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Abstract. Despite much effort over the last decade, there still remain many uncertainties in the

assessed impacts of climate change on water resources. This study has carried out Monte Carlo

Simulations to characterise the sampling uncertainties in assessed water resources impacts. The in-

vestigation employed data from catchments in northeast England, which incorporate water supply

reservoirs. The impacts assessment used scenarios from three GCM experiments: (i) the Canadian

first generation coupled model (CGCM1), (ii) the Australian first generation coupled model (CSIRO-

mk2b) and (iii) the British third generation model (HadCM3). The results showed that yield impacts

are subject to wide variability, irrespective of the GCM experiment, which calls for caution when

using mean impacts obtained from single data record analysis for decision making.

1. Introduction

Many studies have been carried out in recent times to assess the impact of climate
change on water resource systems (see www.pacinst.org/topics/global change/
water bibliography/ for a comprehensive bibliography). Water resources impact
assessment often involves three distinct stages. The first stage is to construct
catchment-scale General Circulation Model (GCM) based climate change scenar-
ios and use these to perturb baseline (current) climate to obtain future climate. This
is then followed by forcing a catchment response model with both the current and
future climate to obtain the corresponding runoff records. Finally, the hydrological
data series are then input into a water resource simulation model to obtain possible
impacts. Because of the uncertainties introduced at successive stages of the assess-
ment, it is important that the assessed impacts are viewed with caution (Hulme
et al., 1999).

1.1. UNCERTAINTIES IN CLIMATE IMPACTS ASSESSMENT

Three major sources of uncertainty have been cited by Carter et al. (1999) and these
arise as a result of:
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Figure 1. Schematic of the levels of uncertainty in successive stages of climate impact assessment

(note the incremental uncertainties are not necessarily equal).

1. Difficulty in predicting future levels of greenhouse gas (GHG) and aerosol
emissions;

2. Differences in global climate of sensitivity of different GCMs. This is due
to differences in the way physical processes and feedbacks are simulated in
different models;

3. Uncertainties in regional climate change apparent from differences in regional
estimates of climate change by different GCMs, for the same mean global
warming.

When climate change scenarios are used to assess the implications for water
resource systems, then further sources of uncertainty are introduced. These com-
prise data and modelling uncertainties (Prudhomme et al., 2003, Wood et al., 1997).
Uncertainties in hydrologic data arise due to inaccurate measurements and the sam-
pling procedure. A relatively short rainfall or runoff record (e.g. 30 years of daily
data) rarely incorporates the complete range of possible extremes, and wet and dry
period lengths. Re-sampling techniques will allow evaluation of this uncertainty
(Prudhomme et al., 2003). Model uncertainties arise because of the imprecision
in hydrological and water resource systems modelling. Both the model structure
and the parameters are uncertain. Indeed, the commonly adopted assumption that
model parameters remain valid in a future changed climate is not valid. The range
of uncertainties are summarised in Figure 1.

1.2. QUANTIFYING UNCERTAINTIES IN CLIMATE IMPACTS ASSESSMENT:
SOME STUDIES TO DATE

Some studies have attempted to quantify some of the uncertainties (discussed in sec-
tion 1.1) including Prudhomme et al. (2003), Shackley et al. (1998), Nikolaidas et al.
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(1994), Mimikou et al. (2000), Cameron et al. (2000a), and Sankarasubramanian
et al. (2001).

Prudhomme et al. (2003) randomly generated 25,000 climate scenarios for the
UK by adopting a Monte Carlo simulation based on several GCMs and different
greenhouse gas emissions scenarios. Future flood scenarios were compared to cur-
rent conditions. Most scenarios showed an increase in both the magnitude and the
frequency of flood events, generally not greater than the 95% confidence limits.
The largest uncertainty was attributed to the type of GCM used, with the magnitude
of changes varying by up to a factor of 9 in Northern England and Scotland. On
this basis, Prudhomme et al. (2003) concluded it is essential that climate change
impact studies consider a range of climate scenarios derived from different GCMs,

Shackely et al. (1998) used a global carbon cycle model and historical carbon
dioxide emissions levels to generate a large number of possible future carbon diox-
ide scenarios. Their output showed a greater variability in future carbon dioxide
levels than those obtained using deterministic models. Although Shackley et al.
(1998) did not subsequently use the stochastically generated emissions scenarios to
force a climate model to obtain a large number of climate scenarios, such is entirely
feasible with the aid of a simple climate model.

The study of Nikolaidas et al. (1994), on the other hand, concentrated on the
sampling uncertainty. They used eight years of daily historical meteorological data
from a catchment in Vermont, USA to stochastically generate 50 sequences of pre-
cipitation, air temperature, dew point, wind speed, solar radiation, and cloud cover.
They then used these data in conjunction with a modified Enhanced trickle-Down
(ETD) conceptual hydrological model (Nikolaidas et al., 1993) to determine the ef-
fects on runoff. They showed the range of input uncertainty in baseline mean annual
runoff to be ±24.2%. These results were then compared with those obtained from
deterministic modelling and climate change scenarios based on the Geophysical
Fluid Dynamics Laboratory (GFDL) and the Goddard Institute for Space Studies
(GISS) GCMs. The GFDL and GISS predicted reductions in annual runoff of 37.5%
and 17.9%, respectively. The two GCMs impacts were both predicting reductions in
runoff. However, when the sampling uncertainty in the inputs was incorporated by
Nikolaidas et al. (1994) the results showed that the runoff could actually increase
by 24%. Since the statistical description of the impacts is a natural end-product
of the Monte Carlo simulation experiments, the probability of actually having the
24% increase in runoff can be estimated.

Quantification of sampling uncertainty was also the subject of a study by
Mimikou et al. (2000). They investigated a catchment in central Greece and used
one scenario from the HadCM2 transient experiment and another from the UKHI
equilibrium experiment - both representative of the 2040–69 period. The impact as-
sessment proceeded in two stages. The first stage involved using baseline historical
data (1960–1996) to generate 50 sequences of precipitation and temperature data
using respectively the lag-one and lag-two stochastic autoregressive models (AR(1)
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and AR(2)). The second stage involved applying the climate change scenarios to
the generated time-series data to obtain 50 sequences of future (1996–2050) pre-
cipitation and temperature. Both the baseline and future sequences were then fed in
to the rainfall-runoff model to obtain the impacts on mean monthly runoff. Results
showed that future mean monthly runoff resulting from the HadCM2 scenario was
less than baseline runoff in all months of the year. The pattern of change was for
largest runoff reductions during the summer (especially in June and August when
up to a 46% reduction was expected). The expected winter reductions (of about
13%) were more moderate, especially during January, March and December while
the change in mean annual runoff was −18.4%.

