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Abstract Anthropogenic greenhouse gas emissions may trigger climate threshold responses,

such as a collapse of the North Atlantic meridional overturning circulation (MOC). Climate

threshold responses have been interpreted as an example of “dangerous anthropogenic inter-

ference with the climate system” in the sense of the United Nations Framework Convention

on Climate Change (UNFCCC). One UNFCCC objective is to “prevent” such dangerous an-

thropogenic interference. The current uncertainty about important parameters of the coupled

natural–human system implies, however, that this UNFCCC objective can only be achieved

in a probabilistic sense. In other words, climate management can only reduce – but not

entirely eliminate – the risk of crossing climate thresholds. Here we use an integrated assess-

ment model of climate change to derive economically optimal risk-reduction strategies. We

implement a stochastic version of the DICE model and account for uncertainty about four

parameters that have been previously identified as dominant drivers of the uncertain system

response. The resulting model is, of course, just a crude approximation as it neglects, for

example, some structural uncertainty, and focuses on a single threshold, out of many poten-

tial climate responses. Subject to this caveat, our analysis suggests five main conclusions.

First, reducing the numerical artifacts due to sub-sampling the parameter probability density

functions to reasonable levels requires sample sizes exceeding 103. Conclusions of previous

studies that are based on much smaller sample sizes may hence need to be revisited. Second,

following a business-as-usual (BAU) scenario results in odds for an MOC collapse in the

next 150 years exceeding 1 in 3 in this model. Third, an economically “optimal” strategy

(that maximizes the expected utility of the decision-maker) reduces carbon dioxide (CO2)

emissions by approximately 25% at the end of this century, compared with BAU emissions.

Perhaps surprisingly, this strategy leaves the odds of an MOC collapse virtually unchanged

compared to a BAU strategy. Fourth, reducing the odds for an MOC collapse to 1 in 10 would

require an almost complete decarbonization of the economy within a few decades. Finally,

further risk reductions (e.g., to 1 in 100) are possible in the framework of the simple model,

but would require faster and more expensive reductions in CO2 emissions.
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1 Introduction

Anthropogenic greenhouse gas emissions may trigger climate threshold responses (Alley

et al. 2003). For example, some ocean models predict a collapse of the North Atlantic

meridional overturning circulation (MOC) as a potential threshold response to anthropogenic

carbon dioxide (CO2) emissions (Stocker and Schmittner 1997; Cubasch and Meehl 2001).

An MOC collapse has the potential to cause widespread temperature and precipitation

changes and nontrivial ecological and economic impacts (Keller et al. 2000; Vellinga and

Wood 2002; Link and Tol 2004). The potential for adverse impacts due to anthropogenic

greenhouse gas emissions raises the question of how – if at all – this risk should be reduced.

An economically efficient strategy would find some optimal balance between the costs and

benefits of reducing these impacts. Numerous studies have applied integrated assessment

models (IAMs) of climate change to analyze risk management strategies in the face of

uncertain climate thresholds (e.g., Nordhaus 1992; Toth et al. 1997; Kelly and Kolstad 1999;

Keller et al. 2000, 2004; Zickfeld and Bruckner 2003; Bruckner and Zickfeld 2004). Here

we use a simple IAM that accounts for uncertainty in key parameters and the potential for an

MOC collapse to analyze two main questions: (i) What would be the odds of triggering an

MOC collapse for a strategy with unabated CO2 emissions? (ii) What would be economically

optimal strategies to reduce the odds of triggering an MOC collapse to various levels? We

address these questions using a simple integrated assessment model of climate change. This

framework is, as any model, subject to numerous caveats (discussed at the end of this paper).

Our study improves on previous work by a more refined examination of the effects of

parametric uncertainty and the effects of imposing a reliability constraint. Uncertain param-

eters are represented by sets of stratified Latin-hypercube samples. We find that sample sizes

exceeding 103 are required to reduce the effects of sampling resolution to arguably reasonable

levels. For a business-as-usual policy (i.e., no CO2 abatement) the odds for triggering an MOC

collapse over the next 150 years exceed 1 in 3. Considering previously published estimates

for climate change damages, we find that optimal carbon abatement increases steadily from

more than 10% in 2005 to almost 30% over the next 150 years. However, this economically

“optimal” policy does not considerably reduce the future odds of an MOC collapse compared

to the BAU strategy. Constraining the odds of triggering an MOC collapse to below 1 in 10

requires CO2 abatement exceeding 80% within the next 60 years. Reducing these odds further

to 1 in 100 is possible in the model, but requires faster and more expensive abatement – close

to 90% abatement over the next 40 years.

