day estimates. The occurrence of such large numbers of small events indicates an issue
with the model’s handling of such events. One possible explanation is that errors were made
acceptable during the original model validation process, when observed data was spatially
aggregated within a cell, giving a ‘drizzle effect’.

The fact that the model did not estimate the largest single events does not indicate a
failure of the model, but that the thirty year coverage of the hindcast may not be sufficient
to capture the more rare extreme events with longer return periods. In conjunction with this,
the aim of the model is to represent the mean conditions for a grid cell, rather than specific
extreme events recorded at individual stations. However, the consistency with which the
model underestimated the largest single event across all sites does indicate a limitation.

In order to increase the utility of the data for impact studies, we recommend a reduction
in the number of days on which precipitation occurs (i.e. removing estimates less than about
0.3 mm) whilst also increasing the magnitude of events >1 mm at locations where the
model is shown to underestimate mean annual totals. The ability of the model to estimate
the largest single precipitation event raises questions as to how useful the future projection
data, in its original form, would be for use in flood risk assessment. However, the time slice
for the hindcast period is 30 years, with the possibility that this is too short in order to
capture the largest precipitation events. Therefore, the assessment should cover a longer
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hindcast versus observed period in order to be able to properly assess the ability of the
model to estimate the largest event.

5.3 Temperature

The net result of the models’ tendency to overestimate Tmin, whilst performing well for
Tmax, is that projected data will be unsuitable (location dependent) for some CCI studies, as
errors will be introduced to estimates of an entity’s temperature response, i.e. due to thermal
time accumulation, diurnal ranges, biophysical processes etc. In considering the daily
variability of temperature, then mean values are not the best indicators of representation for
accuracy. However, the results presented here for mean daily Tmax and Tmin, their highest
and lowest values, indicate that the model does perform well in producing data that
represents the natural temperature variability on a daily and seasonal basis. Thermal time
accumulation (TTA) at some sites is very good, but it is possible to achieve the same rates
of accumulation but with data of very different magnitudes, i.e. different values of Tmax and
Tmin data can produce the same average value added to the previous day’s accumulation.
Hence modelled TTA rates derived from the HadRM3 hindcast data can be similar to
observed TTA, but potentially for the wrong reasons. In some case, such as Carnwath, the
differences between Tmax and Tmin (Fig. 6) produces substantially different rates of TTA
(Fig. 8) from the observed, due to the overestimation of Tmin. This effects interpretations of
future plant and insect phenological responses due to TTA and correlations with the actual
temperature.

5.4 Solar radiation

The overestimation of So at many locations suggest that the data are unsuitable for use in
impacts studies where So is a key input. However, our personal experience has shown that
data containing compensating errors of the type found in the So estimates from the HadRM3
model (i.e. at Aldergrove, Fig. 9) can still result in reasonable derived estimations, i.e. when
used in a crop model. When the errors fluctuate between over- and under-estimates on a
daily basis (i.e. Eskdalemuir cell 4659, Aldergrove, Fig. 9), the errors can cancel
themselves out in terms of their impact on crop model estimates of yield. However, the
temporal distribution of errors is critical, as over-estimation in the spring and summer will
result in too high a rate of biomass accumulation (more intercepted radiation). The
systematic over-estimation at many sites (i.e. Rothamsted) will produce substantial errors
when used in CCI studies. Though not assessed in this study, the over-estimation of So
indicates a flaw in the way the model represents cloud cover.

6 Conclusions

The types and magnitude of errors within the HadRM3 hindcast data presented here could
introduce substantial errors when used within site-specific climate change impacts studies,
i.e. using simulation models. Identification of errors in RCM estimates of the past climate
makes it possible to assess the utility of future projection weather variable data for impacts
studies. The hindcast data are, however, sufficiently similar to the observed data to raise the
possibility of making simple adjustments to the modelled data. On the assumption that the
same errors present in the hindcast data will also exist in the future projection data, such
adjustments could then be applied to future projections to reduce systematic errors. This
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will improve the reliability of the climate change data and reduce the uncertainty introduced
to impact studies.

The assessment of the RCM data demonstrates the importance of evaluating the quality
of data prior to use within impact studies and for practitioners to be aware of how the data
can introduce uncertainty. The suitability of uncorrected RCM data for climate change
impact studies depends ultimately on how and for what purpose the data are used. The
quality of the Tmax and Tmin data is sufficiently good for some locations to allow studies
using monthly or weekly data to be made with confidence, but studies using daily data
require caution, particularly where Tmin and extreme cold temperatures are important
factors. Precipitation data are less reliable, particularly in respect the lowest (<0.3 mm) and
highest magnitude events and number of dry days, and are potentially unsuitable for CC
impact studies in an uncorrected form. The reliability with which additional meteorological
measures can be derived depends on which data are required. There is a risk of introducing
significant errors where derived values, e.g. soil water deficit, are estimated from several
weather variables as the potential exists for biases to occur with individual variables at the
same time. The temperature data for island locations and some coastal sites are unsuitable
for use in terrestrial impact studies (depending on the amount of sea cover within the cell).
Where a location exists on the boundary between two cells, care needs to be taken in
determining which cells’ data best represents it. The choice of cell may depend on whether
precipitation, temperature or solar radiation accuracy is more important.

This assessment of the quality of estimates made by the HadRM3 RCM for the historical
period of 1960–90, has primarily taken the form of graphical comparisons. Whilst more
detailed statistical assessments were possible, this exploratory analysis has yielded
sufficient detail to show that the data will have an affect on the results of climate change
impact studies. The important message is that the type of biases identified here need to be
considered when climate model data is used in impact studies, particularly when simulation
models are used. The characteristics of the data and how the biases manifest themselves
may not be obvious, therefore there is a need to appraise the suitability of the data prior to
use. Further analysis is also required to characterise the correlation between weather
variables on a daily basis, to ensure that meteorological relationships are adequately
represented, i.e. relationships between diurnal temperature ranges, solar radiation and cloud
cover. It would also be informative to assess the behaviour of the model in terms of short-
term variability, i.e. the continuation of patterns of weather from one day to the next.

Fundamentally, the results have shown that the HadRM3 RCM produces data that have
both small and large spatially and temporally variable biases in its estimates of the past climate.
Practitioners using RCM estimates for climate change impacts studies need to evaluate and
quantify the biases in the data in order to determine what uncertainties they will introduce.
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