Cameron et al. (2000b) explored the effects of hydrologic model parameter un-
certainties on flood frequency for a small Welsh catchment in the UK. They used
1000 rainfall and streamflow model parameter sets to generate separate 1000 year
continuous hourly rainfall and streamflow time series data. To study the effects of
climate change, UKCIP98 scenarios were employed (now superseded by UKCIP02
scenarios) which were developed by the UK Climate Impacts Programme (UKCIP)
using output from HadCM2. The UKCIP98 scenarios were designed to add “detail”
to the coarse-resolution HadCM2 scenarios (2.5◦ × 3.75◦) by the so-called “unintel-
ligent” downscaling. The term unintelligent is used since the downscaling method,
simple linear interpolation, adds no useful information to the coarse-scale scenario.
UKCIP98 scenarios are available at a spatial resolution of 10 km × 10 km. The
scenarios were used to investigate the impacts of climate change on the hourly
annual maximum flood peaks of both short and long return periods (e.g. 10–100
years). Cameron et al. (2000b) reported that the risk of a given streamflow being re-
alised changed under a different climate. Moreover, the flood risk was significantly
sensitive to model parameters. Four parameters were varied in the sensitivity study
(these were selected on the basis that they are the most important in the control of
the hydrologic model’s simulated catchment response): (i) an exponential scaling
parameter, (ii) effective available water capacity of the root zone, (iii) mean log
transmissivity of the soil at saturation of the surface, and (iv) standard deviation of
log transmissivity. Cameron et al. (2000b) concluded that there is a need to account
explicitly for uncertainty within hydrological modelling, especially in estimating
the impacts of climate change.

More recently, Sankarasubramanian et al. (2001) adopted a Monte Carlo sim-
ulation approach to investigate the influence of hydrologic model parameters on
runoff. They investigated catchments in California, Colorado and Arkansas and
adopted the concept of elasticity (i.e. proportional change in runoff divided by the
proportional change in a climatic variable such as precipitation) for quantification
of the sensitivity of streamflow to changes in climate. They used a Monte Carlo
simulation technique to generate 10,000, 50-year sequences of annual precipita-
tion and potential evapotranspiration. These sequences were then fed into three
different annual rainfall-runoff models of increasing complexity to synthesise the
corresponding runoff sequences. These are:
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(i) Simple linear statistical model in which streamflow is related to precipitation
(P) and potential evapotranspiration (PE);

(ii) Three-parameter nonlinear hydrologic model. This model relates P to evap-
otranspiration, groundwater storage, groundwater outflow and streamflow
using only P as a model input.

(iii) Four-parameter nonlinear hydrologic model which accepts both P and PE
as input, to simulate streamflow. Model capability also includes simulation
internally of soil moisture store, groundwater store & outflow, and actual
evapotranspiration.

Further model details are provided in Sankarasubramanian et al. (2001).
They then used a nonparametric approach along with the generated precipitation

and runoff data to evaluate the precipitation elasticity of streamflow. Use of 10,000
data sequences allowed evaluation of the bias and root-mean-square error associated
with the elasticity. The main conclusion reached was that in addition to being
influenced by climate, streamflow is also sensitive to model parameters.

Although the aforementioned studies incorporated uncertainty analysis in cli-
mate change water resources impacts assessments, the assessed impacts have
been limited to the runoff. In addition, many previous studies have investigated
the stochasticity of climate change runoff impacts (e.g. Mimikou et al. (2000);
Nikolaidas et al. (1994)) and for extremely simplified water resources systems,
there are readily usable reservoir yield models for translating mean annual runoff
uncertainties to yield uncertainties (see McMahon and Adeloye, 2005). However,
for real, complex water resources systems such as the one analysed in the study,
there are countless other factors – reservoir storage size, configuration of reservoir
systems, the reliability and other performance attributes of the system, the system
operating policy etc. – which are as important as the runoff. It is therefore not realis-
tic to infer yield uncertainties from the runoff uncertainties alone for such systems.
This was why this study has directly investigated the uncertainties of yield impacts
as caused by predicted climate change.

Where a water resources system incorporates reservoirs, examining the runoff
alone does not give the complete picture of how the system will behave under a
changed climate. Instead, the storage-yield-performance relationship which inte-
grates the effect of the runoff, demand and system operational strategies is a more
appropriate characteristic to use (Nawaz and Adeloye, 1999). Thus, in the present
study, the storage-yield-performance characteristics of a water supply reservoir in
northeast England will also be examined.

2. Methodology

The impact assessment methodology, based on recommended protocol (Carter et al.,
1994; 1999), is summarised in Figure 2.
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Figure 2. Deterministic and stochastic methodologies for climate change water resources impacts

assessment (note the stochastic methodology enables sampling uncertainty of the impacts to be

characterised).

Several sources of uncertainty in climate impacts assessment were identified
in Section 1.1. This study is limited to quantifying only the sampling uncer-
tainty which arises due to relatively short periods of hydroclimatological data
records.

2.1. HYDROLOGIC MODELLING

The hydrologic modelling used the daily water balance model MODHYDROLOG
(Chiew and McMahon, 1994). MODHYDROLOG is a conceptual daily rainfall-
runoff model structured around five moisture stores as shown in Figure 3. All five
stores are inter-related by catchment processes shown in Figure 3.



MONTE CARLO ASSESSMENT OF SAMPLING UNCERTAINTY 263

Figure 3. Schematic of MODHYDROLOG (adapted from Chiew and McMahon, 1994, with modi-

fications).
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A summary of these processes (adopted from Pitman and Chiew, 1996) is pro-
vided. MODHYDROLOG conceptualizes the catchment as five inter-connected
stores (i) interception store, (ii) depression store, (iii) soil moisture store, (iv)
groundwater store, and (v) channel store. In MODHYDROLOG, daily rainfall
first fills the interception store which is emptied daily by evaporation. The excess
rainfall is then subjected to a function which determines infiltration. The water that
does not infiltrate is diverted to a depression store (controlled by the depression
flow function) and the remaining water becomes surface runoff. The emptying of
the depression store takes place via both evapotranspiration and delayed infiltration
into the soil moisture store. A soil moisture function is then applied to all infil-
trated soil moisture. This function diverts moisture to the streamflow in the form of
interflow and to the groundwater store as groundwater recharge. Un-diverted mois-
ture enters the soil moisture store. Evapotranspiration from the soil moisture store
takes place at a rate that depends on soil moisture status up to a maximum equal
to the potential evapotranspiration. The soil moisture store has a finite capacity
and overflows into the groundwater store. The groundwater store can be reduced
by baseflow into the stream and also by deep seepage to the underlying aquifers,
or recharged by the stream and vertical (upwards) movement from the underlying
aquifers.

A detailed description of MODHYDROLOG is provided by Chiew and
McMahon (1994). The model requires daily precipitation and potential evapo-
transpiration as input and simulates groundwater recharge in addition to runoff.
The model, which has 19 parameters (see Chiew and McMahon, 1994; Reungoat,
2000 for details), simulates soil moisture and surface water movement and has
been extensively tested in arid and temperate climates and used in a number of
climate impacts investigations. However, in an application of the model to test
catchments in Yorkshire, England, Reungoat (2000) found that the model is mostly
sensitive to only seven of these parameters, implying that not all the 19 parame-
ters need be optimised when calibrating the model. As expected, the influential
parameters requiring optimisation (or calibration) are those describing the im-
portant processes such as canopy interception, infiltration, actual evapotranspi-
ration, interflow and soil moisture storage capacity. Reungoat (2000) suggested
that nothing would be lost by setting the non-optimised parameters to their de-
fault values based on knowledge of the characteristics of the catchment under
investigation.

