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Abstract. In order to respond to policy questions about the potential impacts of climate change it
is usually necessary to assemble large quantities of evidence from a variety of sources. Influence
diagrams provide a formal mechanism for structuring this evidence and representing its relationship
with the climate-related question of interest. When populated with probabilistic measures of belief
an influence diagram provides a graphical representation of uncertainty, which can help to synthesize
complex and contentious arguments into a relatively simple, yet evidence-based, graphical output.

Following unusually damaging floods in October—November 2000 the UK government commis-
sioned research with a view to establishing the extent to which the floods were a manifestation of
hydrological climate change. By way of example application, influence diagrams have been used to
represent the evidential reasoning and uncertainties in responding to this question. Three alterna-
tive approaches to the mathematization of uncertainty in influence diagrams are demonstrated and
compared. In situations of information scarcity and imprecise expert judgements, methods based on
interval probabilities have proved to be attractive. Interval probabilities can, it is argued, represent
ambiguity and ignorance in a more satisfactory manner than the conventional Bayesian alterna-
tive. The analysis provides a quantified commentary on the uncertainties in the conclusion that the
events of October—November 2000 were extreme, but cannot in themselves be attributed to climate
change.

1. Introduction

Analysis of the impacts of climate change makes use of knowledge from diverse
disciplines. This knowledge appears in a range of formats, from measurements and
model predictions to expert judgements expressed in linguistic terms. Evidence may
appear as time series of historic data or ensemble predictions from climate models
(which lend themselves to probabilistic analysis) but also as linguistic reasoning
about causal relationships, analogues, patterns or fragments of partially relevant
data. One way of bringing these various sources of knowledge together is in an
influence diagram, which represents the relationships and interactions between
a series of propositions or processes. These relationships may be described in
exact algebraic terms but may also represent less precise understanding about the
mechanisms of influence. Van Lenthe et al. (1997) demonstrate how influence
diagrams can be used to structure complex climate-related policy decisions, though
they confine their analysis to the situation where it is possible to elicit precise
probability distributions for all of the required variables in the influence diagram.
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Kuikka and Varis (1997) used Bayesian belief networks to structure reasoning about
climate variables in the climate—water system in Finland.

Influence diagrams can communicate knowledge in a formal but accessible
manner. The process of constructing, populating and testing an influence diagram
generates valuable insights. It provides a mechanism for decomposing complex
problems or systems into recognisable sub-systems that are often easier to reason
about than the system as a whole. An influence diagram can help to externalise
expert judgement and hence facilitates dialogue between experts and other deci-
sion stakeholders. Whilst the influence diagrams discussed in this paper have been
populated with probability estimates from experts, the approach is equally applica-
ble to joint probability distributions estimated from data. In general the populated
diagram represents a joint probability distribution over the variables or propositions
in the diagram. Influence diagrams have in recent years become widely used as a
structure for Bayesian updating of probabilities in multivariate statistical problems
(Gilks, 1996).

The objective of this paper is to illustrate how influence diagrams can be used to
analyse uncertainty in a climate-related proposition whose analysis involves mak-
ing use of evidence from diverse sources, including expert judgement, in a variety
of formats. The work is related to the well-known problem of attributing observed
climate to anthropogenic forcing (Hegerl et al., 1997; Risbey et al., 2000; Stott et
al., 2001; Risbey and Kandlikar, 2002), but deals with a specific weather event in a
situation where the limited available evidence is heterogeneous in format and sub-
ject to varying degrees of epistemic uncertainty. In particular we seek to illustrate
how simple methods based on interval probabilities can provide a more expres-
sive mathematical vocabulary of uncertainty than the conventional alternative. The
analysis is based upon a study commissioned by the UK Government that sought
to establish the extent to which very severe floods in the UK in October—November
2000 were attributable to climate change. The paper begins with a brief review of
the necessary concepts of influence diagrams. Three alternative approaches to han-
dling uncertainty in influence diagrams are introduced and discussed. In Section 3
each of these three methods is applied to the UK floods example. Conclusions are
drawn at two levels, first in relation to UK floods example and second in relation
to the extent to which the three alternative methods are appropriate for handling
uncertainty in influence diagrams applied to climate problems.

2. Influence Diagrams

An influence diagram (Howard and Matheson, 1981; Shachter, 1988; Pearl, 1988;
Oliver and Smith, 1990; Gammerman, 1995) is a directed acyclic graph of nodes
and links. An example of an influence diagram, which originates from one of
the early publications on Bayesian belief networks (Spiegelhalter, 1986) and has
now become something of an archetype, is illustrated in Figure 1. It shows the
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Figure 1. Typical influence diagram (after Henrion, 1988).

relationship between observable symptoms and a medical diagnosis (metastatic
cancer or brain tumour). Each node in the diagram represents a proposition and
each link represents a potential influence. In this paper we restrict ourselves to the
situation in which the proposition can take one of only two states, say A and its
negation —A. P(A) is a probability that represents the degree of belief in A. The
links signify the existence of direct influences on a proposition by its immediate
predecessors (its parents). A conditional probability represents the strength of this
influence. Absence of a unidirectional connection between two nodes by one or
more links indicates absence of influence.

In the network in Figure 1, A is the parent of B and C, which are the parents of
D. B and C are referred to as the children of A. C is also the parent of E. If there
is only one node in the graph that does not have a parent, then the network is a
hierarchy. If, furthermore, there are no closed loops in the graph, then the network
is a tree.

