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Jonathan Brundan and Alexander Kleshchev recently introduced a new family of pre-
sentations for the Yangian Y (gln) of the general linear Lie algebra gln. In this article, we
extend some of their ideas to consider the Yangian Y (glm|n) of the Lie superalgebra glm|n.
In particular, we give a new proof of the result by Nazarov that the quantum Berezinian
is central.
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1 Introduction

1.1 Definition of Yangian

The Yangian Y (glm|n) is defined in [1] to be the Z2-graded associative algebra over

C with generators t(r)
ij and certain relations described below. We define the formal

power series
tij(u) = δij + t

(1)
ij u

−1 + t(2)ij u
−2 + · · ·

and a matrix

T (u) =
m+n∑
i,j=1

tij(u)⊗Eij (−1)j(i+1) , (1)

where Eij is the standard elementary matrix and i is the parity of the index i.
In analogy with the usual Yangian Y (gln) (see for example [2–4]), the defining
relations are expressed by the matrix product

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) ,

where
R(u− v) = 1− 1

(u− v) P12

and P12 is the permutation matrix: P12 =
∑m+n

i,j=1 Eij ⊗ Eji(−1)j . Then we have
the following equivalent form of the defining relations:

[tij(u), tkl(v)] =
(−1)ij+ik+jk

(u− v)
(
tkj(u)til(v)− tkj(v)til(u)

)
.

∗) Presented at the International Colloquium “Integrable Systems and Quantum Symmetries”,
Prague, 16–18 June 2005.
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Throughout this article we observe the following notation for entries of the inverse
of the matrix T (u):

T (u)−1 =:
(
t′ij(u)

)n
i,j=1

.

A straightforward calculation yields the following relation in Y (glm|n):

[tij(u), t′kl(v)] =
(−1)ij+ik+jk

(u− v)

(
δkj

m+n∑
s=1

tis(u)t′sl(v)− δil
m+n∑
s=1

t′ks(v)tsj(u)

)
. (2)

1.2 Gauss decomposition of T (u)

In [5], the Drinfeld presentation is described in terms of the quasideterminants of
Gelfand and Retakh [6, 7]. We make use of the analogous set of generators for the
Yangian Y (glm|n). First we recall the definition of quasideterminant.

Definition 1.1. Let X be a square matrix over a ring with identity such that its
inverse matrix X−1 exists, and such that its (j, i)th entry is an invertible element
of the ring. Then the (i, j)th quasideterminant of X is defined by the formula

|X |ij =
(
(X−1)ji

)−1
.

Equivalently, we may define quasideterminants inductively as follows.
If X = (x11) is a (1× 1)-matrix, then there is only one quasideterminant of X ;

this is |X |11 = x11. For n > 1, we have

|X |ij = xij −
∑

k �=i,l�=j

xik(|Xij |lk)−1xlj ,

where Xij is the matrix obtained from X by removing both the ith row and the
jth column. We also use the following notation for quasideterminants:

|X|ij =:

����������

x11 · · · x1j · · · x1n

· · · · · ·
xi1 · · · xij · · · xin

· · · · · ·
xn1 · · · xnj · · · xnn

����������
.

The matrix T (u) defined in (1) has the following Gauss decomposition in terms of
quasideterminants (by Theorem 4.96 in [6]; see §5 in [5]):

T (u) = F (u)D(u)E(u)

for unique matrices

D(u) =

0
BBBB@

d1(u) · · · 0

d2(u)
...

...
. . .

0 · · · dm+n(u)

1
CCCCA ,
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E(u) =

0
BBBB@

1 e12(u) · · · e1,m+n(u)
. . . e2,m+n(u)

. . .
...

0 1

1
CCCCA, F (u) =

0
BBBB@

1 · · · 0

f21(u)
. . .

...
...

. . .

fm+n,1(u) fm+n,2(u) · · · 1

1
CCCCA,

where

di(u) =

��������

t11(u) · · · t1,i−1(u) t1i(u)
...

. . .
...

ti1(u) · · · ti,i−1(u) tii(u)

��������
,

eij(u) = di(u)
−1

����������

t11(u) · · · t1,i−1(u) t1j(u)
...

. . .
...

...
ti−1,i(u) · · · ti−1,i−1(u) ti−1,j(u)

ti1(u) · · · ti,i−1(u) tij(u)

����������
,

fji(u) =

����������

t11(u) · · · t1,i−1(u) t1i(u)
...

. . .
...

...
ti−1,1(u) · · · ti−1,i−1(u) ti−1,i(u)

tji(u) · · · tj,i−1(u) tji(u)

����������
di(u)

−1.