2.2. RESERVOIR PLANNING ANALYSIS

Reservoir planning analysis was achieved using the modified sequent peak algo-
rithm (SPA) (Adeloye et al., 2001) which is an extension of the basic SPA (Thomas
and Burden, 1963). The basic SPA estimates the failure-free capacity of an initially
full single reservoir as the maximum of all the sequential deficits obtained using
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(Loucks et al., 1981):

Kt+1 =
{

Kt + Dt + �

Et − Qt ; if > 0.0
0.0; otherwise

;

t = 1, 2, . . . , T, T + 1, T + 2, . . . , 2T (1)

where Kt and Kt+1 are the volumetric sequential deficits at the beginning and end
of period t respectively; Qt is the volumetric inflow during t; Dt is the volumetric
demand during t;

�

Et is the volumetric reservoir surface net evaporation (i.e. direct
evaporation less direct rainfall) during t; and T is the total number of periods. Be-
cause

�

Et depends on the exposed surface area of the reservoir, which in turn depends
on storage, it cannot be explicitly included in the basic SPA. Therefore, a modified
version of the basic SPA was used which is able to incorporate reservoir net surface
evaporation, and also, reservoir performance metrics (see Lele (1987), Adeloye and
Montaseri (1998), and Adeloye et al. (2001) for further details). A further benefit
of the modified SPA lies in its ability to impose a limit on supply shortfall during
failure periods which means that system’s vulnerability or volumetric failure risk
(Hashimoto et al., 1982) can be selected a priori. The recent modification carried
out by Adeloye et al. (2001) allowed the SPA to be applicable to multiple reservoir
systems.

Given that the SPA is primarily a reservoir capacity estimation tool, estimation of
reservoir yield for a fixed storage capacity first requires derivation of the complete
storage-yield function. Once determined, it is then a simple matter to determine
the yields corresponding to any given capacity. This was the way the modified SPA
was used in the study.

2.3. MONTE CARLO EXPERIMENTS

The generation of alternative runoff data utilised a parametric, multivariate an-
nual lag-one autoregressive (AR(1)) model. This enabled generation of streamflow
simultaneously at a number of sites, taking into account the covariances of the
runoff. This is important for the multi-reservoir system configurations analysed
in the study. In a study of climate change, it is also important that the stochastic
modelling accounted for any covariances between the baseline and future runoff
series. To achieve this, the baseline and future runoff series were considered as a
bivariate pair, modelled as a fictituous two-site problem with the baseline repre-
senting one site and the future at this site being the second site. Thus for example
for 3 site problem, the stochastic modelling will be formulated as a fictituous 6-site
problem, i.e. all the three baseline runoff being the first 3 sites and the 3 future
series representing the remaining 3 sites.
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Once the annual flows had been generated, these were disaggregated to monthly
flows using a Valencia-Schaake (VS) (Valencia and Schaake, 1973) dissagregation
scheme. The coupled multivariate annual AR(1)-VS model was used to generate
1000 replicates of monthly baseline-future runoff pairs having the same length as
the assumed baseline or future record.

An important step in generating stochastic streamflow was the selection of an
appropriate distribution for the streamflow data. Of the various techniques available,
the probability plot correlation coefficient (PPCC) test was employed. It was decided
to test the monthly and annual streamflow data for five distributions using the
PPCC test (Filliben, 1975). The five distributions considered were the normal,
two-parameter log-normal (LN2), the three-parameter log-normal (LN3), Gamma
and the log Pearson type 3 (LP3) distributions. In the PPCC test, the correlation
coefficient between an observed series and the corresponding series produced by
fitting an assumed distribution to the data is calculated. The closer this correlation
coefficient to unity, the greater the evidence of the appropriateness of the fitted
distribution.

In the case of annual flow, the selection of the most appropriate distribution was
straightforward since the test output comprised five correlation coefficients cor-
responding to the five distributions tested. The most appropriate distribution was
the one which provided the highest correlation coefficient. As far as the monthly
flows were concerned, selecting the most appropriate distribution was less straight-
forward. This is because different distributions are appropriate in each particular
month. Ideally, therefore, the best distribution should be selected for each month.
Clearly, such an approach would be rather tedious. An alternative approach was
adopted in which a score was assigned to a particular distribution by summing the
total number of occasions it yielded the highest correlation coefficient. The distri-
bution which resulted in the highest score would then be used in modelling all the
twelve months of the year. The analysis revealed that the annual and monthly flows
are best represented by a normal and LP3 distributions, respectively.

After determining appropriate probability distributions for generating stream-
flow, the performance of the stochastic model was assessed. A comparison of se-
lected statistical parameters (e.g. mean flow, CV etc.) indicated that the model was
preserving all the statistics of the historical data record adequately. Performance of
the streamflow generator is summarised later (section 4.2).

3. Case Study

3.1. CATCHMENT AND DATA

The reservoirs are located in Yorkshire, northeast England and consist of three
direct catchments namely Hebden, Luddenden, and Ogden. Hebden (which com-
prises three sub-catchments; Gorple, Widdop and Walshaw Dean) is the largest of
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the catchments with a total area of 26.43 km2. Luddenden is much smaller with an
area of 6.46 km2 and Ogden is the smallest of the three (5.39 km2). These catch-
ments are located between 53◦ 41′ and 53◦ 50′ northern latitude, and 1◦ 53′ and
2◦ 10′ western longitude as shown in Figure 4. The catchments are situated at
relatively moderate altitudes; ranging from 370 m (Luddenden) to 400 m (Ogden)
above sea level. Land cover is mainly grass with some trees, and the surface soil
mainly consists of hill peat. The climate in the region can be described as tem-
perate with mean (1961–1990) annual temperature of about 8.2◦C and the aver-
age annual precipitation recorded as 1425 mm at Hebden, 1113 mm (Luddenden)
and 1081 mm (Ogden). Corresponding mean annual runoff is 1000 mm (Hebden),
825 mm (Luddenden) and 829 mm (Ogden).

The system comprises a total of eleven inter-linked reservoirs and is therefore a
fairly complex system as shown in Figure 5. If, however, the reservoirs in parallel
are grouped, then the system simplifies to a five-reservoir system (Gorple, Widdop,
Walshaw Dean, Luddenden, and Ogden). The reservoirs provide water for domestic
and industrial purposes, as well as compensation releases, and they are operated to
satisfy the full demand at all times, although during extreme droughts, reductions
in releases can be made.

3.2. HYDROCLIMATOLOGICAL DATA

Daily baseline (1961–1990) data of precipitation and runoff were made available
by Yorkshire Water Services Ltd (YWS). Precipitation data were available at five
gauge stations, namely Gorple, Widdop, Walshaw Dean, Luddenden and Ogden
(see Figure 5).

Runoff data were also provided by YWS for the three Hebden sub-catchments;
Gorple, Walshaw Dean, and the remaining two catchments; Luddenden and Ogden.
Additionally, minimum and maximum daily temperature, and observed daily num-
ber of sunshine hours were provided by the British Atmospheric Data Centre
(BADC). These data were also available for the baseline (1961–1990) period.

The daily data were aggregated to monthly data with which to calculate the
monthly averages. Mean annual precipitation and runoff for the catchments are
given in Table I. Monthly and annual data on climatological variables such as sun-
shine hours and temperature are provided in Table II. Daily PE data were available
at Gorple site within Hebden catchment (see Figure 4) and the average annual
and monthly values are also given in Table II. These data were derived by Mott
MacDonald (1995) using the Penman equation (Penman, 1950; MAFF, 1967). In
the absence of PE data at the other sites, it was assumed that PE at all sites is
equivalent to Gorple PE. Although this assumption may not be strictly valid, given
that the catchments are located in a temperate region, and in close proximity to each
other, then any small differences in PE at the different sites should not have any
major impact on the climate impacts assessment. As seen in Tables I and II, on an
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TABLE I

Characteristics of the catchments analysed

Area Mean annual Mean annual

Catchment (km2) runoff (mm) rainfall (mm)

Gorple 8.02 989.4 1469.9

Widdop 9.00 1025.1 1413.4

W. Dean 9.41 985.4 1397.1

Luddenden 6.46 824.5 1112.9

Ogden 5.39 828.9 1081.4

Group total 38.28 946.3 1323.8

Figure 5. Schematic configuration of the reservoir systems.

annual basis, the rainfall far exceeds the potential evapotranspiration, implying that
significant soil moisture deficits rarely develop in these catchments.