Proposition A is referred to as the source proposition, and propositions D and
E are referred to as the sink propositions. Predictive or causal inference involves
reasoning from evidence about source propositions down through the network in
the direction of links to sink propositions. Diagnostic inference involves reasoning
in the reverse direction, from observations of manifestations to infer probabilities
of possible causes (Henrion, 1988). In this paper we are concerned with this latter,
diagnostic mode of reasoning, i.e. to what extent can it be believed that the October—
November 2000 floods were a manifestation of climate change, given the available
measured and modelled evidence.

It is assumed that all influence is captured in conditional probability relations
between a child proposition and its parents. In other words, the child is conditionally
independent of all other propositions in the network apart from its parents. If this
is the case then, for example for proposition E, (see Figure 1)

P(E)= P(E|C)P(C)+ P(E|=C)P(—=C).
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The relationship between C and E is a feature of the structure of the infer-
ence problem. For example Cmay be a necessary condition for E, in which case
P(E|—C) = 0 and P(E|C) < 1, or C may be a sufficient condition for E, in
which case P(E|C) = 1 and P(E|—C) < 1. Probabilities can be propagated in
either direction in the network, provided appropriate conditional probabilities are
available, so

P(C)=P(C|E)P(E)+ P(C|=E)P(—E).

For more than one parent/child the following expansion, referred to as the Bayes
conditionalization formula, is required, so for example in Figure 1:

P(D)=P(D|BAC)P(B AC)+ P(D|B A—C)P(B A—C)
+P(D|=B AC)P(=B AC)+ P(D|—=B A—C)P(—=B A=C) (1)

where the symbol A represents the conjunction of two propositions i.e. the and
operator. The disjunction (i.e. the or operator) is written V. The probabilities of the
conjunctions P(B A C), P(B A —=C), P(—=B A C), P(—B A —C), depend on the
relationship between P(B) and P(C). If it is assumed that B and C are independent
then

P(BAC)=P(B)-P(C)

and so on. The rationale for the independence assumption is that any dependency
relationship will be represented by links to a common predecessor elsewhere in
the network. The assumption of conditional independence is not made in Interval
Probability Theory of Cui and Blockley (1990), which is discussed below. First we
address Bayesian belief networks, where the probability P(A) of a proposition Aisa
point value on the range [0, 1]. We then extend to consider two interval probability
approaches, in which the uncertainty in P(A) is represented as an interval on
[0, 1].

The extension of classical point probabilities to interval probabilities holds the
potential for bridging the gap in the debate about whether climate change pre-
dictions should be expressed in probabilistic terms. On the one hand it is argued
that probabilities are essential to make rational decisions under conditions of un-
certainty, and if probabilities are not provided then decisions will be made with
implied assessments of relative likelihoods that depart, perhaps significantly, from
experts’ best estimates (Schneider, 2001, 2002; Pittock et al., 2001). On the other
hand, it is argued that aspects of climate uncertainty, in particular uncertainties in
emissions scenarios, do not lend themselves to quantification and there is no jus-
tifiable basis for constructing probability distributions (Griiber and Nakicenovic,
2001). A further argument against probabilistic quantification of uncertainty as it
is currently conducted or proposed (for example Allen, 1999; Wigley and Raper,
2001), is that the uncertainties in climate model predictions due to incompleteness
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in the model representation of relevant processes may be under-estimated: ensemble
predictions and inter-model comparisons capture only a fraction of the total model
uncertainty and successful reproduction of historic climate provides only partially
relevant evidence of predictive accuracy under significantly changed conditions
(Young et al., 1996; Stocker and Schmittner, 1997; Shackley et al., 1998; Allen
et al., 1998).

Imprecise probabilities (Walley, 1991), of which the interval probabilities pre-
sented in this paper are a special case, are able to represent ambiguity: the situation
in which an agent is unable to distinguish (express preferences) between alterna-
tive probabilities or risks. This is achieved by the use of lower and upper bounds
on an unknown probability. In the extreme case, imprecise probabilities can be
used to represent complete ignorance by using vacuous probability bounds, with-
out the customary recourse of the probabilistic analyst in the face of indeterminacy,
which is to adopt a uniform probability distribution or some other arguably ‘non-
informative’ prior. Keynes (1921) showed that incautious adoption of the uniform
distribution can lead to contradictions. A uniform distribution (or indeed any other
unique distribution) represents a precise statement about the relative likelihoods
of different states, which in cases of legitimate indeterminacy will overstate the
available knowledge.

It has been known, at least since the experiments of Ellsberg (1961), that people
express preferences and behave in ways that show aversion to ambiguity. Ambi-
guity aversion cannot be accounted for in the conventional theory of choice under
uncertainty (Savage, 1954) whilst a coherent explanation is provided by the gen-
eralisation to imprecise probabilities (Gilboa, 1987; Gilboa and Schmeidler, 1989;
Schmeidler, 1989). These observations are particularly relevant in the context of
climate problems because it can be argued that concepts such as the precautionary
principle are motivated by the presence of ambiguity (see for example: Henry and
Henry, 2002; Chevé and Congar, 2003).

