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Abstract. Permafrost covers 25% of the land surface in the northern hemisphere, where mean annual
ground temperature is less than 0◦C. A 1.4–5.8 ◦C warming by 2100 will likely change the sign
of mean annual air and ground temperatures over much of the zones of sporadic and discontinuous
permafrost in the northern hemisphere, causing widespread permafrost thaw. In this study, I examined
rates of discontinuous permafrost thaw in the boreal peatlands of northern Manitoba, Canada, using a
combination of tree-ring analyses to document thaw rates from 1941–1991 and direct measurements
of permanent benchmarks established in 1995 and resurveyed in 2002. I used instrumented records
of mean annual and seasonal air temperatures, mean winter snow depth, and duration of continuous
snow pack from climate stations across northern Manitoba to analyze temporal and spatial trends in
these variables and their potential impacts on thaw. Permafrost thaw in central Canadian peatlands has
accelerated significantly since 1950, concurrent with a significant, late-20th-century average climate
warming of +1.32 ◦C in this region. There were strong seasonal differences in warming in northern
Manitoba, with highest rates of warming during winter (+1.39 ◦C to +1.66 ◦C) and spring (+0.56 ◦C
to +0.78 ◦C) at southern climate stations where permafrost thaw was most rapid. Projecting current
warming trends to year 2100, I show that trends for north-central Canada are in good agreement with
general circulation models, which suggest a 4–8 ◦C warming at high latitudes. This magnitude of
warming will begin to eliminate most of the present range of sporadic and discontinuous permafrost
in central Canada by 2100.

1. Introduction

Permafrost covers 25% of the land surface in the northern hemisphere, where mean
annual ground temperature is less than 0 ◦C (Brown et al., 1998; Zhang et al.,
1999). A 1.4–5.8 ◦C warming in mean annual air temperature by 2100 (IPCC,
2001) will dramatically impact regions underlain with permafrost. Inversions of
borehole temperature profiles have documented 20th-century warming anomalies
of 2–4 ◦C across Alaska, Canada, northern Europe, and Russia (Lachenbruch and
Marshall, 1986; Beltrami and Mareschal, 1991; Majorowicz, 1996; Pollack et al.,
1998; Majorowicz and Skinner, 2001; Zhang et al., 2001). At the southern boundary
of permafrost in the boreal biome, warming will likely change the sign of mean
annual air and ground temperatures over most of the zone of sporadic and discontin-
uous permafrost in the northern hemisphere, causing widespread permafrost thaw
(Anisimov and Nelson, 1996; Nelson et al., 2002; Stendel and Christensen, 2002).

Understanding the potential impact of climate warming on permafrost is essen-
tial for the prediction of future responses and feedbacks in the land surface–climate
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system (IPCC, 2001; Zhuang et al., 2003), especially if responses to permafrost
thaw differ between lowland versus upland ecosystems, as recent evidence sug-
gests. In peatlands and low-lying tundra, permafrost thaw and attendant shifts to
wetter conditions may induce regional and global cooling by increasing carbon
sequestration by Sphagnum mosses and sedges in thaw pools (Trumbore and
Harden, 1997; Waelbroeck et al., 1997; Camill, 1999a; Robinson and Moore, 2000;
Turetsky et al., 2000; Camill et al., 2001), raising summer and winter albedo by
reducing forest cover (Camill, 1999b; Lynch et al., 1999; Lloyd et al., 2003), and
shifting net energy partitioning in summer from sensible to latent heat fluxes (Lynch
et al., 1999; Baldocchi et al., 2000; Chapin et al., 2000a; Eugster et al., 2000). In con-
trast, if permafrost thaw in better-drained boreal and tundra uplands creates warmer
and drier soil conditions, this may amplify climate warming through increased rates
of afforestation (Lloyd et al., 2003) and lowered albedo in drier sites, reduced
evapotranspiration and shifts to sensible heat fluxes (Baldocchi et al., 2000),
decreased summer ground heat fluxes (Eugster et al., 2000), and increased
decomposition and the release of soil C (Billings, 1987; Oechel et al., 1993; Goulden
et al., 1998; Stieglitz et al., 2000), although nitrogen mineralization associated with
increased decomposition may slow or reverse ecosystem C loss (Oechel et al., 2000;
Stieglitz et al., 2000; Melillo et al., 2002).