Open-water evaporation would be required in reservoir analysis to take account
of reservoir surface fluxes. Empirical data were unavailable and the PE was con-
verted to open-water (E0) evaporation using the formulation of Penman (1950);
E0 = P E/ f , where f is dependent on the season. For (i) summer (May, June,
July, August), f = 0.8, (ii) winter (November, December, January, February),
f = 0.6 and, (iii) equinoctial months (March, April, September, October), f = 0.7
(Shaw, 1994). The calculated mean monthly open-water evaporation rate is given in
Table II.

3.3. CLIMATE CHANGE SCENARIOS

There are a number of GCMs available for use in climate impacts assessments; the
selection of appropriate models will be dictated by the ease of GCM data access
and whether the required climatological variables are available. GCM selection
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therefore requires a consideration of the following (Smith and Hulme, 1998):

(i) whether to restrict choice only to the latest models;
(ii) GCM spatial resolution;

(iii) GCM performance in simulating observed climate;
(iv) representativeness of results, e.g. a selection of three GCMs, giving, average,

low and high-end range of all GCM experiments.

Indeed, Carter et al. (1999) emphasised using more than one GCM in impacts
assessments to investigate differences in model output. Based on these and other
criteria, the IPCC recommended seven GCMs for impact assessments. For this
investigation it was decided to apply the results from three of these:

(i) CGCM1 – Canadian Centre for Climate Modelling and Analysis GCM no. 1
(Boer et al., 2000);

(ii) CSIRO1 (also known as CSIRO-mk2b)- Australian Commonwealth Scien-
tific and Industrial Research Organisation, first generation atmosphere-ocean
coupled GCM (Hirst et al., 2000);

(iii) HadCM3 – UK Hadley Centre for Climate Prediction and Research Coupled
Model no. 3 (Gordon et al., 2000).

The CGCM1 simulation experiment is based on observed carbon dioxide and
sulphate aerosol forcing from 1850 to 1989 and a 1% per year compound increase
from 1990–2100 based on the IS92a emissions scenario. The effects of instanta-
neous carbon dioxide doubling (plus sulphate aerosol effects) lead to a 3.5◦C global
mean surface air temperature rise - known as the equilibrium climate sensitivity.

The CSIRO1 simulation experiment is based on observed carbon dioxide forcing
(sulphate aerosol forcing is excluded) from 1880 to 1989 and a 0.9% per year com-
pound increase from 1990–2100 based on the IS92a emissions scenario. The effects
of carbon dioxide doubling without sulphate aerosol effects gives an equilibrium
climate sensitivity of 4.3◦C.

The HadCM3 simulation experiment is based on observed carbon dioxide forc-
ing (sulphate aerosol forcing is excluded) from 1860 to 1989 and a 1% per year
compound increase from 1990–2100 based on the IS92a emissions scenario. The
equilibrium climate model sensitivity is 3.3◦C. The three GCM experiments are
summarised in Table III. Further details of each of the three GCMs, CGCM1,
CSIRO1 and HadCM3 can be found in Flato et al. (2000), Gordon and O’Farrel
(1997), and Gordon et al. (2000), respectively.

Since GCM output is at a relatively coarse spatial scale, temperature, radiation
and precipiation were downscaled to the catchment scale using linear interpolation
which involved using the four GCM grid points nearest to the catchment (von Storch
et al., 1993). The interpolation was carried out on the basis of linear averaging by the
inverse of distance between the catchment and the four GCM grid points (see Smith
et al., 1992). The advantage of this approach is that it allows regional climate change
scenarios to be defined that would otherwise be difficult or costly to obtain. Besides,
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TABLE III

Summary information on the CGCM1, CSIRO1 and HadCM3 experiments

Climate Modelling

Centre

Canadian Climate

Centre

Commonwealth

Scientific & Industrial

Research Organisation,

Australia Hadley Centre, UK

Model name CGCM1 CSIRO1 HadCM3

Atmospheric

horizontal

resolution (latitude

by longitude)

3.75◦ × 3.75◦ 3.2◦ × 5.6◦ 2.5◦ × 3.75◦

Atmospheric vertical

resolution (layers)

10 9 19

Oceanic horizontal

resolution (latitude

by longitude)

1.8◦ × 1.8◦ 3.2◦ × 5.6◦ 1.25◦ × 1.25◦

Oceanic vertical

resolution (layers)

29 21 20

Treatment of

atmosphere-ocean

coupling

Flux-adjusted Flux-adjusted Not flux-adjusted

Treatment of

land-surface

processes

Modified bucket for

soil moisture

Soil layers, plant

canopy, and leaf

stomatal resistance

included

Soil layers, freezing

and thawing of soil

layers, plant

canopy, and leaf

stomatal resistance

included

Treatment of multiple

greenhouse gases

No, CO2 used as

surrogate

No, CO2 used as

surrogate

Yes

Transient climate

sensitivity ◦C

3.5 4.3 3.3

Transient CO2 forcing 1% pa compound 0.9% pa compound 1% pa compound

Greenhouse gases

forcing

Historic, 1850–1989 Historic, 1881–1989 Historic, 1860–1989

IS92a, 1990–2100 IS92a, 1990–2100 IS92a, 1990–2100

Sulphate aerosol

forcing

Historic, 1860–1989 None None

IS92a, 1990–2100

other more sophisticated downscaling schemes such as statistical downscaling have
been shown to be characterised by huge uncertainties (Wilby and Wigley, 1997).
It was felt that the use of the simple linear downscaling would remove the extra
dimension of uncertainty. The simple linear interpolation formulation applied is
defined as (Smith et al., 1992):

VARD =
∑i

(
1

Ds
i

)
VARi∑ (

1
Ds

i

) (2)
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Figure 6. GCM performance over baseline (1961–1990) period. Data for all three catchments.

where,

VARi is the value for the variable (temperature, precipitation) at grid point i ;
Ds

i is the distance from the site to the GCM grid point i ;
VARD is the downscaled variable.