2.1. BAYESIAN BELIEF NETWORKS

When the nodes and links in an influence diagram are populated with Bayesian prob-
abilities, the influence diagram is known as a Bayesian belief network. Bayesian
belief networks (Pearl, 1988; Oliver and Smith, 1990; Gammerman, 1995; Jensen,
1996) are the most widely used method for quantified uncertainty handling in influ-
ence diagrams, and several commercial software packages are available. In general
Bayesian networks deal with the case in which a node can take a number of different
states. Moreover, Bayesian belief networks can be structured as multiply connected
directed acyclic graphs and support combinations of predictive and diagnostic in-
ference in a general manner. Here we restrict ourselves to the case of diagnostic
inference in tree structures in which each proposition has only two states: ‘true’ or
“false’.
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The approach is illustrated with an example node from the influence diagram
introduced in the following section. The node ‘individual flow gauge readings
were unusually high in 2000° (label H) has two children ‘individual flow gauge
readings rank highly among data series’ (label £) and ‘individual flow readings
registered in 2000 were highly unlikely’ (label E;). Suppose that the following
probabilities are set: P(E;) = 0.735, P(E,;) = 0.245, so that P(E| A Ep) =
0.180, P(E, A —Ey) = 0.555, P(—E; N Ey) = 0.065, P(—E| A —E3) = 0.200.
The conditional probabilities are set: P(H|E| A E;) = 094, P(H|E| A —E») =
0.80, P(H|—=E| AN Ey) = 049, P(H|—E; A =E3) = 0.35. From Equation (1),
P(H)=0.715.

2.2. INTERVAL PROBABILITIES

Two further approaches to quantified uncertainty handling in inference networks
are now introduced, which both address the inevitable uncertainty in a probabilistic
estimate P(A), by dealing with it as an interval probability. Thus, whilst being
founded on the axioms of probability theory, this interval probability approach
allows support for a proposition to be separated from support for the negation of
the proposition. If A is a proposition, an interval number is used as a probability
measure, so that

P(A) = [Sa(A), Sp(A)]

where S,(A) is the lower bound on the probability P(A), or necessary support for
A, and S,(A) is the upper bound on the probability P(A), or possible support for
A. The negation

P(=A) =[1—-S,(A), 1 —S§,(A)].

If, as here, an interval probability is interpreted as a measure of belief, then S,,(A)
represents the extent to which it is certainly believed that A is true, 1 — S,(A) =
Sn(—A) represents the extent to which it is certainly believed that A is false, and
the quantity S,(A) — S,(A) represents the extent of uncertainty of belief in the
truth of A. Three extreme cases illustrate the meaning of this interval measure of
belief:

P(A) = [0, O] represents a belief that A is certainly false,
P(A) = [1, 1] represents a belief that A is certainly true, and
P(A) = [0, 1] represents a belief that A is unknown.
The Bayes conditionalization formula is used to propagate these interval proba-
bilities through the network structure, however, in the case of interval probabilities

interval analysis has to be applied to the calculation. Two separate implementa-
tions of the approach have been tested in the current analysis, which are described
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below. Both methods are based on local computations of inferred probabilities at
each node, an approach also proposed by Fertig and Breeze (1990). Better con-
strained solutions can be obtained by means of more recent developments in the
field of credal networks, though at considerable computational expense (Cozman,
2000).

2.2.1. Support Logic Programming (SLP)

Support Logic Programming (Baldwin 1986a, b) is implemented in the Fuzzy Re-
lational Inference Language (FRIL) (Baldwin et al., 1995), which enables interval
probabilities (referred to in FRIL as ‘support pairs’) to be associated with a set of
logical propositions held in a database. It is possible to define relations between
these propositions, in the form of conditional probability statements, and then query
the database to generate inferences.

Consider the example introduced in Section 2.1 in which the following support
pairs are now adopted P(E,) = [0.53, 0.94], P(E;) = [0.19, 0.30] (where E; and
E, are as defined in Section 2.1). Write 8 = P(E{ A Ey), 0, = P(E{ N —E>),
63 = P(—E; N Ey) and 04 = P(—E{ N —E5). Interval arithmetic is used to
calculate the probabilities of compound propositions, assuming independence, so,
for example, for 6,

Sh(Ey A—E7) =0.53 x (1 —0.30) = 0.371
and
Sp(E1 AN —E») =0.94 x (1 -0.19) =0.761

Similarly 8; = [0.101, 0.282], 63 = [0.011, 0.141] and 64 = [0.042, 0.381]. The
conditional probabilities are assigned as follows: P(H|E| A E;) = [0.94, 0.94],
P(H|E|, N —E,) = [0.80, 0.80], P(H|—E; A E;) =[0.49, 0.49], P(H|—E{ A
—E,) =[0.00, 0.70]. The inference is computed according to the following interval
version of the Bayes conditionalization formula (Baldwin et al., 1995):

Sn(H) = min [0.946, 4+ 0.8, + 0.496;5 + 0.004]
01+6,+03+04=1
where 61,..., 04 are constrained so that 0.101 < 6; < 0.282, 0.371 < 6, <

0.761,0.011 <65 <0.141,0.042 < 64 < 0.381. The result of this minimization is
S,(H) = 0.381. The upper bound is found using the upper conditional probabilities
and maximising: S,(H) = 0.466.

