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The extension of coordinate–velocity space with noncommutative algebra structure
is proposed. For action of fractional mechanics considered on such a space the respec-
tive Euler–Lagrange equations are derived via minimum action principle. It appears that
equations of motion in the noncommutative framework do not mix left and right deriva-
tives thus being simple to solve at least in the linear case. As an example, two models of
oscillator with fractional derivatives are studied.
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1 Introduction

In recent years fractional differential and integral calculus (see [1] for overview
of results) was applied in various fields of physics: for example in different problems
of transport theory ([2–5] and references therein), in models of nonconservative
mechanical systems [6, 7]; in field theory the Klein–Gordon and wave equations
with fractional derivatives were studied in [8] and quantum mechanics with frac-
tional derivatives was developed via path integral method [9]. In classical mechanics
with fractional derivatives [6, 7] Euler–Lagrange equations were obtained by mini-
mum action principle. It appears that these equations mix left and right fractional
derivatives, even if the initial action depends only on one type of them.

The aim of the present paper is to show that on the changed, noncommutative
coordinate–velocity space we can prevent mixing of derivatives and arrive at a new
type of equations of motion. Let us start with a brief review of some properties of
fractional derivatives and previous results of fractional mechanics.

The left and right fractional Riemann–Liouville derivatives are defined as follows
for m < Reα < m+ 1:

bD
α
Rf(t) =

1
Γ(m+ 1− α)

(
− d
dt

)m+1 ∫ b

t

f(s)
(s− t)α−m

ds ,

aD
α
Lf(t) =

1
Γ(m+ 1− α)

(
d
dt

)m+1 ∫ t

a

f(s)
(t − s)α−m

ds .
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Throughout the paper we shall use notation: aD
α
L = Dα

L and bD
α
R = Dα

R. Both
derivatives are connected via the reflection operator Qf(t) = f(a+ b− t):

Dα
L = QDα

RQ . (1)

They also obey the formula of integration by parts [1]

∫ b

a

[Dα
Lf(t)] · g(t)dt =

∫ b

a

f(t) ·Dα
Rg(t)dt (2)

provided the respective boundary conditions are fulfilled for function f or g:

f (k)(a) = f (k)(b) = 0 , g(k)(a) = g(k)(b) = 0 , k = 0, . . . ,m . (3)

We see that in this formula left and right derivatives are mixed contrary to the
classical formula of integration by parts, where only classical first order derivative
appears.

In the mentioned above papers on fractional mechanics the action depending
on fractional derivatives of coordinates was considered:

S =
∫ b

a

L ({qr
n, Q

r
n′}, t) dt ,

where the generalized coordinates can be defined in sequential form (see [7]) with
qr
n := (Dα

L)
nxr(t), Qr

n′ := (Dβ
R)

n′
xr(t) or in non-sequential form proposed by Riewe

[6] qr
n := Dαn

L xr(t), Qr
n′ := D

βn′
R xr(t) (where r = 1, . . . , R denotes the number of

fundamental coordinates).
After application of properties of fractional derivatives from the minimum ac-

tion principle condition: δS(�η) = 0 the generalized Euler–Lagrange equations were
obtained for the sequential case [7]:

∂L

∂qr
0

+
N∑

n=1

(Dα
R)

n ∂L

∂qr
n

+
N ′∑

n′=1

(Dβ
L)

n′ ∂L

∂Qr
n′

= 0

and for the non-sequential case [6]:

∂L

∂qr
0

+
N∑

n=1

Dαn

R

∂L

∂qr
n

+
N ′∑

n′=1

D
βn′
L

∂L

∂Qr
n′

= 0 .

Thus even for Lagrangian depending initially on one type of derivatives we obtain
Euler–Lagrange equations with mixed left and right fractional derivatives. This
feature is connected with mixing derivatives in the formula of integration by parts
in fractional calculus (2). The partial solution of this difficulty was proposed in [7]
in the form of fractional mechanics with symmetric derivatives:

Dα := 1
2

(
Dα

L + (−1)mDα
R

)
.
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The symmetric derivative obeys the following rule of integration by parts for m <
Reα < m+ 1: ∫ b

a

[
Dαf(t)

]
· g(t)dt = (−1)m

∫ b

a

f(t) · Dαg(t)dt

provided the boundary conditions (3) are fulfilled. When the action depends only
on the symmetric derivatives (with generalized coordinates defined as follows: q̃r

n =
(Dα)n xr(t)) by the minimal action principle, we arrive at the set of generalized
Euler–Lagrange equations including only the initial symmetric derivatives. Still,
the basic equation of models of this type: Dαx(t) = f(t) is very difficult to solve in
general case for arbitrary α and f .