Before defining the climate change scenarios, it would be useful to compare
the performance of the three GCMs over the baseline period. Observed and GCM
simulated mean temperature, net incoming solar radiation and precipitation over
the baseline period are shown in Figure 6 and Table IV provides the root mean
squared difference (RMSD) between the observed data and GCM-simulations. Ac-
cording to the information in the table, CSIRO1 appears to be reproducing the
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TABLE IV

RMS difference between observed and GCM-simulated

climatological variables

Radiation Temperature Precipitation

GCM (w/m2) (◦C) (mm)

HadCM3 94 3 140

CSIRO1 59 8 112

CGCM2 153 11 50

TABLE V

Absolute changes (from baseline) in monthly mean temperature (◦C)

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

C2 0.3 0.5 0.2 0.3 0.5 0.8 1.1 0.8 0.7 0.9 0.4 0.5

C5 0.6 0.7 0.4 0.5 0.8 1.6 1.9 1.4 1.5 1.4 0.9 0.9

C8 1.4 1.1 1.0 1.1 1.5 2.1 2.6 2.7 2.6 2.3 1.5 1.5

A2 0.4 0.7 0.9 0.8 1.2 1.0 1.0 0.9 0.9 1.3 0.7 0.9

A5 0.7 0.9 1.4 1.5 1.8 1.6 1.7 1.6 1.6 1.8 1.6 1.3

A8 1.2 1.3 1.7 2.0 2.6 2.1 2.3 2.3 2.5 2.4 2.3 1.8

H2 0.7 0.8 0.7 0.7 0.7 0.9 0.9 1.2 0.9 0.9 0.6 0.2

H5 1.9 1.4 1.3 1.2 1.7 1.8 1.8 2.5 2.3 2.0 1.0 1.2

H8 2.1 1.8 1.7 2.0 2.5 2.9 2.8 3.5 3.2 2.6 1.8 1.3

2.7 2.6 4.3 6.5 9.9 12.9 14.6 14.3 12.3 9.4 5.4 3.6

C: CGCM1, A: CSIRO1, H: HadCM3, 2: 2010–39, 5: 2040–69, 8: 2070–99.

Baseline temperature in italics. Changes apply to all three catchments.

observed baseline solar radiation most adequately (RMSD = 59 w/m2). Observed
temperature is being modelled well by HadCM3 (RMSD = 3◦C) while CGCM1
is performing most adequately in reproducing observed precipitation (RMSD =
50 mm).

A number of factors contribute to the differences in GCM simulation of ob-
served climate for the same region. These include differences in horizontal and
vertical resolution, differences in the representation of sub-grid physical process,
(e.g. cloud formation and precipitation), model numerical schemes, and feedback
mechanisms. Given that sub-grid processes are reported to be the greatest source
of errors in GCMs (Risbey and Stone, 1996) - perhaps even more than their inad-
equate resolution, then different representations of these processes are most likely
responsible for the differences in GCM output. Differences in the type of model
numerical scheme may also be responsible for possible differences. The two types
of numerical schemes used in GCMs are grid point schemes and spectral schemes
(McGuffie and Henderson-Sellers, 2001). The former represent the data on a finite
grid over the globe, in both height and latitude/longitude, whilst the latter represent
their variables as spherical harmonics.
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TABLE VI

Absolute changes (from baseline) in monthly mean net solar radiation (w/m2)

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

C2 0.5 −2.3 −10.4 5.8 20.9 1.2 13.4 5.6 3.5 6.4 3.7 0.9

C5 0.4 −2.4 −10.3 1.4 21.7 5.1 −4.9 −7.6 0.1 7.5 3.6 1.6

C8 −0.2 1.3 −6.5 8.2 16.3 18.6 −13.2 −10.1 0.6 5.5 5.3 1.1

A2 1.0 −1.2 −5.0 7.8 13.6 7.7 4.6 −8.9 −6.9 1.3 1.4 −0.6

A5 1.7 3.0 −9.2 −1.2 13.5 27.2 5.7 −3.4 −4.8 −0.9 −0.3 −0.8

A8 −0.1 2.8 −11.9 5.4 −4.5 24.2 −7.3 −3.3 −6.6 2.4 −4.0 −0.6

H2 −2.5 −0.4 −7.7 −5.6 8.3 21.9 8.6 4.1 11.7 3.1 2.8 −1.3

H5 −3.9 0.8 −5.0 7.1 11.4 13.7 22.8 15.0 30.7 6.3 3.3 −2.3

H8 −2.6 −2.6 −0.1 5.8 12.1 15.8 28.9 15.3 31.0 4.1 0.3 −0.5

51.2 108.2 224.5 338.3 455.7 492.7 485.3 394.4 261.3 153.9 67.9 35.4

C: CGCM1, A: CSIRO1, H: HadCM3, 2: 2010–39, 5: 2040–69, 8: 2070–99.

Baseline net solar radiation in italics. Changes apply to all three catchments.

TABLE VII

Absolute changes in monthly mean precipitation (mm)

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

C2 −5.0 19.0 33.3 2.1 −20.5 −4.6 −14.9 −6.8 −12.3 −21.1 −7.5 5.5

C5 16.8 21.8 42.2 −2.1 −13.5 −13.9 9.1 8.0 −4.0 −29.2 2.9 10.3

C8 33.2 17.0 46.9 6.9 −8.9 −25.7 11.3 5.5 −1.4 −7.5 −6.5 7.3

A2 −2.0 27.1 28.9 3.3 7.4 7.0 9.1 18.6 16.3 −17.8 6.6 33.4

A5 −14.7 6.5 35.7 17.7 7.4 −5.2 4.8 17.4 12.1 −2.5 14.2 33.5

A8 18.0 7.3 52.7 17.5 30.2 −19.1 11.1 18.0 8.2 7.1 58.0 43.0

H2 11.5 −14.4 1.4 3.3 0.7 −30.0 −26.6 −21.6 −11.9 −7.4 8.6 16.1

H5 37.8 1.8 22.3 −8.6 −20.2 −29.8 −44.8 −59.8 −60.3 5.8 −4.8 50.3

H8 48.1 13.7 10.9 6.0 −9.4 −32.6 −53.2 −55.6 −46.7 12.9 18.6 36.3

136.1 98.2 112.7 93.1 83.8 85.7 83.7 113.8 115.4 130.7 137.9 146.4

C: CGCM1, A: CSIRO1, H: HadCM3, 2: 2010–39, 5: 2040–69, 8: 2070–99.

Baseline precipitation in italics. Changes apply to all three catchments.

Scenarios representative of the climate in the 2020s (2010–39), 2050s (2040–
69) and 2080s (2070–99) compared to the baseline (1961–1990) were used. The
complete range of climate change scenarios expressed as absolute monthly changes
in temperature, net solar radiation and precipitation from the baseline are provided
in Tables V–VII.

An examination of the scenarios in Tables V–VII reveals that whilst the temper-
ature changes appear to be uniform, there is less uniformity in the projected radi-
ation and precipitation changes. Annual changes in temperature are more marked
for the HadCM3 and CSIRO GCMs. The projected temperature changes from
the HadCM3 and CSIRO GCMs for 2010–39, 2040–69 and 2070–99 are 0.8◦C,
1.7◦C, 2.4◦C, and 0.9◦C, 1.5◦C, 2.0◦C respectively. The CGCM1 gives only 0.6◦C,
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1.1◦C & 1.8◦C temperature rise for 2010–39, 2040–69 and 2070–99, respectively.
This is because the CGCM1 experiment includes the cooling effect of sulphate
aerosols. It should be noted that the estimation of the climate sensitivity of both the
CGCM1 and HadCM3 (Table III) does not take into account the effects of sulphate
aerosols hence the reason for the similarity.

The CSIRO GCM is indicating generally wetter conditions year-round in fu-
ture, whilst the HadCM3 suggests wetter winters and drier summers. Indeed, op-
posite GCM projected changes in precipitation have also been reported by other
investigators. For example, Doherty and Mearns (1999) found that CGCM1 and
HadCM2 model simulated opposite changes in seasonal precipitation over North
America. The reasons for differences between different GCMs in simulating future
climate given the same CO2 forcing (in the present case, the same forcing is used
by HadCM3 and CSIRO1) are the same as those discussed earlier and may be
attributable to different model parameterisations.