2.2.2. Interval Probability Theory (IPT)
Cui and Blockley (1990) developed previous work on interval representations by
introducing the parameter p, which represents the degree of dependence between
propositions E; and E;:
P(E| NE))
p=— .
min (P(Ey), P(E2))
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Thus p = 1 indicates maximal dependence, whilst if £, and A, are independent
p = max(P(Ey), P(E))

so that
P(E\ N Ey) = P(E)) - P(E>).

The minimum value of p is given by

[P(E1)+P(Ez)—1 ]
0 = max - .0
min (P(E}), P(E,))

where p = 0 indicates that £ and E,are mutually exclusive.
If p is defined as an interval [p;, p, ] then

Sa(Er A Ez) = pr - min(Sp(E1), Sn(E2)) 2)
Sp(Er A Ez) = py - min(Sp(Ey), Sp(E2)) 3)
Sa(ErV Ez) = Sa(E1) + Su(E2) — pr - min(Sp(E1), Sn(E2)) “4)
Sp(E1V Ep) = Sp(E1) + Sp(E2) — pu - min(Sp(Ey), Sp(Ez)). (&)

The dependency parameter p is an additional item of information, which is
elicited in order to address explicitly the dependency between propositions. It is a
convenient means of exploring different dependence relationships when the exact
nature of dependence is uncertain. Consider the example introduced in Section 2.1,
but in this case we recognise that there will be some dependence between flow ranks
and flow likelihoods, represented by a dependency of p = [0.67, 0.96]. Therefore
from Equation (2)

Su(E1 A Ep) = 0.67 x min(0.53, 0.19) = 0.127
and from Equation (3)

Sp(E1 A Ez) = 0.96 x min(0.94, 0.30) = 0.288.
From Equation (4)

Sa(E1 Vv Ey)=0.53+0.19 —0.127 = 0.593
ie. Sp(—E| Vv —Ey)=1-0.593 =0.407

and from Equation (5)

Sp(E1V Ez) =0.94 4 0.30 — 0.288 = 0.952
ie. Sp(—E; Vv —Ey)=1-0.952 =0.048.



INFLUENCE DIAGRAMS FOR REPRESENTING UNCERTAINTY 351

The inference is again computed according to the interval version of the Bayes
conditionalization formula:

Sh(H) = min [0.946, +0.86, +0.49 65 + 0.064]
01+6,+03+04=1

where in this case 64, ..., 64 are constrained so that 0.127 < 0, < 0.288, 0.048 <
04 <0.407,053 <6, + 6, <0.94,0.19 <60, + 63 <0.30,6, > 0,63 > 0. The
result of this minimization is S,(H) = 0.473. The upper bound is found using the
upper conditional probabilities and maximising: S,(H) = 0.834.

The three alternative inference mechanisms introduced above each provide prac-
tical methods for propagating uncertainty in influence diagrams. Their application
is illustrated in the following example.

3. Application: The October-November 2000 Floods in the UK

In the autumn and winter of the year 2000 devastating flooding occurred throughout
Britain, causing financial losses estimated at £1.4 billion (Penning-Rowsell and
Chatterton, 2002). Floods occur nearly every year somewhere in the UK, but the
2000 episodes were noteworthy because vast areas of the country suffered together,
in some cases repeatedly and for long durations. For most of the UK, heavy rainfall
began in the middle of September and carried on patchily until late December. Three
particularly extreme multiple day downpours occurred during this time, though the
weather was more extraordinary for its longevity and breadth. Given other unusually
severe floods in preceding years speculation was widespread as to whether the
floods were an impact of climate change. John Prescott, the Deputy Prime Minister,
summed up the mood (BBC, 2000):

This was a wake-up call that struck home. When people see and experience
these ferocious storms, long summer droughts, torrential rains — more extreme
and more frequent — they know something is wrong and that climate change
now affects them.

Before the flooding was even over, the UK Government had commissioned the
Centre for Ecology & Hydrology (CEH) and the Met Office to assess the severity of
the flood events and the potential link between the flooding and climate change. The
research brought together 11 experts in hydrology, meteorology, climate change and
statistics. It involved assembling and analysing diverse data from the flood events
and then placing it in the context of previous observed flooding and evidence of
hydrological changes that are predicted in analysis of climate change. Seeking to
address the link between a specific extreme event and climate change is highly
problematic from a scientific point of view and perhaps many climate modellers or
hydrologists would refuse such a challenge. However, climate modellers in partic-
ular will be familiar with the problem of having to respond to policy questions with
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analytical tools whose shortcomings are all too familiar. The purpose of this paper
is not to comment on whether the question posed about the 2000 floods was a useful
one to address. Rather it is to demonstrate how difficult policy related questions
(and the question used as an example in this paper is by no means unique) can be
supported with influence diagrams.

The research following the October—November 2000 floods is detailed in a
technical report (CEH, 2001) and briefly summarised here. The study addressed
rainfall data as well as river flow data. The latter provides a more direct measure
of the severity of flooding but changes in flood regime can be caused by changes
to the catchment (such as alteration to floodplain storage, urban development and
changes in agricultural practices) as well as climate change. Therefore, whilst the
link between measured rainfall and catchment flood responses can be complicated
(in particular due to the ‘memory’ effect whereby rain falling on an already wet
catchment is more likely to produce flooding than on a dry catchment), rainfall data
can provide an important indicator of change.