Let us change the algebra of functions on coordinate–velocity space in such a
way as to obtain the integration by parts formula without mixing different types
of derivatives. The appropriate framework includes extension of the space and the
new algebra is noncommutative.

2 Euler−Lagrange equations for models on noncommutative extended
algebra of functions

2.1 Noncommutative extended algebra of functions

Let us introduce the new product using the reflection operator from Section 1:

f • g = fQg = f(Qg)Q .

This product has the following properties:

– it is associative
(f • g) • h = f • (g • h) ;

– Q is the left and right neutral element

f •Q = fQQ = Q • f = QQf = f ;

– Q

(
1
f

)
is the left and right inverse element for f �= 0

f •Q

(
1
f

)
= Q

(
1
f

)
• f = Q ;

– it is noncommutative
f • g �= g • f ;

– under the integral the product is commutative (we apply (Qdt) = −dt and
Qf • g = (Qf) • (Qg)): ∫ b

a

f • g dt =
∫ b

a

g • f dt . (4)
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Applying the commutation relation for fractional derivatives and the reflection
operator (1) we obtain the formula of integration by parts for the new product:∫ b

a

f • (Dα
Lg) dt =

∫ b

a

(Dα
Lf) • g dt ,

∫ b

a

f • (Dβ
Rg) dt =

∫ b

a

(Dβ
Rf) • g dt

(5)

provided the respective boundary conditions (3) are fulfilled. Let us notice that it is
analogous to the classical formula and does not mix two types of fractional deriva-
tives. In order to derive the differential calculus on extended algebra of functions
we define the derivative on monomials:

δ

δq
(q•n) := nq•(n−1) .

This derivative is connected with partial derivative on classical algebra of functions:

δ

δqi
L•(q0, . . . , qN ) = T−1S

∂

∂qi
TS L•(q0, . . . , qN ) ,

where S is the symmetrizer and the discrete operator T is the switch operator
acting as follows on symmetric products:

T (f • g + g • f) = fg + gf , TQ = 1 , T1 = 1 .

The relation connecting new derivative with partial derivative on commutative
algebra of functions yields the corresponding formula for the differential of first
order:

∆L•(q0, . . . , qN )(η0, . . . , ηN ) =

[
N∑

i=0

(
S

δ

δqi
L•

)
• ηi

]
sym

,

when (η0, . . . , ηN ) is a variation of the vector (q0, . . . , qN ).
After integration and application of the property (4) we obtain the following

variation of the action:

δS(�η) =
∫ b

a

∆L•(q0, . . . , qN )(η0, . . . , ηN ) dt =
∫ b

a

[
N∑

i=0

(
δ

δqi
L•

)
• ηi

]
dt ,

which shall yield the required equations of motion.

2.2 Euler�Lagrange equation for a simple model

Let us apply the differential calculus on the proposed noncommutative algebra to
the case of Lagrangian depending only on first order of the fractional derivative of
coordinate x:

S =
∫ b

a

L•(q0, q1) dt ,
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where for m < Reα < m+ 1; we define q0 = x and q1 = Dα
Lx.

The variation of the action looks as follows:

δS =
∫ b

a

∆L•(q0, q1)(η0, η1) dt =
∫ b

a

(
δL•
δq0

• η0 +
δL•
δq1

• η1

)
dt .

As η1 = Dα
Lη0, we can rewrite the variation using the formula of integration by

parts (5) for variation η0 fulfilling the respective boundary conditions (3):

δS =
∫ b

a

(
δL•
δq0

+Dα
L

δL•
δq1

)
• η0 dt

and obtain Euler–Lagrange equations for the model containing only left fractional
derivative:

δL•
δq0

+Dα
L

δL•
δq1

= 0 .