Relating changes in mean annual air temperature to rates of permafrost warming
and thaw is challenging because soil thermal conditions are also strongly controlled
by a combination of lithology, vegetation, snow depth and duration, and distur-
bances (Brown and Péwé, 1973; Smith, 1975; MacKay, 1995; Smith and Risebor-
ough, 1996, 2002; Harris et al., 2003; Stieglitz et al., 2003). To incorporate these
effects, the relationship between mean annual air temperature and the temperature
at the top of permafrost is often modeled using equations (n-factors) that explicitly
scale air temperature by the effects of vegetation, snow depth, and lithological differ-
ences in thermal conductivity (Lunardini, 1978; Jorgensen and Kreig, 1988; Smith
and Riseborough, 1996, 2002). Such models have proven to be a robust method
for generalizing climate–permafrost relationships (Romanovsky and Osterkamp,
1995; Smith and Riseborough, 1996, 2002). Although permafrost is ultimately a
climatic phenomenon (Zhang and Stamnes, 1998; Smith and Riseborough, 2002),
these models suggest that lithological conditions (e.g., peat vs. mineral soil) exert
a dominant control on permafrost temperatures followed by snow cover and veg-
etation. Notably, peatlands often support the southernmost extent of permafrost,
in regions as warm as +1.0 to +1.5 ◦C mean annual air temperature because of
the large thermal offset created by dry, insulating peat (Brown and Péwé, 1973;
Smith and Riseborough, 2002). In contrast, mean annual air temperatures greater
than −2.0 ◦C represent the threshold for the disappearance of permafrost in mineral
soils (Smith and Riseborough, 2002). Other numerical models using fixed litholog-
ical conditions have shown the importance of snow depth and duration on active
layer and permafrost temperatures (Goodrich, 1982; Ling and Zhang, 2003; Oelke
et al., 2003; Stieglitz et al., 2003).
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The disappearance of permafrost with climate warming will likely occur most
rapidly in the regions of sporadic and discontinuous permafrost to the south
(Osterkamp and Romanovsky, 1999). Boreal peatlands located throughout the
northern hemisphere offer a unique method for monitoring rates of permafrost thaw
and the potential impacts of climate in this region because thaw in peatlands causes
a dramatic change in land cover that is easily detectible (Thie, 1974; Camill and
Clark, 1998; Osterkamp et al., 2000; Jorgenson et al., 2001). Permafrost plateaus
rise 1–3 m above the regional water table because of the volumetric expansion of
frozen peat and are dominated almost exclusively by Picea mariana trees with a
feathermoss understory (Camill, 1999b). Plateau thaw is initiated by fire and other
physical disturbances that cause subsidence and the formation of wet thermokarst
basins (collapse scars) not underlain by permafrost and dominated by a treeless
cover of Sphagnum mosses and Carex spp.(Camill, 1999b). Because of the high heat
capacity and substantial ground heat fluxes in thaw ponds during summer (Rouse,
2000; Harris, 2002), collapse scars and other types of unfrozen peatlands expand
laterally through time by thawing surrounding permafrost plateaus, causing Picea
trees to lean toward the thawing edge and eventually to subside and drown as the
thawing margin passes. Rates of lateral thaw can be measured using aerial photogra-
phy (Thie, 1974; Laberge and Payette, 1995; Beilman et al., 2001; Jorgenson et al.,
2001), records of frost or compression rings in Picea trees (Englefield, 1994; Camill
and Clark, 1998), or by direct measurement using permanent benchmarks sur-
veyed through time, all of which provide direct, visual field evidence of permafrost
thaw.

In this study, I analyzed changes in mean annual air temperature, mean seasonal
differences in air temperature, snow depth and duration, and permafrost thaw across
the discontinuous permafrost zone in northern Manitoba, Canada, to determine
the magnitude of recent change in these variables and the likelihood that climate
warming is impacting thaw rates.