Rainfall data were obtained from the network of approximately 2000 rain gauges.
Radar provided a second source of rainfall information. River flows were obtained
from 11 river flow gauges, some of which had only short records. The analysis
also addressed sea surface temperatures (SSTs), air pressure at mean sea-level
(PMSL), groundwater levels, soil moisture levels and computer model simula-
tions. Analyses ranged from simple accumulation totals to statistical searches for
trends. Whilst the hydro-meteorological analysis involved statistical analysis of
many continuous variables, these statistical insights were then related to logical
propositions that may or may not be true i.e. had two discrete outcomes. In all, 24
separate items of evidence were identified that had some bearing on the following
proposition:

SOURCE PROPOSITION: The October/November 2000 flood events were a
manifestation of hydrological climate change.

This source proposition led to two child propositions:

PROPOSITION B;: The October/November 2000 flooding and rainfall were un-
usual in the historical context
PROPOSITION B,: Hydrological climate change is occurring in the form of
increasing frequency and/or magnitude of unusual flooding and rainfall events,
particularly when considering longer durations and wide spatial coverage.
Through study of documentation and discussions with experts each of the 24
items of evidence listed in Table I was associated with a proposition (Figure 2),
which was connected, usually through a series of intermediate propositions, to one
of the two propositions, B; and B, stated above.
To populate an influence diagram of the type shown in Figure 2 required the
following quantified estimates:
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TABLE I
Summary of evidence

Climate models: The Hadley Centre Regional Climate Model (RCM) nested in its General
Circulation Model (GCM) predicted return periods (RPs) of rainfall extremes of the type ex-
perienced in late-2000 (over long durations), and the 1860 predictions were compared to the 2000
predictions (p. 25).

England & Wales series: Combined river flows for five major rivers (Thames, Severn, Trent, Dee
and Wharfe) across England and Wales were analysed for trends in instantaneous annual maxima
(AM), high flow days and longer duration annual maxima (pp. 88, 80, 25).

Extended duration AM: 21 sites (same sites as for ‘high flow days’) were analysed for trends in
N-day maxima (average of daily mean flows) over durations of 3—60 days (pp. 88, 86).

Gauge assessment: 1620 rain gauges recorded rainfall amounts for the whole period (September—
December). From these records, return periods were calculated according to FEH methodology
(Institute of Hydrology, 1999) for the three main events (multiple-day bursts of intense rainfall
(pp. 58, 59).

Groundwater: A qualitative assessment notes that 2000 flooding extended the range of recorded
river flows and groundwater levels. December runoff totals were without recorded precedent (for
any month) in a number of spring-fed rivers including the Kennet, Dorset, Stour and Itchen (p. 23).
Group flow gauges: Combined N-day maxima (average of daily mean river flows) for five major
rivers (same data as ‘England & Wales series’) were compiled over durations of 10-90 days. The
top 10 ranking events in recorded history are listed for each duration (p. 25).

High flow series: 21 sites (same sites as for ‘extended duration AM’) were analysed for trends in
the number of days in each year where river flow was above the 97 percentile (p. 87, 86).
Historical extremes: A qualitative assessment notes that, when viewed in a historical context, the
extreme rainfall amounts and river flows of late 2000 are rare, but do not appear to be inconsistent
with recorded variability at individual locations (p. 25).

Individual flow likelihood: A qualitative assessment notes that for most English gauging stations
commissioned in the last 35 years the 2000 floods resulted in unprecedented flows over the 30 and
60-day time spans (p. 24). However, the most outstanding individual events in the autumn of 2000
do not compare with the hydrological extremes locally registered during the most damaging fluvial
floods of the twentieth century (p. 25). In addition, AM return periods for 9 targeted flow gauges
ranged up to about 100 years. There is no suggestion that the year 2000 AM were exceptionally
rare events at these sites, in the sense of being far out of line with the flood flow magnitudes
expected to occur roughly once or twice every hundred years or so (p. 68).

Individual flow ranks: N-day maxima (average of daily mean flows) over durations of 10-90 days
were recorded separately for four individual gauges, each on a major river. The top 8 ranking
events in recorded history are listed for each duration for each gauge (p. 24).

Instantaneous AM: 30 sites were analysed for trends in instantaneous river flow annual maxima
(pp. 85, 86).

Long-term rainfall: 13 sites with long records (89—147 years) were analysed for trends in rainfall
amounts over durations of 1-60 days (p. 81, 82).

Long-term records 2: In the ‘extended duration AM’ analysis, two longest river flow records
(Thames and Dee) were singled out. No positive trends were present for these records over durations
of 3-60 days (p. 88).

(Continued on next page)
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TABLE 1
(Continued)

National rain RPs: The Tabony method was used to find return periods for 1 and 2-month duration
rainfall totals for localities across the entire nation (pp. 55-57). National rankings: National
average rainfall amounts were tallied for any non-overlapping 2, 3 and 4-month periods. The top
10 ranking episodes in recorded history were listed for each duration (p. 18).

1970 split test: Return periods were calculated for 11 rain gauges with long records over durations
of 1-60 days. The return periods were calculated for two different situations: once for the whole
record and once using only pre-1970 data. For a given intensity, return periods are expected to be
less for the whole record than for the pre-1970 data (p. 73).

POT data: Five Peak Over Threshold (POT) series for major UK rivers (Ouse, Trent, Severn, Dee
and Thames) were analysed for trends in the frequency and magnitude of very large (POT1) and
medium-sized (POT3) floods (p. 87).