2.3 Euler�Lagrange equations: a general case

Let us now pass to the general case and consider the action depending on left
fractional derivatives:

S =
∫ b

a

L•(qr
0, . . . , q

r
N ) dt ,

where the generalized coordinates look as follows for sequential and nonsequential
case respectively:

qr
n = (Dα

L)
nxr , r = 1, . . . , R , n = 0, . . . , N ,

qr
n = Dαn

L xr , r = 1, . . . , R , n = 0, . . . , N .

Euler–Lagrange equations for both models contain only left fractional derivatives
(r = 1, . . . , R) for sequential model

δL•
δqr

0

+
N∑

n=1

(Dα
L)

n δL•
δqr

n

= 0 ,

as well as for non-sequential model

δL•
δqr

0

+
N∑

n=1

Dαn

L

δL•
δqr

n

= 0 .

Let us finally notice that in the noncommutative framework Euler–Lagrange equa-
tions depend on both types of derivatives only in the case, when they both appear
in the initial action [10].
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3 Applications

3.1 Example: Fractional harmonic oscillator

The fractional analog of harmonic oscillator for m < Reα < m+1 has the following
action:

S =
∫ b

a

(
1
2 Dα

Lx •Dα
Lx+ 1

2 ω2x • x
)
dt .

Using the developed method we derive Euler–Lagrange equation[
(Dα

L)
2 + ω2

]
x = 0 . (6)

When the solution x is known, the function QxQ solves the advanced version of
the obtained equation of motion[

(Dα
R)

2 + ω2
]
QxQ = 0 .

The equation (6) can be solved by factorization to the following fractional equations:

Dα
L x = iωx , Dα

L x = −iωx .

Thus the full solution of this type oscillator equation is a combination of first order
derivatives of Mittag–Leffler functions:

x = C1x1 + C2x2 , x1,2(t) =
d
dt

∞∑
k=0

(±iω)k

Γ(1 + αk)
(t − a)αk .

When α −→ 1+, we recover classical equation and solution:

x′′ + ω2x = 0 , x = C1x1 + C2x2 ,

x1,2(t) =
d
dt

∞∑
k=0

(±iω)k

k!
(t − a)k = ±iω

∞∑
k=0

(±iω)k

k!
(t− a)k .

3.2 Example: Fractional version of classical harmonic oscillator

Let us now discuss the following action:

S =
∫ b

a

(
1
2 (D

1/n
L )nx • (D1/n

L )nx+ 1
2 ω2x • x

)
dt .

The corresponding Euler–Lagrange equation:[
(D1/n

L )2n + ω2
]
x = 0

for part of trajectories, where the composition rule works [1] coincides with classical
equation for harmonic oscillator. Let us notice that the operator of this equation is
a composition of the following fractional differential operators of order 1/n:

D
1/n
L x = εkx , εk = 2n

√
−ω2 , k = 1, . . . , 2n .
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Thus the general solution of initial equation is a combination of 2n basic first order
derivatives of Mittag–Leffler functions:

x(t) =
2n∑

k=1

Ckxk(t) ,

xk(t) =
d
dt

∞∑
l=0

(εk)l

Γ(1 + l/n)
(t − a)l/n .

Basic real solutions look as follows (k = 1, . . . , n):

ε2n−k−1 = εk , x2n−k−1(t) = xk(t) ,

yk(t) = 1
2 [xk(t) + x2n−k−1(t)] , yn+k(t) = 1

2i [xk(t)− x2n−k−1(t)] .

4 Final remarks

In the paper the Lagrangian part of mechanics with fractional derivatives was
developed on noncommutative extended coordinate–velocity space. Similarly the
Hamiltonian mechanics for Hamiltonian in the form

H =
n−1∑
k=0

(pk • qk+1)sym − L

can be derived [10]. It appears that in the proposed formalism it is non-conserved
as in other fractional mechanical models [6, 7]. The next step will be Hamilton–
Jacobi theory and canonical quantization of fractional mechanical systems. Let us
finally notice that classical equations and solutions are recovered via continuous
limit, while the connection between classical and noncommutative action is still
under investigation.
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