2. Methods

2.1. GENERAL APPROACH AND STUDY REGION

Given the influences of lithology, snow cover, vegetation, and disturbance on the
climate–permafrost relationship, I developed an approach to examine the effects of
climate warming on permafrost thaw in peatlands by holding confounding variables
roughly constant across climatic changes in space and time. I examined 21 peatland
sites located in four study regions spanning a climatic gradient of ∼4 ◦C, including
most of the sporadic and discontinuous permafrost zones, in northern Manitoba,
Canada (Figure 1). Instrumented records of air temperature, mean winter snow depth
(December–March), and duration of continuous snow pack were obtained from
five climate stations (Environment Canada, 2002) in northern Manitoba, including
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Figure 1. Location of climate stations (Flin Flon, Norway House, Thompson, Gillam, Churchill) and
permafrost study regions (1 = Snow Lake, 2 = Wabowden, 3 = Thompson, 4 = Gillam) in northern
Manitoba, Canada. Dotted lines represent permafrost coverage classification adapted from Brown
et al. (1998): Surficial Geology: 1 = Lowlands, highlands, and intra- and intermontaine depressions
characterized by thick overburden cover (>5–10 m), 2 = Mountains, highlands, ridges, and plateaus
characterized by thin overburden cover (<5–10 m) and exposed bedrock; Permafrost extent: C =
Continuous (90–100%), D = Discontinuous (50–90%), S = Sporadic (10–50%), I = Isolated Patches
(0–10%); Ground Ice Content (visible ice in the upper 10–20 m of the ground; percent by volume):
h = high (>20%), m = medium (10–20%), h/m = high to medium (>10%), l = low (0–10%).

Churchill in the continuous permafrost zone, located nearest to the four permafrost
study regions (Figure 1). Climate records included the period AD ∼1970–2000, the
longest period for which continuous data existed at all five stations. The relatively
uniform boreal bog vegetation cover (P . mariana monocultures) and lithology
(Sphagnum/feathermoss peat 2–4 m in depth) minimized variability in ecosystem
structure and soil properties across sites (Camill, 1999a, b). Fire disturbance was
eliminated as a source of thaw variability by using macrofossil and charcoal analyses
of 210Pb-dated peat cores from these sites to show that late-20th Century permafrost
degradation was not caused by fire (Camill, 1999a).
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2.2. MEASURING PERMAFROST THAW RATES

Permafrost thaw rates were determined using two methods. The first method used
compression rings formed in P. mariana trees (Camill and Clark, 1998). In general,
thawing permafrost plateau margins slope from the relatively flat surface of the
plateau to the thawed collapse scar below. The horizontal and vertical dimensions of
the slope were not measured explicitly but were usually <2 m. Trees on permafrost
plateaus are forced to lean along the slope as the thaw margin expands, and they die
on reaching the thawed, inundated collapse scars at the bottom (Camill and Clark,
1998; Camill, 1999a, b). Only live trees currently on the thaw slope were analyzed
in this study. Compressional growth rings formed as wide, lignified bands on the
downslope side of the stem as a mechanism for restoring vertical growth, and the
number of compression rings laid down indicated the number of years of leaning by
each tree. Once trees began leaning along the thaw margin slope, compression wood
formation was continuous, prominent, and directionally coherent among all trees
along a thaw margin, indicating unambiguously that these outer compression rings
were not formed by other processes. I measured the distance of each tree along the
slope to the top margin of the permafrost plateau (cm), and dividing this distance
by the number of compression rings yielded an estimate of thaw rate (cm yr−1).
Across the four study zones (Figure 1), a total of 75 trees were sampled in 21 sites
(12 trees/4 sites in Snow Lake, 23 trees/5 sites in Wabowden, 29 trees/5 sites in
Thompson, and 11 trees/7 sites in Gillam). Site-based mean values of thaw rate
were also calculated by averaging the thaw rates recorded by individual trees for
each site.

For the second method, I used a 2-m steel probe to identify the exact location of
the permafrost plateau/collapse scar margin at each site in late August 1995, and I
drove a permanent stake ∼75cm into the peat to mark the position of the 1995 mar-
gin. Between 1995–2002, I visited each site semi-annually to make sure the bench-
marks had not been removed or damaged by animals. During late August 2002, I
measured the distance from each benchmark to the permafrost plateau/collapse scar
margin. I report thaw rates for each site during the median year of this 7-yr period
(1999). This approach offers one of the most direct assessments of permafrost thaw
across climatic changes in space (northern Manitoba) and time (AD 1941–2002).