PMSL: Return periods for pressure at mean sea-level (PMSL) values over the UK were calculated
separately for October and November 2000 (pp. 49-50).

Radar assessment: In expert in weather radar observation at the UK Met Office, made a qualitative
assessment of radar patterns during the three main events (multiple-day bursts of intense rainfall)
(pp. 41-42).

Regional rainfall: Rain gauge amounts from 10 regions comprising England and Wales were
converted to return periods via the Tabony method for 2-month and 4-month durations (p. 19).
River flow ranges: Historical records for 8 major ‘representative rivers’ were examined to see if
extreme daily flow ranges were extended in 2000 (pp. 21-22).

Short-term records: 15 sites with short records (28—39 years) were analysed for trends in rainfall
amounts over durations of 1-60 days (pp. 83-84).

SMDs: A qualitative assessment noted that the eradication of soil moisture deficits (SMDs) and the
accompanying recovery of groundwater levels has no recent equivalent in magnitude and rapidity
(pp- 16-17).

SSTs: The standard deviation from the mean for sea-surface temperatures (SSTs) was calculated
for the north Atlantic and the mid-north Atlantic (pp. 49-50).

Note: Page numbers refer to CEH (2001).

1. a probabilistic estimate of belief in each sink proposition;

2. conditional probability estimates describing the strength of relationship
between propositions joined by a link; and

3. for Interval Probability Theory only, pair-wise dependency estimates at each
node in the diagram.

Whilst the technical analysis involved quantified methods these did not pro-
duce results in a format that could be directly input into the influence diagram.
The final stage of constructing a belief measure for each source proposition was
therefore based on expert judgement in a workshop session involving seven experts
(four from CEH and three from the Met Office). In conducting this type of expert
elicitation it is important to, as far as possible, guard against the biases that have
been widely observed in the estimation of probabilities from individuals or groups
(Merkhoffer, 1987; Bell et al., 1988; Cooke, 1991; Ferrell, 1994). The literature
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Figure 3. Curves to map from linguistic assessment of belief and confidence to interval probabilities.

on elicitation and combination of interval estimates is less developed but subjects
once trained have been shown to cope effectively with the measurement of ev-
idential support and make consistent assessments (Wallsten et al., 1983; Curley
and Golden, 1994). Genest and Zidek (1986) and Sentz and Ferson (2002) provide
guidance on combination of evidence from multiple sources. For each judgement
the seven experts conferred in order to reach a consensus view on the weight of
evidence and degree of uncertainty. Whilst for the majority of judgements experts
were in broad agreement, for some of the propositions the supporting science or
evidence was contested, resulting in disagreement about the interval representation
of belief. In these cases an interval reflecting the range of conflicting estimates was
assigned.

A method, analogous to fuzzy membership functions, was used to map from
linguistic estimates of strength of belief in a proposition and confidence in that
assessment to interval point probabilities (Figure 3). Two linguistic judgements
are required to extract an interval from Figure 3: an assessment of belief and
an assessment of confidence in that belief. The horizontal axis in Figure 3 is
a probability scale, so an interval probability is an interval of real numbers on
this scale. Each of the five degree of belief (‘very low’, ‘low’, ‘medium’, ‘high’
and ‘very high’) has an associated function (drawn as a curve in Figure 3) reach-
ing a maximum value of unity on the vertical axis at the point probability that
reflects the given degree of belief held with ‘very high’ confidence. The verti-
cal axis in Figure 3 is sub-divided into five confidence levels (‘very low’, ‘low’,
‘medium’, ‘high’ and ‘very high’), which relate to the credibility or pedigree of
the evidence. The interval measure of belief associated with a given proposition is
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obtained at the intersection of the relevant confidence level with the relevant belief
curve.

The measures of confidence were interpreted subjectively, based on scientific
experience. As an example, consider a hypothesis of increases in flood frequency:
An upwards trend in 50 years of quality-controlled river flow data that was sig-
nificant at the 99% level would be “high” belief in the hypothesis with “high”
confidence. The same trend in 20 years of data would be “medium” or “low” belief
with “high” confidence. A significant trend in long but poor-quality data would be
“high” belief with “low” confidence.

In order to compare the different influence diagrams, the same interval proba-
bilities (unconditional and conditional) were input into the SLP and IPT calcula-
tions. These probability intervals were converted to point probabilities input into
the Bayesian belief network by setting P(A) = (S,(A) + Sp(A))/2. The belief
estimates for all of the source propositions are listed in Table II.

In situations where influence diagrams are used to represent phenomena for
which there is a large quantity of statistical data, the conditional probabilities re-
quired in the network can be estimated from data. This is not the case in the
analysis of climate-related problems, where data are scarce and only of partial rel-
evance. Under these circumstances conditional probabilities have to be estimated
by experts, based on their knowledge of the relationships between propositions. Of
particular significance are the conditional probabilities associated with the links
at the top of the diagram. Proposition B, is the most influential diagnostic of the
source proposition H: the 2000 flood events cannot be a manifestation of climate
change if hydrological climate change is not occurring. Proposition B; is of some
influence, since a highly unusual event strengthens the case for climate change, but
is not a necessary condition, because the 2000 flood events were potentially part
of a changing climate regardless of their size. This causal reasoning is reflected in
the conditional probability assignments: P(H |By A By) = 1.0, P(H|By A—Bj) =
0.15, P(H|=By A By) =0.9, P(H|—=B; A —=B) =0.0.