2 The integrated assessment model

We adopt the Dynamic Integrated model of Climate and the Economy, DICE (Nordhaus

1994), as a simple and transparent framework. This model links an economic growth model,

as pioneered by Ramsey (1928), to a description of the CO2 induced climate change and the

resulting economic impacts. Here we describe the general structure and key parameters of

the model. An excellent and very thorough description is given in Nordhaus (1994).

The objective of the decision-problem is to determine abatement and investment policies

that maximize the discounted sum of utility across the considered states of the world

U ∗ =
N∑

s=1

t∗∑
t=t0

U (s, t)(1 + ρ)−t , (1)
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where t0 is an initial point (the year 1965), t∗ is the considered time horizon, ρ is the pure

rate of social time preference, and s denotes a particular state of the world (SOW) out of N
considered discrete samples (discussed below). Well-being in the DICE model is represented

by a flow of utility

U (t) = L(t) ln c(t), (2)

where L is population, specified exogenously, and c is per capita consumption. (The used

symbols are summarized and defined in the Appendix.)

Consumption is the difference between economic output and the sum of investment in

capital stocks, damages caused by climate change and investment in reducing CO2 emissions.

The DICE model describes economic output using a constant-returns-to-scale Cobb Douglass

production function with parameters for labor, capital, and level of technology. Labor inputs

are proportional to population.

Economic activity has the side effect of CO2 production with an exogenously evolving

ratio between economic output – measured as gross world product (GWP) – and CO2 produc-

tion. A linear carbon cycle model links CO2 emissions to atmospheric CO2 concentrations.

Radiative forcings by greenhouse gases besides CO2 and through aerosols are prescribed

exogenously.

The climate system in DICE is represented by a simple model consisting of a combined

atmosphere and surface ocean layer and a deep ocean layer (Schneider and Thompson 1981).

Higher greenhouse gas levels enhance radiative forcing, warming the atmosphere and (over

time) the deep ocean. The climate sensitivity is an important parameter in this model and

represents the equilibrium temperature increase for a hypothetical doubling of atmospheric

CO2. Economic damages due to climate change are approximated by a polynomial fit to

previous studies, as described in Nordhaus (1994). The original DICE model is modified to

consider economic damages caused by an MOC collapse. Following previous studies, we

approximate the model results of Stocker and Schmittner (1997) by a critical equivalent CO2

concentration that is exponentially related to the climate sensitivity, beyond which the MOC

collapses (Keller et al. 2004). Damages due to an MOC collapse, taken as a fraction of GWP,

are applied at each time period after the collapse. The cost of carbon emissions abatement

is expressed as a function of the fractional reduction in CO2 emissions, μ(t), relative to

uncontrolled emissions.

3 Representation of parametric uncertainty

Previous work identified four parameters as key drivers of the optimal policy under uncertainty

(Nordhaus and Popp 1997; Keller et al. 2004). We improve on these studies by considering

(i) a more refined resolution, (ii) the combined effects of multiple parameter uncertainty,

and (iii) the effects of a “reliability constraint” on optimal policies (discussed below). The

considered parameters are: (i) the damage associated with an MOC collapse (θ3); (ii) the

climate sensitivity (λ�); (iii) the decline in population growth rate (δL ); and (iv) the initial

growth of the CO2–GDP ratio, (gσ ). The specific choices of parameter distributions, given

in Table 1, are discussed below.