2.3. STATISTICAL ANALYSIS OF THAW RATE AND CLIMATE DATA

Permafrost thaw rates were analyzed using three statistical tests. First, thaw rates
were modeled as a linear function of calendar year using likelihood functions with
normal error to generate maximum likelihood estimates for fitted slopes. To test
whether the correlation coefficients, r , and slopes, B, of the permafrost thaw–time
relationships were significantly different than zero, I developed a robust, nonpara-
metric procedure based on bootstrap resampling (Efron and Tibshirani, 1993). For
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each study region, thaw data were resampled 1000 times to bootstrap 95% confi-
dence intervals on r and B. Significant correlations and slopes that differed from
zero were identified by values lying outside the confidence intervals. The bootstrap-
ping method for testing significance was used instead of classical t-tests employed
in linear modeling because the individual tree data were partially autocorrelated
(some sites have more than one tree represented), which violated the assumption of
data independence. To ensure the robustness of these results, I also averaged thaw
rates for individual trees into site averages and repeated the linear modeling using
these data. Slopes were consistently significant (p < 0.05) in all four study regions
and indistinguishable from those based on individual trees (data not shown). Sec-
ond, using mean values of thaw for the 21 sites based on tree rings (1941–1991)
and benchmark surveys (1995–2002), I conducted a repeated-measured analysis of
variance (ANOVA) to determine if thaw rate changed significantly in each study
region. Third, I tested for significant differences in thaw acceleration among study
regions (Ho: B1−B2 = 0, Ha: B1−B2 �= 0) by calculating differences in B between
all combinations of study regions for each of the 1000 bootstrapping simulations,
and significant differences were identified by values lying outside a 95% confidence
interval bounding zero.

Several analyses were conducted with instrumented temperature and snow data
acquired from the five climate stations (Figure 1). Trends in mean annual air temper-
ature, seasonal differences in mean air temperature, mean winter snow depth, and
duration of continuous snowpack were analyzed using linear modeling with maxi-
mum likelihood estimation as described above. I tested for significant correlations
using the bootstrapping procedure described above for permafrost thaw. Seasonal
differences in mean air temperature warming have been documented previously
for high latitudes (Chapman and Walsh, 1993; Serreze et al., 2000), indicating a
large rise in winter and spring air temperature. Mean monthly air temperatures were
grouped into four, three-month seasons following Chapman and Walsh (1993): win-
ter (December–February), spring (March–May), summer (June–August), autumn
(September–November). Seasonal changes in air temperature may significantly im-
pact permafrost dynamics to the extent that frozen soil develops in winter and thaws
in spring, when liquid water from snowmelt increases thermal conductivity of sur-
face soils (Hinkel et al., 2001). To assess the potential for future thaw across the
sporadic and discontinuous permafrost zone in Manitoba, I projected current trends
in mean annual air temperature from year 1990 to 2100. For simplicity, the linear
models developed for the instrumented records above were used in this analysis.

3. Results

Permafrost thaw rates have accelerated significantly across the sporadic and dis-
continuous zones over the past 50 years (Figure 2). Thaw rates between 1995–2002
rose 200–300% relative to rates from the period 1941–1991 measured using tree
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Figure 2. Permafrost thaw rate (cm yr−1) plotted against time. Black dots represent thaw rate measured
for the period 1941–1991 using compression rings laid down by individual leaning P. mariana trees.
Open circles represent mean thaw rates measured using permanent benchmarks for the period 1995–
2002 (plotted for the median year, 1999). Mean site thaw rates for the periods 1941–1991 and 1995–
2002 are also shown. Correlation coefficients and fitted slopes with 95% confidence intervals in
parentheses are also shown. Significant correlation coefficients and slopes are denoted with an asterisk.

rings. The repeated measures ANOVA indicated highly significant differences be-
tween these periods for all four study regions (F = 26.4, p < 0.0001). Individual
t-tests comparing site-level thaw rates between periods 1941–1991 and 1995–2002
for each zone were all significant (Snow Lake p = 0.02, Wabowden p = 0.05,
Thompson p = 0.007, Gillam p = 0.0004). Acceleration was significantly faster
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in Snow Lake compared to Gillam (Figure 2, p < 0.05) but was not significantly
different among other sites.

Climate stations examined in this study revealed a large mean annual air temper-
ature warming trend of 1.08–1.75 ◦C (mean = +1.32 ◦C) between ∼1970–2000
(Figure 3), which is consistent with rates of surface air warming in western Canada
(Gullet and Skinner, 1992; Chapman and Walsh, 1993; Majorowicz and Skinner,
2001) that are more than double the globally averaged 20th-century warming of 0.6
± 0.2 (IPCC, 2001). Annual warming trends were significant at Churchill, Gillam,
and Flin Flon (Figure 3A, p < 0.05). Substantial warming caused the sign of mean
annual air temperature to change at Flin Flon in 1990 (Figure 3), and the sign change
will occur at Norway House by ∼2005. Tests for differences in slopes revealed no
significant differences among the five climate stations (p > 0.05).