3.1. RESULTS

The results from the influence diagram analysis of the proposition ‘The
October/November 2000 flood events were a manifestation of hydrological climate
change’ are listed in Table III. Figure 4 illustrates the proposition hierarchy im-
plemented using Interval Probability Theory. The modelling tool that was adopted
for the analysis (Davis and Hall, 2003) displays interval probabilities as graphical
‘Italian flag’ icons in which the left hand green proportion represents the belief in
a proposition, the right hand red proportion represents belief in its negation and the
white represents the uncertainty.

The results from the three different mathematical inference mechanisms demon-
strate considerable uncertainty in the proposition that the October—November 2000
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TABLE II
Linguistic assessments and numerical belief measures of sink propositions

Item of evidence

(shorthand) Support Confidence Interval probability  Point probability
Climate models Good Medium [0.63, 0.88] 0.76
England & Wales series  Poor Low [0.06, 0.47] 0.27
Extended duration AM  Good Medium [0.63, 0.88] 0.76
Gauge assessment Good High [0.70, 0.81] 0.76
Groundwater Good Medium [0.63, 0.88] 0.76
Group flow gauges Very good  High [0.95, 1.00] 0.98
High flow series Good Medium [0.63, 0.88] 0.76
Historical extremes Poor Medium [0.13, 0.37] 0.25
Ind. flow likelihood Poor High [0.19, 0.30] 0.25
Individual flow ranks Good Low [0.53, 0.94] 0.74
Instantaneous AM Medium Low [0.29,0.71] 0.50
Long-term rainfall Medium Low [0.29,0.71] 0.50
Long-term records 2 Poor Low [0.06, 0.47] 0.27
National rain RPs Very good Medium [0.88, 1.00] 0.94
National rankings Very good  High [0.95, 1.00] 0.98
1970 split test Medium Low [0.29,0.71] 0.50
POT data Poor Low [0.06, 0.47] 0.27
PMSL Good Medium [0.63, 0.88] 0.76
Radar assessment Poor Low [0.06, 0.47] 0.27
Regional rainfall Very good  High [0.95, 1.00] 0.98
River flow ranges Good Medium [0.63, 0.88] 0.76
Short-term records Medium High [0.45, 0.55] 0.50
SMDs Very good  High [0.95, 1.00] 0.98
SSTs Good Medium [0.63, 0.88] 0.76

floods were a manifestation of hydrological climate change. The proposition re-
ceives a support of 0.58 from the Bayesian belief network, [0.21, 0.86] from SLP
and [0.37,0.72] from IPT. The probability measures for proposition B indicate that
the 2000 flooding and rainfall were highly unusual in the historical context. The
existence of hydrological climate change is much less certain, with nearly as much
evidence against Proposition B, as for it. Support for the proposition that ‘Upward
trends are present in historical flooding and rainfall data’ (shorthand: ‘statistical
trends’) is 0.49 from the Bayesian belief network, [0.10, 0.68] from SLP and [0.23,
0.65] from IPT. The three results demonstrate more belief against the proposition
than in favour of it, and SLP and IPT indicate major uncertainty. Lack of strong
statistical trends has a dominant effect on all propositions that are derived from
it. Short-term rainfall and river flow records show some modest positive trends,
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TABLE III
Derived belief measures for non-sink propositions
Bayes SLP IPT
Source proposition 0.58 [0.21, 0.86] [0.37,0.72]
Proposition B, 0.89 [0.78, 0.94] [0.82,0.94]
Proposition B, 0.52 [0.13, 0.82] [0.28, 0.68]
Data ranges 0.64 [0.45, 0.75] [0.48, 0.76]
General records 0.51 [0.24, 0.80] [0.32, 0.66]
Individual flow gauges 0.71 [0.47, 0.83] [0.47, 0.83]
Long-term records 1 0.52 [0.21, 0.72] [0.27, 0.74]
Main rain events 0.74 [0.52,0.81] [0.57, 0.81]
National rainfall 0.94 [0.89, 0.98] [0.89, 0.98]
Overall rainfall 0.95 [0.92,0.99] [0.92, 0.99]
Rainfall indicators 0.95 [0.86, 0.98] [0.90, 0.97]
Rainfall trends 0.53 [0.24, 0.65] [0.28, 0.67]
River flow indicators 0.85 [0.75, 0.90] [0.75,0.91]
River flow trends 0.72 [0.19, 0.84] [0.28, 0.79]
Statistical trends 0.49 [0.10, 0.68] [0.23, 0.65]
Synoptic meteorology 0.75 [0.55, 0.85] [0.60, 0.85]

but the trend in longer records, which carries more weight, is much less clear. In
particular, no trends emerge in the ‘England & Wales series’ of five major rivers
over a variety of durations.

The output from the influence diagram analysis leads to the following conclu-

sions:

1.

2.

The 2000 flooding and rainfall was extreme, and it is highly likely that the
2000 events were ‘unusual’ in the historical context.

The existence of long-term hydrological climate change in the UK, at least
regarding 2000-type events with long duration and wide spatial extent, is at
best uncertain.

. Evidence in support of hydrological climate change provided by climate

model scenarios and the, in some respects, unprecedented nature of the 2000
events, is counteracted, if not outweighed, by an overall lack of clear statistical
trends.