Following Keller et al. (2004), we adopt a uniform distribution for the damages due to an

MOC collapse (θ3) between 0% and 3% GWP. For the climate sensitivity (λ�) we adopt the

empirical distribution reported by Andronova and Schlesinger (2001) with an expected value

of 3.4 ◦C and 95% confidence limits of 0.9 ◦C and 12.7 ◦C. Population growth in the DICE
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Table 1 Summary of the considered uncertain parameters. MOC refers to the North Atlantic meridional
overturning circulation

95% confidence Distribution

Parameter Units Symbol Mean limits type Reference

MOC specific

damages

% GWP θ3 1.5 (0.075, 2.925) Uniform Keller et al. (2004)

Climate sensitivity ◦C λ∗ 3.4 (0.9, 12.7) Empirical Andronova and

Schlesinger

(2001)

Decline in

population

growth

Per decade δL 0.2 (0.03, 0.46) Weibull Nordhaus and Popp

(1997)

Initial decline of

CO2 to GDP

ratio

Per decade gσ −0.1168 (−0.30, −0.01) Weibull Nordhaus and Popp

(1997)

model declines at a constant rate, δL . We fit a Weibull distribution to the reported discrete

samples given in Nordhaus and Popp (1997) and constrain samples to positive values. The

ratio between CO2 production and economic output initially grows at a rate of gσ . We fit a

negative Weibull distribution to the discrete samples given in Nordhaus and Popp (1997),

constraining all samples to negative values. The probability density functions for the four

uncertain parameters are displayed in Fig. 1.

Each uncertain parameter is sampled from the appropriate distribution. All other pa-

rameters are considered as certain and their numerical values are adopted from the DICE

model (Nordhaus 1994). We refer to a combination of four samples (one specific sam-

ple from each probability density function of the four uncertain parameters) as a single

state of the world (SOW). Taking NS samples from each distribution yields N = NS
4

SOWs. We adopt the Latin-hypercube sampling technique outlined in Nordhaus and Popp

(1997) to define the SOW sets. Probability density functions of the parameters are di-

vided into NS intervals with equal probability mass. The expected value of the distribu-

tion over each interval provides the NS samples, with each SOW being equally likely. The

results of this sampling method are illustrated in Fig. 1 for NS = 7, corresponding to N
= 2,401 SOWs. This sampling technique ensures that the mean value of the samples is

equal to the mean value of the distribution, but it neglects potential correlations between the

parameters.

4 The solution method

We determine a single policy that maximizes the expected utility defined in Equation (1).

We apply a numerical optimization method, since analytic solutions are not available for

this problem. The presence of a climate threshold in the DICE model can introduce non-

smooth gradients and local optima in the objective function (Keller et al. 2004). As a re-

sult, gradient based methods can result in severely biased results and global optimization

methods are required. Based on previous benchmark results (Moles et al. 2004) we imple-

ment the SRES algorithm (Runarsson and Yao 2000) to solve this non-convex and non-

linear global optimization problem. SRES is a genetic optimization algorithm that uses a

sequence of mutation and selection to improve an objective function. The algorithm starts

with an initial random population of trial vectors that are evaluated by the objective function.
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Fig. 1 Probability density functions (PDFs) for the considered uncertain parameters. Shown are: (i) the
damage associated with an MOC collapse collapse (θ3), (ii) the climate sensitivity (λ∗), (iii) the decline in
population growth rate (δL ), and (iv) the initial growth in CO2 to GDP ratio (gσ ). The triangles denote the
locations of the stratified Latin-hypercube samples for NS = 7. See text for details on the sampling procedure

Some fraction of well-performing members of this population are selected and used to gen-

erate new trial vectors (with random perturbation, akin to the effects of mutation in the

evolution of natural populations). The repeated application of selection and mutation re-

sults in a generally improving objective function without the typical pitfalls of gradient

based methods (Goldberg 1989). We consider a time horizon of 470 years to ensure that

the finite time horizon has virtually no influence on the reported results over the next two

centuries.

Finding the global optimum for this non-convex optimization problem is nontrivial. As

with all global optimization problems without a known analytical solution, one cannot math-

ematically prove that the precise global optimum has been identified in a finite computation

time. However, we implement an algorithm for detecting misconvergence that ensures a close

approximation to the optimal solution. Specifically, we run the SRES algorithm with two sets

of initial conditions and compare optimal strategies at the end of each iteration. When the

decision variables for each optimal strategy differ by a root mean square error of less than

0.5%, the two solutions are for practical purposes identical and likely a good approximation
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to the global maximum. In case this approach does not lead to convergence, we switch to

another global optimization algorithm (Runarsson and Yao 2005). Solutions that still have

not converged with the second algorithm are discarded and the process is reinitialized with

a new random initial population. This procedure is continued until the convergence criteria

is satisfied. The model code is available upon request.