3.4. APPLYING THE SCENARIOS

It is usually straightforward to perturb baseline climate using a “simple perturba-
tion” approach in which mean monthly climatic changes are applied to baseline
climate. However, a limitation of such an approach is that the temporal structure
(such as length of dry periods and interannual variability) of the perturbed records
will be the same as the historic record. To overcome this limitation, the Long Ashton
Research Station Weather Generator (LARS-WG) (Racsko et al., 1991) was used to
generate climate-perturbed data series which does not suffer from this limitation.
LARS-WG uses observed daily precipitation, minimum temperature, maximum
temperature, and net solar radiation to simulate data. Future time-series may also
be generated providing that temperature, radiation and precipitation scenarios (with
respect to mean and standard deviation changes) are defined.

The simulation of precipitation occurrence is based on distributions of the lengths
of continuous sequences, or series of wet and dry days. This is different to the
more commonly used approaches (e.g. Richardson, 1981) which applies a first
order Markov model to describe wet and dry day occurrence. The limitation of the
Markov model approach is that it has “limited memory” of rare events (Semenov and
Barrow, 1997) and as such, may not reproduce long dry or wet series at particular
locations (Rackso et al., 1991). In LARS-WG this limitation is overcome by using
the series approach, where the distribution of wet and dry series is obtained from
observational records. Mixed exponential distributions are used to model both the
wet and dry series and rainfall amount on a wet day. The distribution of the other
climate variables; minimum and maximum temperature, and solar radiation is based
on current system status (i.e. whether a wet or dry series). Wet series are defined
as continuous sequences of days with rainfall equal to or greater than 0.1 mm. The
lengths of wet and dry series are modelled with mixed exponential distributions.
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Scenarios defined earlier were supplied to LARS-WG along with observational
climate data for simulation. Net solar radiation data for Yorkshire were unavailable,
and sunshine duration data were supplied to the model instead. LARS-WG uses
these data to internally obtain estimates of radiation from the latitudinal short-wave
radiation emitted by the Sun, Ra . The formula of Prescott (1940) is used by the
model:

Rs = Ra(a + b n/N ) (3)

where,

Rs = net incoming (short-wave) solar radiation (W/m2);
Ra = latitudinal short-wave radiation emitted by the Sun (W/m2) – determined

from meteorological tables;
n = observed number of sunshine hours; N = theoretical maximum sunshine

hours at a specified location (from meteorological tables);
a = percentage of Ra reaching the Earth’s surface on a completely cloud-covered

day;
b = percentage of Ra absorbed by the clouds on a completely cloud-covered day.

Meteorological tables are used by the model to estimate Ra and N, and regression
expressions of Rietveld (1978) defining a = 0.10 + 0.24 n/N and b = 0.38 +
0.08 N/n are used by the model. Values of n and Ra for Yorkshire are provided in
Table II.

LARS-WG has been applied in impacts studies by Semenev and Porter (1994),
and Semenev and Barrow (1997). Faulkner et al. (1997) compared its performance
with a first and second-order Markov chain model at three UK sites. The comparison
was based on the mean and standard deviation of (i) monthly rainfall, (ii) monthly
maximum 1-day rainfalls and (iii) lengths of dry spells. An additional test was to
compare the number of dry spells with a minimum 10-day duration. On the basis
of these tests, Faulkner et al. (1997) concluded that LARS-WG was the best model
overall for reproducing statistics of observed rainfall.

LARS-WG was calibrated using baseline climate data and the parameters were
then perturbed. Daily GCM data were used to calculate 2010–39, 2040–69 & 2070–
99 changes (from baseline) in precipitation intensity, duration of wet and dry days
and temperature means and variances. These changes were then applied to LARS-
WG parameters previously calculated from the observed daily data. The perturbed
parameters were used to generate 30 years of daily data for the three GCMs and
three time periods (2010–39, 2040–69 & 2070–99). A new sequence of daily cli-
matic variables (temperature, radiation and precipitation) representing the future
was thus produced. The average monthly precipitation simulated by LARS-WG
is compared to observed data in Table VIII. As shown in the table, the relative
differences between observed and simulated precipitation seldom exceeds 15%
demonstrating the adequacy of LARS-WG in reproducing mean monthly runoff.
The LARS-WG also reproduced other statistics of the observed data reasonably
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well. It is acknowledged that by applying the weather generator, a further source
of modelling uncertainty is introduced into the assessment, which is ignored in the
current study.

3.5. POTENTIAL EVAPOTRANSPIRATION

A requirement of the MODHYDROLOG is daily potential evapotranspiration (PE).
Since LARS-WG did not simulate this variable, some way had to be found to trans-
form the LARS-WG temperature and net radiation (baseline and future simulated
data) to PE. As well as simulating future PE, it was decided to simulate baseline
PE also rather than using the observed PE. This is to allow modelling errors in
simulated baseline and future PE to cancel each other out.

The Bowen ratio method (see Shuttleworth, 1993) was employed for the conver-
sion. This method uses an energy-balance approach to determine the evaporation
rate in mm (E) (Chow et al., 1988) as follows:

E = Rn − G

(ϑρw)(1 + br )
(4)

where,

Rn = net surface solar radiation (MJ/m2/day);
ϑ = latent heat of vapourisation of water (MJ/kg) = 2.501 × 106 − 2370T where

T is the temperature in ◦C.
ρw = water density (kg/m3) = 1000 kg/m3 for temperatures between 0◦C and 10◦C

and reduces by 1 kg/m3 for every 5◦C rise in temperature;
br = Bowen ratio - which is the ratio of sensible heat flux and water vapour heat

flux.
G = energy exchanged between the water body and the surrounding ground

(MJ/m2/day).

Rn was estimated using:

Rn = Rs(1 − α) − σ T 4(0.56 − 0.09
√

ed)
(

0.1 + 0.9
n

N

)
where Rs is calculated using Equation (3), α is the albedo (=0.05), T is
the air temperature (◦K), σ is the Stefan-Boltzmann constant (=4.903 ×
10−9 MJm−2 ◦K−4 day−1), and ed is the saturation vapour pressure at dew point
temperature (kPa) and n and N are as defined previously. In the application of
equation (4), G was ignored, which is reasonable if the day-to-day variation in
temperature is negligible (see Shuttleworth, 1993) as assumed for the sites.

The Bowen ratio method requires, in addition to radiation and temperature data,
the specific heat capacity at constant pressure and the heat diffusivity data. These
data were however unavailable with which to calculate the Bowen ratio, therefore
an alternative approach, utilising evaporation data at Gorple site (see Table II) was
employed. This involved (i) computing evaporation based on baseline radiation
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Figure 7. Comparison of monthly mean observed and simulated potential evapotranspiration.

(determined using Eqn. (4) and temperature data by setting the Bowen ratio to 1
and, (ii) varying the Bowen ratio in a trial-and-error manner in order to match the
calculated evaporation with the observed Gorple evaporation. Having determined
the Bowen ratio, the evapotranspiration based on LARS-WG simulated temperature
and radiation could be readily factored from E as described in section 3.2, thus
producing baseline and future daily potential evapotranspiration time-series data.
A comparison of observed and simulated PE is provided in Figure 7. Although, PE
is being slightly over-estimated during April–August and under-estimated during
the remaining part of the year, there is generally good agreement between both
observed and simulated PE.