Given the uncertainty surrounding Proposition B,, it is impossible to de-
termine whether or not the October/November flooding and rainfall was a
manifestation of climate change.

The influence diagram in Figure 4 provides a readily assimilated picture
of the sources of uncertainty and conflict in the evidence, illustrating that the
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Figure 4. Interval probability influence diagram (three-shaded bars are a graphical representation of
the interval probability numbers). See Figure 2 for definition of Source proposition and Propositions
B 1 and BQ.

non-committal conclusions are not due to scientists sitting on the fence, but due to
insufficient evidence in key arguments that relate the available data to the climate
hypothesis. Thus, whilst the results are not conclusive they do provide very useful
insights.

There is inevitably a degree of judgement involved in how propositions in an
influence diagram, in particular the higher level more abstract propositions, are
defined and related. In principle this should not result in different inferences for the
parent proposition, as the conditional probabilities connecting nodes in the diagram
should reflect the definition of those nodes. In practice, an alternative structure to
the one presented in Figure 2 with conditional probabilities elicited from the same
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experts might be expected to yield slightly different results, because of the variability
in expert judgements and biases that depend upon how propositions are stated. One
would, nonetheless, expect the same key paths of influence and areas of uncertainty
to emerge.

3.2. COMPARISON OF ALTERNATIVE INFLUENCE DIAGRAMS

There are two substantial differences between the three approximate reasoning
mechanisms implemented:

1. Conventional Bayesian belief networks use point probabilities whereas SLP
and IPT use interval probabilities.

2. IPT uses a dependency measure whereas Bayesian belief networks and SLP
assume conditional independence between predecessor propositions.

The extension from point probabilities to interval probabilities is attractive in
being able to express ambiguity in probabilistic belief statements (Henkind and
Harrison, 1988; Shafer and Pearl, 1990; Krause and Clark, 1993). As discussed pre-
viously, this is particularly attractive in situations where evidence is scarce so experts
wish to express legitimate indecision, perhaps verging on total ignorance, in their
probabilistic estimates. For communication purposes, the simple graphical repre-
sentation of interval probabilities in Figure 4 gives a convenient overview of areas
of belief and uncertainty in a complex problem, which would be hard to commu-
nicate as succinctly in linguistic or indeed numerical terms. If point probabilities
are entered in SLP it will generate the same results as the corresponding Bayesian
belief network.

The implementation of influence diagrams is assisted by the availability of
off-the-shelf computer packages, of which there are several for Bayesian belief
networks and an increasing number for interval versions. Whilst convenient in some
respects users should be wary of the theoretical commitments they are making in
adopting a particular approach, which this paper has endeavoured to highlight. The
case studied in this paper, in which each proposition could take one of two states
(‘true’ or ‘false’), was straightforward to implement in each of the tools adopted, but
readers should beware that populating belief networks in which variables can take
multiple states can be very time-consuming and, if based on expert elicitation rather
than on estimation of probabilities from data, may exceed the ability of experts to
make sufficient and consistent judgements.

The introduction of a dependency measure in IPT could be regarded as a violation
of the principles of uncertainty propagation in graphical structures, where absence
of a link connecting two nodes indicates conditional independence (the Markov
condition). However, as the example studied here indicates, in a diagnostic mode of
reasoning it is hard to reflect dependencies between different items of evidence that
are ultimately related to common phenomena (hydrology and, potentially, climate
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change). Modelling all the underlying sources of the dependencies will often
quickly become unwieldy and may be recursively complex (Ferson et al., 2004).
The dependency measure avoids inappropriate independence assumptions, though
it does add to the number of probability measures that have to be estimated from
data or elicited from experts. It is a convenient means of exploring different depen-
dence relationships when the exact nature of dependence is uncertain. Apart from
the dependence measure, IPT is based on the same interval calculations as SLP,
so if independence is assumed in IPT it generates the same probability inferences
as SLP.

4. Conclusions

The use of influence diagrams for evidential reasoning applied to a prob-
lematic climate-related proposition has been demonstrated. The influence dia-
grams have provided a structured commentary on the conclusion that the events
of October—November 2000 were extreme, but cannot in themselves be at-
tributed to climate change. Three alternative inference mechanisms have been
tested on the same influence diagram structure. Support Logic Programming
and Interval Probability Theory both deal with interval bounds on an unknown
probability measure and are attractive in being able to represent in a straightfor-
ward way legitimate imprecision in our ability to estimate probabilities. This is
particularly useful in situations where evidence is scarce or ambiguous. Inter-
val Probability Theory has the added attraction of being able to represent de-
pendency relationships between evidence that are not implied by the network
structure.

Influence diagrams can help to synthesize complex and contentious argu-
ments into a relatively simple, yet evidence-based, graphical output. The graphical
structure can formalise expert reasoning, facilitating dialogue between experts, pol-
icy makers and other decision stakeholders. In the case of the October—November
2000 floods in the UK, influence diagrams have demonstrated sources of uncer-
tainty and conflict in the available evidence. The analysis has demonstrated how
the reluctance of scientists to commit themselves to conclusions about the floods
was due to insufficient evidence in the pivotal arguments that related available data
via expert reasoning to the hypothesis that the events were a manifestation of cli-
mate change. Thus the process of constructing, populating and testing an influence
diagram has generated valuable insights.
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