5 Analyzed strategies

We compare three strategies: (i) business-as-usual (BAU), (ii) unconstrained optimal, and

(iii) reliability constrained optimal. For BAU, carbon emissions remain unabated. This is

implemented by setting abatement (μ) to zero and optimizing utility (Equation 1) as a function

of relative investment (I/Q) only. For the unconstrained optimal policy, we maximize the

objective function by choosing μ and I/Q. Abatement is set to zero between 1965 and

1995, to reflect past policies, and BAU investment values are used for these times. Reliability

constrained optimal policies maximize the expected utility with the additional constraint to

keep the odds of triggering an MOC collapse below a specified level. This is implemented

by introducing a penalty to the objective function when the odds of an MOC collapse exceed

the specified reliability.

6 Results and discussion

6.1 Effects of sampling resolution

Previous studies analyzing related decision problems use relatively low resolutions for the

SOW sampling, ranging on the order of 100 to 102 samples (e.g., Chao 1995; Yohe 1996;

Zickfeld and Bruckner 2003; Bruckner and Zickfeld 2004; Keller et al. 2004). For a nonlinear

system, such low resolutions can introduce considerable biases (Tol 2003). Here we evaluate

these biases for a subset of the uncertain parameters and model structure. To this end, we

compare optimal strategies estimated at different resolutions to identify when further resolu-

tion increases have negligible effects. In each case, NS samples of each uncertain parameter

are taken, leading to NS
4 SOWs. Figure 2 illustrates the unconstrained optimal abatements

when one (circles), seven (squares), and 15 (stars) samples of each uncertain parameter are

taken. Note that the linear increase in samples per model parameter (NS) results in a geomet-

ric growth of the number of SOWs (following N = NS
4) and the approximate computational

requirements. Solving the optimal control problem for NS = 15 implies N = 50,625 SOWs

and requires approximately 16 hours on a high performance computer cluster (8 nodes with

dual 2.4 GHz processors).

Carbon abatement exceeds 10% in 2005 and rises to more than 20% over the subsequent

80 years, regardless of the reliability constraint. For NS = 1 abatement increases sharply

immediately, reaching approximately 60% in 2155. After 2155, abatement levels drop to

around 20%. In this case an MOC collapse is delayed, but not avoided. Increasing the nu-

merical resolution changes the results considerably. For NS = 7 and NS = 15, abatement

increases steadily to around 30% over the next 150 years. The optimal abatement levels for

NS = 7 are practically indistinguishable from the more computationally involved calcula-

tions using NS = 15.

The biases introduced by the discrete sampling of the underlying probability density

functions decrease almost monotonically, with small changes beyond NS = 7 (Fig. 3).
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Fig. 2 Optimal abatement levels
for NS = 1 (circles), NS = 7
(stars) and NS = 15 (squares).
These sampling densities
correspond to 1, 2,401 and 50,625
states of the world respectively

Fig. 3 Effects of increasing
sampling resolution on
approximation error. Shown are
the mean difference (calculated
from 2005 to 2155) between
optimal abatement as a function
of the numbers of states of the
world (SOWs) compared with the
optimal solution for 50,625
SOWs. The number of samples of
each uncertain parameter are
marked on the plot. The solution
has practically converged beyond
74 = 2,401 SOWs

Beyond NS = 7 the solution has, for practical purposes, converged. This suggests that

NS = 7 provides a reasonable approximation for the specific parametric uncertainty in

the chosen model structure. We adopt this value for the more detailed analysis below.

It is important to note that this study focuses on uncertainty about a subset of the

model parameters. As a result, the true uncertainty is likely larger than the one reported

here.