There were strong and significant seasonal differences in warming in northern
Manitoba, including Thompson and Norway House, where mean annual air tem-
perature increases were not significant (Table I). At the highest latitude climate
station in Churchill, warming was significant only during summer (+0.66 ◦C per
decade), but the highest rates of warming shifted to winter and spring at the more
southerly stations (Fig. 1). At Gillam, warming was significant in winter (+1.23
◦C per decade) and summer (+0.49 ◦C per decade), and it was significant in winter
at Thompson (+0.84 ◦C per decade), Norway House (+1.68 ◦C per decade), and
Flin Flon (+1.33 ◦C per decade). These warming trends are among the highest
reported for boreal and arctic regions over the last four decades (Chapman and
Walsh, 1993). Warming trends during spring months were also large, especially at
the southern stations (Table I): Norway House (+0.78 ◦C per decade), and Flin Flon
(+0.56 ◦C per decade). Warming rates were lowest in autumn, during which mean
air temperature changed relatively little, or even declined (Norway House, Table I).
It is important to note that the greatest warming rates in northern Manitoba over
the past three decades occurred during winter and spring at the southern climate
stations (Table I) where permafrost thaw was most rapid (Figure 2).

Analyses of snow data suggest that changes in mean snow depth and snow
pack duration are not contributing to soil warming and acceleration of permafrost
thaw (Figure 4). Mean winter snow depth has declined across the sporadic and
discontinuous permafrost zones from ∼1970–2000, with significant declines in
Thompson and Norway House (Figure 4A). Decreased snow cover should cool,
rather than warm, permafrost in these regions for two reasons: Snow introduces a
layer of low thermal conductivity between air and ground and, winter cooling waves
are damped out by snow and have a reduced effect on ground thermal regimes (Gold,
1963; Smith, 1975; Majorowicz, 1996; Smith and Riseborough, 2002). In contrast
to previous hypotheses (Majorowicz, 1996), the duration of continuous snow pack
did not decline over the last three decades in this region and, in fact, increased
significantly at Churchill (Figure 4B). In addition, higher mean snow depths in
northern sites (Figure 4A, with the exception of Churchill) are counterbalanced
by the lower mean annual air temperatures in these regions, producing similar
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Figure 3. Changes in mean annual air temperature between ∼1970–2000 for the five climate stations
shown in Figure 1. The 0 ◦C mean annual air temperature is shown as a dotted line for reference.
Correlation coefficients and fitted slopes with 95% confidence intervals in parentheses and the 1970–
2000 warming trends are also shown. Significant correlation coefficients and slopes are denoted by
an asterisk.
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Figure 4. (A) Changes in mean winter snow depth (Dec–March) (cm) between ∼1970–2000 for the
five climate stations shown in Figure 1. Correlation coefficients and fitted slopes with 95% confidence
intervals in parentheses are also shown. Significant correlation coefficients and slopes are denoted
by an asterisk. (B) Changes in the duration of continuous snow pack (days) between ∼1970–2000
for the five climate stations shown in Figure 1. Correlation coefficients and fitted slopes with 95%
confidence intervals are also shown.
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nival offsets across the sporadic and discontinuous permafrost zones based on the
equations of Smith and Riseborough (2002). Collectively, these results indicate that
changes in mean snow depth should have cooled permafrost temperatures between
∼1970–2000 and that there were minimal effects on permafrost thaw as a result of
regional differences in mean snow depth.

Projections of warming trends to year 2100 compared to 1990 baseline
temperatures indicate that, if current warming trends continue, mean annual air tem-
peratures in northern Manitoba will warm between 3.8–6.8 ◦C by 2100 (Figure 5),
which is in good agreement with high latitude warming projections of 4–8 ◦C
by general circulation models (IPCC, 2001). Assuming that a 0 ◦C to +1.5 ◦C
mean annual temperature envelope represents the climatic threshold for the ex-
istence of permafrost in peatlands (Smith and Riseborough, 2002), permafrost
will begin to thaw rapidly and possibly disappear across the sporadic and dis-
continuous permafrost zone by 2100, with significant thaw in Flin Flon between
1990–2020, Norway House between 2005–2040, Thompson between 2075–2100,
and Gillam between 2050–2080. Permafrost will not disappear in Churchill, but
the projected future mean annual air temperature of −2 ◦C (Figure 5) indicates
that this region will become a zone of discontinuous permafrost, with proba-
ble widespread thaw in regions underlain with mineral soil (Smith and Risebor-
ough, 2002). It is important to point out that these projections assume that per-
mafrost thaw in peatlands occurs immediately on crossing the +1.5 ◦C mean
annual air temperature threshold. Depending on the unfrozen water content and
depth of the permafrost, additional time may be required for the permafrost to
thaw.