4. Results and Discussion

4.1. HYDROLOGIC MODELLING

MODHYDROLOG was used for modelling the daily runoff and model calibration
was carried out using daily data over 1962–1975 with validation based on daily data
over the period 1976–1990. Model performance was excellent during calibration
with an R2 exceeding 0.96. Performance over validation, though not as good as that
over calibration, was generally adequate with R2 exceeding 0.87. Figure 8 compares
the observed and simulated runoff at the largest sub-catchment catchment (Walshaw
Dean) during calibration and validation. Both fits are very good. With regard to low
flows, which is most relevant part of the hydrographs for water resources, the
observed and simulated flows are in close agreement.
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Figure 8. Hydrographs of MODHYDROLOG monthly flows at Walshaw Dean sub-catchment.

4.2. RUNOFF SENSITIVITY TO CLIMATE CHANGE

After simulating the “one off” baseline and “future” daily runoff time-series for each
of the climate change scenarios, one thousand replicates of the baseline-future pair
of monthly runoff were obtained using the AR(1) model along with the V-S scheme
described in Section 2.3. Table IX provides a comparison of observed and generated
runoff at Hebden site. The percentage differences are all below 13% indicating ade-
quate reproduction of the mean runoff statistic. The average changes in runoff based
on the 1000-paired replicates were then determined. These are presented for nine
climate change scenarios in Figure 9. For lack of space, results are only presented for
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TABLE IX

Comparison of observed and generated runoff at Heb-

den site (1961–1990)

Observed Generated Percentage

Month runoff (mm) runoff∗ (mm) difference

Jan 138 153 −11

Feb 101 112 −11

Mar 95 104 −9

Apr 72 71 2

May 44 46 −3

Jun 33 37 −12

Jul 32 34 −8

Aug 52 49 6

Sep 66 66 1

Oct 102 115 −13

Nov 124 127 −3

Dec 142 150 −6

∗Based on the average of 1000 traces.

the lumped catchments which were obtained by considering all the three main catch-
ments (Hebden, Luddenden and Ogden) as one large catchment. This is valid given
that the reservoir systems are considered as parallel systems. The results indicate that
changes in runoff follow a similar pattern to precipitation changes presented earlier
(see Table VII). For instance, the CSIRO1 scenario predicted increases in precipita-
tion throughout most of the year with the maximum increases expected in March and
November. Similarly, the CSIRO1 scenario results in an increase in runoff during
most of the year with maximum increases expected in March and November (see
Figure 9).

The scenarios based on the CGCM1 and HadCM3 GCMs are showing a tendency
for reduced runoff during the summer. The largest reduction in runoff results from
HadCM3 in September during 2040–69 (66% = 38 mm) whilst the largest increase
of 54% (59 mm) is expected under the CSIRO1 in November during 2070–99. Such
large reductions will no doubt lead to significant reductions in future reservoir yield,
when the storage capacity is fixed.

4.3. CLIMATE CHANGE IMPACTS ON RESERVOIR YIELD AND ITS SAMPLING

UNCERTAINTY

The yield assessment involved determining 1000 yield changes (from baseline) for
existing storage capacity of 11.13×106 m3 (30% MAF) which is the capacity of the
five-reservoir system. As noted earlier, the SPA is essentially a reservoir capacity



MONTE CARLO ASSESSMENT OF SAMPLING UNCERTAINTY 283

F
ig

ur
e

9.
P

er
ce

n
ta

g
e

ch
an

g
e

in
m

ea
n

m
o

n
th

ly
ru

n
o

ff
in

Y
o

rk
sh

ir
e

(a
v
er

ag
e

fo
r

al
l

ca
tc

h
m

en
ts

).



284 N. R. NAWAZ AND A. J. ADELOYE

estimation tool, and yield estimates for a given storage capacity were obtained by
constructing the storage-yield-reliability functions. Figure 10 shows the empirical
distribution of the yield changes. The one-off yield change based on the traditional
single records approach is also shown in the figure. What the box plots highlight
is the range of likely impacts on yield, which is not captured by the use of a single
historic record.

Information extracted from the figure (for 100% time-based reliability corre-
sponding to an almost no failure risk) is presented in Table X. It can be seen from
the table that based on the traditional approach, yield changes vary from −1.8%
to +2.8% for the CGCM1 scenarios. However, use of the extended Monte Carlo
approach enables the examination of the various possibilities of yield changes. For
example, the 90th and 10th percentiles range respectively from 0.2 to 4.4 and −5.4
to −3.2 for these scenarios. The change in the median is from −2.7% to +0.7%.
The mean and median results indicate a reduction in yield by 2010–39 and a sub-
sequent increase by 2040–69 and 2070–99. This pattern of change is consistent
with the runoff changes presented in Figure 9. It may be recalled that the CGCM1
scenarios resulted in summer runoff reduction by 2010–39 whilst small increases
in runoff were expected throughout most of the year by 2040–69 and 2070–99.

The changes in yield resulting from the CSIRO1 scenarios are more extreme
than the CGCM1 based changes. For these scenarios, results based on the traditional
approach indicate that the reservoirs will be able to provide more water in the future.
The increased reservoir yield is expected to amount to 10.5%, 9.5% and 10.5% by
2010–39, 2040–69 and 2070–99, respectively. However, based on the Monte Carlo
approach, it is clear that the yield changes can vary widely (e.g. for 2010–39, from
an increase of 1.9% (10th percentile) to an increase of 9.9% (90th percentile).
As with yield changes resulting from CGCM1, the CSIRO1 yield changes can be
traced back to runoff changes that were summarised in Figure 9. It can be recalled
that the CSIRO1 scenarios resulted in increased runoff throughout the year in the
future.

In contrast to the CSIRO1 results, yield changes resulting from the HadCM3
scenarios indicate reductions. Based on the traditional approach, the reductions
range from -1.2% (2010-39), −8.2% (2040–69) and −3.7% (2070-99). However,
when sampling uncertainty was considered, the changes range from a minimum of
−14.3% (2040–69) to a maximum of +0.2% (2070–99).

Highlighted in Table X (in bold font) are the most severe changes in yield
that can be expected to occur based on the traditional and Monte Carlo approach.
Based on the traditional approach, the largest rise in yield results from the CSIRO1
2070–99 (A8) scenario (10.5%). On the other hand, the largest reduction results
from HadCM3 2040–69 (H5) scenario (−8.2%). Based on the Monte Carlo results,
these changes are +14.5% (A8) and −14.3% (H5). The current yield from the
aggregated system is 60.9 Megalitres/day (Mld). Based on the traditional approach
and according to all scenarios and to maintain the high levels of performance (almost
no failure risk), future yield could vary between 55.9 Mld and 67.3 Mld. However,
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Figure 10. Box plots of yield changes for different climate scenarios (storage = 31% of MAF; C =
CGCM1; A = CSIRO1; H = HadCM3; 2 = 2010–39; 5 = 2040–69, 8 = 2070–99; numbers above

box-plots indicate the “one-off” yield change).
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TABLE X

Percentage change in yield (from baseline) for aggregated reservoir systems

resulting from climate change scenarios

Single
Monte Carlo Method

Record

Scenario Method Mean Median 90th Percentile 10th Percentile

C2 −1.8 −2.6 −2.7 0.2 −5.4

C5 2.0 0.9 0.7 5.1 −2.8

C8 2.8 0.6 0.5 4.4 −3.2

A2 10.5 5.9 5.8 9.9 1.9

A5 9.5 5.5 5.3 10.0 1.3

A8 10.5 9.7 9.4 14.5 5.0

H2 −1.2 −3.7 −4.0 0.2 −7.5

H5 −8.2 −10.9 −11.1 −7.4 −14.3
H8 −3.7 −6.9 −7.1 −3.0 −10.7

Bold font indicates extreme changes in yield for the reservoir system (near

100% reliability).