6.2 What are economically optimal risk reduction strategies?

The analysis, so far, adopts the expected utility maximization approach of previous studies

(Nordhaus 1992). Expected utility maximization may be a useful framework for cases with

well known costs and benefits, and where the decision-makers actually adopt this decision

criteria. Expected utility maximization can, however, be a poor description of decision making

when the negative impacts are not easily quantified or the underlying probability functions
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are deeply uncertain (Bradford 1999; Lempert 2002). Decision problems that arguably fall

into these categories include the design of dikes, water reservoirs and nuclear power stations.

Such problems are often solved by imposing a reliability constraint on the accepted odds of

failure (Ouarda and Labadie 2001; van Manen and Brinkhaus 2005). Here we analyze how a

reliability constraint on the odds of avoiding an MOC collapse affects the timing and extent

of CO2 abatement.

The odds for an MOC collapse over the next 150 years (based on the proportion of

SOWs where an MOC collapse is triggered in the model) exceed 1 in 3 for the BAU pol-

icy (Fig. 4b). Optimal reductions of CO2 emissions without a reliability constraint do not

considerably decrease these odds. The fact that the optimal policy in this model consider-

ing published estimates of economic damages of climate change (including damages due

to an MOC collapse) results in considerable odds of an MOC collapse is in contrast to

previous results and warrants some discussion. Nordhaus (1994, p. 115) considers the ef-

fects of a climate catastrophe (with economic impacts in the tens of percent of GWP) on

optimal climate policy for a single SOW. In this case, the optimal policy without param-

eter uncertainty is to avoid the catastrophe. Keller et al. (2004) show that much smaller

damages (less than 2% of GWP) results in an optimal policy that avoids an MOC collapse

for a single SOW. Considering parametric uncertainty in the model of Keller et al. (2004)

results in lower optimal abatement levels. The current study considers a more thorough

representation of parametric uncertainty. Compared to Keller et al. (2004), the increased

odds of an MOC collapse are due to two reasons. First, we consider a wider range in the

sample of the climate sensitivity. The higher climate sensitivity results in a lower critical

CO2 level (Stocker and Schmittner 1997). Second, we consider uncertainty in factors af-

fecting business-as-usual emissions, such as population growth rate. As a result, a certain

abatement strategy generates an uncertain CO2 trajectory. The current results are generally

consistent with the previously observed effects of parameter uncertainty in this decision

problem (Keller et al. 2004). We hypothesize that improving some of the known shortcom-

ings of the DICE model (e.g., the static representation of the technology for reducing CO2

emissions (Keller et al. 2003) and the use of a relatively high rate of social time preference

that decreases the importance of future climate change impacts (Nordhaus 1994)) would

result in higher CO2 abatement and lower odds of triggering an MOC collapse in the optimal

policy.

One might ask how much CO2 abatement is required to significantly reduce the odds

for an MOC collapse? Decreasing the odds of an MOC collapse to 1 in 10 increases

the (constrained) optimal abatement to approximately 80% in the next 60 years (Fig. 4a).

Decreasing these odds further to 1 in 20 or 1 in 100 is possible (in the framework

of the model), but requires higher and more expensive abatement. A reliability con-

straint of 1 in 100 implies almost 90% abatement in the next 40 years. Whether such a

rapid and almost complete decarbonization of the global economy is feasible is an open

question.

Parametric uncertainty translates into predictive uncertainty. This is illustrated in Fig. 5 for

BAU, the unconstrained optimal policy, and the reliability constrained optimal policy with

odds for an MOC collapse of 1 in 10. Emissions increase substantially between 2055 and 2105

for the BAU and optimal policies (Fig. 5a,b); the mean value of emissions increases from

24 Gt C a−1 to 38 Gt C a−1 for BAU and from 19 Gt C a−1 to 28 Gt C a−1 for the optimal policy.

In contrast, the optimal reliable policy results in mean CO2 emissions of 5.7 Gt C a−1 in 2055

and 2.8 Gt C a−1 in 2105. The differences in CO2 emissions drive differences in atmospheric