4. Discussion

By eliminating the effects of snow, vegetation, lithology, and disturbance, I con-
clude that the significant acceleration of permafrost thaw across the sporadic
and discontinuous permafrost zones in Manitoba, Canada, over the latter half of
the 20th century (Figure. 2) has likely been caused by large increases in mean
air temperature (Figure 3), which are especially significant in winter and spring
(Table I). Significant winter warming will prohibit the formation of new per-
mafrost, and large spring warming will accelerate thaw in this region (Hinkel
et al., 2001), which may account for the greatest acceleration of permafrost
thaw in southern regions experiencing the greatest warming during these sea-
sons (Figure 2, Table I). The empirical results presented here suggest that cur-
rent warming trends may eliminate most, if not all, peatland permafrost across
this region by 2100 (Figure 5), supporting model predictions of large changes
in discontinuous permafrost cover over the 21st century (Anisimov and Nelson,
1996; Nelson et al., 2002; Stendel and Christensen, 2002), but see Lunardini
(1996).
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Figure 5. Projection of current mean annual air temperature warming trend to year 2100. For reference,
temperature increases above a 1990 baseline mean annual air temperatures are shown along with the
0 ◦C to +1.5 ◦C climate envelope (dotted lines) representing the critical mean annual air temperatures
for the disappearance of permafrost in peatlands (Smith and Riseborough, 2002).
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Because of the low thermal conductivity of peat, boreal and subarctic peatlands
are often viewed as ecosystems that will support the final remnants of discontinuous
permafrost (Brown and Péwé, 1973; Halsey et al., 1995, Camill and Clark, 1998;
Smith and Riseborough, 2002). Although permafrost thaw is generally expected to
be large with climate warming (Anisimov and Nelson, 1996; Nelson et al., 2002;
Stendel and Christensen, 2002), the rate of change in permafrost distribution has
been debated (Halsey et al., 1995; Camill and Clark, 1998). Local factors, such
as dry peat and azimuth, have been shown to slow permafrost thaw in peatlands
(Camill and Clark, 1998), leading to the southernmost permafrost remnants that
appear to exist out of equilibrium with climate (i.e., existing in regions between
0 ◦C to +1.5 ◦C mean annual air temperatures, Halsey et al., 1995). However, based
on soil heat conduction modeling, Smith and Riseborough (2002) argued that relict
permafrost in peatlands along the southern margin of the sporadic discontinuous
permafrost zone is currently in equilibrium with mean annual air temperature as
high as +1.5 ◦C because the large thermal offset caused by dry peat and other
vegetation maintains mean annual ground temperature at 0 ◦C near the surface. The
modeled mean annual air temperature threshold of +1.5 ◦C therefore incorporates
several of the local factors that could contribute to lagged dynamics, offering a
simple method for assessing the maximum length of time that permafrost can exist
in peatland regions during climate warming (e.g., dotted lines in Figure 5).

Several recent studies indicate that permafrost thaw will change ecosystem prop-
erties and surface energy budgets dramatically in boreal and arctic uplands and
peatlands. In boreal peatlands, carbon sequestration increases between 60–100%
when Picea-dominated permafrost plateaus thaw and form Sphagnum and Carex-
dominated collapse scars (Camill, 1999a; Robinson and Moore, 2000; Turetsky
et al., 2000; Camill et al., 2001). Models of tundra systems suggest that permafrost
thaw can initiate a long-lasting increase in carbon accumulation (Waelbroeck et al.,
1997), following initial transient increases in soil CO2 efflux that agree with ex-
perimental evidence of a short-term carbon release (Billings, 1987) as a result of
tundra drying (Chapin et al., 2000b). These studies contrast with those from boreal
uplands, however, which suggest that thaw may hasten decomposition from large
pools of soil C (Goulden et al., 1998, Tarnocai, 1999). Several studies of net energy
partitioning over boreal and arctic ecosystems suggest that surface energy changes
resulting from thaw pond formation (increased winter albedo and decreased sum-
mer sensible heat flux) may be large enough to affect regional climate (Lynch et al.,
1999; Chapin et al., 2000a; Eugster et al., 2000). These results may be especially
pronounced in boreal permafrost peatlands, where the loss of the P. mariana canopy
and shifts to treeless bogs following thaw could have substantial effects on surface
energy budgets. To the extent that these land surface–atmosphere interactions are
tightly coupled in the Northern Hemisphere (Eugster et al., 2000), accelerating
permafrost thaw will likely initiate complex feedbacks on high latitude and global
temperatures.
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