C: CGCM1, A: CSIRO1, H: HadCM3, 2: 2010–39, 5: 2040–69, 8: 2070–99.

based on the Monte Carlo approach, future yield is likely to show greater variations;
between 52.2 Mld and 69.7 Mld.

4.4. COMPARISONS WITH OTHER STUDIES

There have been few studies, if at all, on the variability of yield impacts to which
the current results can be directly compared. This is in contrast to the vast array of
studies on runoff impacts, although the majority of these studies have only looked
at the mean impacts rather than the distribution of these impacts.

Arnell (1999) applied HadCM3 to some European rivers (Volga, Rhine and
Danube) and found annual precipitation changes for 2040-69 to range from −12%
to +1%, annual PE changes to range from 30%–37% and annual runoff varied from
−20% to −35%. Although the annual runoff changes are severer than those found
in this study, the reductions in future runoff are in agreement with this study.

Chiew et al. (1995) used five GCMs including previous versions of CGCM1
and CSIRO1 (i.e. uncoupled versions) GCMs to investigate the sensitivity of runoff
to climate change by the 2030s. The study considered 28 unregulated catchments
across Australia ranging in size from just 3 km2 to 2500 km2. They noted that all
GCMs resulted in increased annual runoff of up to 25% by 2030 in the humid tropical
catchments of north-east coast of Australia. In contrast, there was little agreement
amongst the GCMs as regards to runoff impacts in other parts of Australia. For
example, runoff changes of ±20% were expected in south-east Australia. Unfor-
tunately, Chiew et al. (1995) made no distinction as to which GCM gave which
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changes. The results for the south east of Australia confirm that, as found in the
present study, different GCMs can lead to opposite effects on runoff.

Wolock and McCabe (1999) also noted the opposite effects on runoff of climate
change scenarios from two different GCMs. They used two climate scenarios,
CGCM1 and HadCM2 in an assessment of the sensitivity of US water resources
to climate change. They found that the HadCM2 scenario generally resulted in
increased runoff over much of USA by the 2030s with a maximum increase of 245%
expected in the lower Colorado. In contrast, the CGCM1 resulted in reductions in
runoff by the 2030s with an expected maximum reduction of 87% in Texas and the
Gulf of Mexico.

A scenario based on CGCM1 was also adopted by Dvorak et al. (1997). However,
their assessment considered the rainfall-runoff response of four temperate European
catchments (in the Czech Republic) with catchment sizes ranging from 94 km2

to 50,762 km2. The impacts assessment revealed that the CGCM1 projected 7%
increase in precipitation (plus a 3.1◦C rise in temperature) resulted in changes
in runoff over the four catchments ranging from −10% to +2%. The opposite
changes in runoff are probably due to different changes in PE resulting from the
same temperature rise in the different catchments.

The studies discussed so far were all based on the traditional single record im-
pacts assessment methodology. It is also interesting to briefly discuss some other
studies that have adopted a limited Monte Carlo sampling methodology. For in-
stance, Nikolaidas et al. (1994) showed annual runoff changes varied by ±24%
based on a Monte Carlo approach. On the other hand, results from determinis-
tic modelling using two climate change scenarios resulted in reductions in annual
runoff of 37.5% and 17.9%, respectively.

4.5. IMPLICATIONS FOR WATER MANAGERS

Results from the present study have confirmed that mean impacts which have re-
ceived so much attention from climate impacts studies could be misleading because
large variability in this mean is possible, given the usual length of streamflow data
records available for water resources planning and operational studies in practice.
By being aware of such variability, water managers are better able to plan climate
change mitigating measures. Specific impacts are viewed against their associated
risks of happening and intervention measures are devised appropriately. In other
words, impacts which have very low probability of occurring should concern less
than those which have a higher probability.

To gain an idea of what these measures may entail, it would be useful to look at
an actual drought episode in Yorkshire in 1995 and its aftermath. Evidence indicated
that changing temperature and rainfall trends across Yorkshire were responsible for
the severe drought. For example, Holden and Adamson (2002) reported that mean
annual temperatures in the uplands of Yorkshire were significantly higher during the



288 N. R. NAWAZ AND A. J. ADELOYE

1991–2000 period compared to the 1931–1979 period. Also, total rainfall between
April–October 1995 in Yorkshire was the lowest for 200 years (POST, 1995).

The immediate response to the drought was to impose hose-pipe bans, issue
drought orders, inform the public on saving water, and begin the transfer of water to
Yorkshire from other regions. The long-term strategy aimed to identify the reasons
for water-supply system failure and put into place measures to prevent a repeat.
Reasons included:

• Very low rainfall
• Unprecedented peak demands
• High levels of leakage from pipes
• Over-estimation of storage reservoir yield.

Water demand and efficiency was a key issue and the public were educated
through media and press on the importance of saving water. Discussion began on
the possibility of installing more water meters, although this raised all sorts of issues
concerning the less affluent. The benefits were clear in that demand would reduce.
For example, summer peak demands had been known to fall by up to 30% (POST,
1995) if a customer was asked to pay more for higher water-usage. Water-metering
also has the advantage that it allows leaking pipes to be detected more easily since
there is precise record of the water-balance. There were large reductions in water
leakage as a result of pipe rehabilitation carried out over a number of years. Studies
were commissioned to re-assess storage reservoir yield in Yorkshire using a similar
Monte Carlo approach described in this study (see Adeloye and Nawaz, 1997) and
reservoir operational strategies (especially for multiple-reservoirs) were revised.
Nine years on from the drought, such measures have ensured that the Yorkshire
region will be more prepared if faced with similar hydroclimatological conditions
of 1995.

5. Conclusions

This study has used a Monte Carlo approach to characterise the sampling uncer-
tainty of the climate change impacts on hydrology and yields of a water resources
system in Yorkshire, England. The results have shown that yield changes can be
highly variable and can be much different from mean changes often addressed in
traditional, deterministic impact studies. A knowledge of such variability allows
more meaningful planning of mitigating measures for climate change impacts be-
cause probabilities can be ascribed to different levels of predicted yield changes,
enabling resources to be targeted as appropriate.

Another evidence, albeit not new, coming out from the study is that climate
change water resources impacts are highly uncertain because of differences in
GCM projections. The study used three different GCM experiments but while all
the three GCMs agreed on the likely change and direction of future temperature in
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the same catchments, projections of precipitation changes often varied from one
GCM to another. This is a major problem for water resources impacts assessment
since precipitation often has a much bigger impact on runoff than evaporation. Of
the climate change scenarios used in the case study, those based on the HadCM3
GCM indicate drier future conditions whilst wetter conditions are predicted by the
CSIRO1 GCM for the same catchments. Consequently, use of scenarios based on
different GCMs had led to opposite impacts on the yield of the same water resources
system. However, rather than worry about which of these impacts are correct, the
impacts should be viewed as the likely range of projections which should all be
considered when making plans for accommodating climate change.

With new climate change scenarios now emerging, especially those based on
regional climate models, it would be worthwhile to repeat the exercise to see to
what extent new results differ from those reported here. For better comparison, it
may also be useful to conduct the impacts assessment using a physically-based
hydrologic model.
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