CO2 concentrations (Fig. 5 c,d). Between 2055 and 2105, mean CO2 concentrations increase

from 560 ppm to 850 ppm for the BAU policy, and from 520 ppm to 725 ppm for the optimal
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Fig. 4 (a) Abatement strategies
and (b) the potential odds of an
MOC collapse for the
business-as-usual policy (BAU),
the unconstrained optimal policy
and the optimal policies with
odds for an MOC collapse
constrained below 1 in 10, 1 in 20
and 1 in 100

policy. The optimal reliable policy, in contrast, has a reduced mean CO2 concentration of 460

ppm in 2055 and 450 ppm in 2105. The reduced CO2 concentrations for the optimal reliable

policy result in decreased global warming (Fig. 5 e,f). For the BAU and optimal policies, the

mean temperature change in 2055 increases to 2.3 ◦C and 2.1 ◦C respectively. This increase

is 1.9 ◦C for the optimal reliable policy. The effect of different strategies on temperatures

becomes more noticeable over time. In 2105, the mean temperature increase for the BAU,

optimal and reliability constrained optimal case are 3.6 ◦C, 3.3 ◦C and 2.2 ◦C respectively.

7 Caveats

This study improves on previous studies by considering the effects of reliability con-

straints and more refined numerical resolution, but is still silent on potentially impor-

tant questions. For example, we analyze only the effects of a single threshold out of

many possible climate responses (Keller et al. 2006), consider only uncertainty about
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Fig. 5 Cumulative density functions (CDFs), based on 2,401 states of the world, of carbon dioxide (CO2)
emissions in (a) 2055 and (b) 2105; atmospheric CO2 concentration in (c) 2055 and (d) 2105; and temperature
increase in (e) 2055 and (f) 2105. The business-as-usual strategy is represented by the dotted lines, the
unconstrained optimal strategy by the dashed lines and the optimal strategy with odds of an MOC collapse
constrained below 1 in 10 by the solid lines
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a subset of the model parameters, and neglect structural uncertainty, stochastic vari-

ability, and the distinct possibility that we may learn in the future (Kelly and Kolstad

1999).

The issue of structural uncertainty can be illustrated by the adopted choice of a single

MOC model (Stocker and Schmittner 1997). As discussed in Cubasch and Meehl (2001), the

MOC varies widely across model implementations. Several models (e.g. Latif et al. 2000)

suggest the existence of stabilizing feedbacks that result in a basically insensitive MOC.

Which MOC model is a more appropriate description of reality is currently deeply uncertain

(Cubasch and Meehl 2001). This structural uncertainty could be represented by a Bayesian

Model Averaging approach (Hoeting et al. 1999). Assuming a binary mixture of the adopted

sensitive MOC model (Stocker and Schmittner 1997) and a member of the insensitive MOC

models (Latif et al. 2000) with ignorant priors (p = 0.5 for both) would reduce the reported

odds of triggering an MOC collapse by a factor of two. Future observations have a strong

potential to reduce uncertainty about the MOC sensitivity (Keller et al. 2005; Baehr et al.

2007).

8 Conclusion

We examine the effect of parametric uncertainty and the potential for an MOC collapse in

an economic optimal growth model. We expand on previous studies by considering (i) the

effects of a reliability constraint, (ii) a larger number of uncertain parameters, and (iii) a more

realistic numerical resolution.

A business-as-usual strategy results in considerable odds of an MOC collapse (exceeding

1 in 3 in the next 150 years in this simple model). An unconstrained optimal policy does not

reduce these odds considerably. Reducing these odds to 1 in 10 requires an almost complete

decarbonization (greater than 80%) over the next 60 years. A further reduction to 1 in 100

reduces this decarbonization time scale to 40 years.
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Appendix 1: List of symbols

Symbol Definition

BAU Business-as-usual

CO2 Carbon dioxide

c Per capita consumption per year

δL Decline in population growth rate

GDP Gross domestic product

GWP Gross world product

gσ Initial growth in CO2-GDP ratio

I Gross investment

L Population
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Symbol Definition

λ∗ Climate sensitivity

μ CO2 abatement relative to the BAU scenario

N Number of SOWs

NS Number of samples of each uncertain parameter

Q GWP

ρ Pure rate of social time preference

SOW State of the world

s SOW index

t Time

t0 Start of considered time horizon

t∗ End of considered time horizon

θ3 Threshold specific fractional economic damage

U Flow of utility

U ∗ Discounted sum of utility
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