It is easy to recover each generating series tij(u) by multiplying together and taking
commutators of the series di(u), ej(u) := ej,j+1(u), and fj(v) := fi+1,i(u) for
1 ≤ i ≤ m + n, 1 ≤ j ≤ m + n − 1 (see §5 of [5]). Thus the Yangian Y (glm|n) is
generated by the coefficients of the latter.

1.3 Some useful maps

Here we define some automorphisms of the Yangian Y (glm|n) and homomorphisms
between Yangians, so that we may refer to them in the next section.
Let ωm|n : Y (glm|n)→ Y (glm|n) be the automorphism defined by

ω : T (u) 	→ T (−u)−1 .

Let τ : Y (glm|n)→ Y (glm|n) be the automorphism defined by

τ(tij(u)) = tji(−u)× (−1)i(j+1) .

Let ρm|n : Y (glm|n)→ Y (gln|m) be the isomorphism defined by

ρm|n(tij(u)) = tm+n+1−i,m+n+1−j(−u) .

Let ϕm|n : Y (glm|n) ↪→ Y (glm+k|n) be the inclusion which sends each generator

t
(r)
ij ∈ Y (glm|n) to the generator t

(r)
k+i,k+j in Y (glm+k|n).

Finally, let ψk : Y (glm|n)→ Y (glm+k|n) be the injective homomorphism defined
by

ψk = ωm+k|n ◦ ϕm|n ◦ ωm|n . (3)
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This last homomorphism is useful for studying quasideterminants, so we discuss it
in some detail with the following remarks.

Remark 1.1. We can calculate ψk(tij(u)) explicitly for any 1 ≤ i, j ≤ m+ n (see
Lemma 4.2 of [5]):

ψk(tij(u)) =

����������

t11(u) · · · t1k(u) t1,k+j(u)
...

. . .
...

...
tk1(u) · · · tkk(u) tk,k+j(u)

tk+i,1(u) · · · tk+i,k(u) tk+i,k+j(u)

����������
.

In particular, this means that for k ≥ 1, we have ψk(d1(u)) = dk+1(u), ψk(e1(u)) =
ek+1(u), and ψk(f1(u)) = fk+1(u). Furthermore, by (3), we have for any k, l ≥ 1
that ψk ◦ ψl = ψk+l, so we may generalize this observation to give for instance
ψk(dl(u)) = dk+l(u).

Remark 1.2. Notice that the map ψk sends t′ (r)
ij ∈ Y (glm|n) to the element t′ (r)

k+i,k+j

in Y (glm+k|n). Thus the subalgebra ψk(Y (glm|n)) is generated by the elements

{t′ (r)
k+s,k+t}n

s,t=1. Then, by (2), all elements of this subalgebra commute with those

of the subalgebra generated by {t(r)
ij }k

i,j=1. By Remark 1.1, this implies in particular
that for any i, j ≥ 1, the quasideterminants di(u) and dj(v) commute.

2 The quantum Berezinian

The quantum Berezinian was defined by Nazarov [1] and plays a similar role in
the study of the Yangian Y (glm|n) as the quantum determinant does in the case of
the Yangian Y (gln) (see [3]).

Definition 2.1. The quantum Berezinian is the following power series with coef-
ficients in the Yangian Y (glm|n):

bm|n(u) :=
X

τ∈Sm

sgn(τ ) tτ(1)1(u)tτ(2)2(u− 1) · · · tτ(m)m(u−m+ 1)

×
X

σ∈Sn

sgn(σ) t′m+1,m+σ(1)(u−m+ 1) · · · t′m+n,m+σ(n)(u−m+ n) .

For convenience, let us write:

Cm(u) :=
∑

τ∈Sm

sgn(τ)tτ(1)1(u)tτ(2)2(u− 1) · · · tτ(m)m(u−m+ 1) .

It is clear that Cm(u) is an element of the subalgebra of Y (glm|n) generated by the

set
{
t
(r)
ij

}
1≤i,j≤m;r≥0

. This subalgebra is isomorphic to the Yangian Y (glm) of the

Lie algebra glm by the inclusion Y (glm) → Y (glm|n) which sends each generator

t
(r)
ij in Y (glm) to the generator of the same name in Y (glm|n). Moreover, Cm(u) is
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the image under this map of the quantum determinant of Y (glm) (see [3, 5]). Then
it is well known (see Theorem 2.32 in [4]) that we have:

Cm(u) = d1(u)d2(u− 1) · · ·dm(u−m+ 1) .

We can extend this observation as follows:

Theorem 1. We can write the quantum Berezinian as follows:

bm|n(u) = d1(u) d2(u− 1) · · ·dm(u−m+ 1)
×dm+1(u−m+ 1)−1 · · · dm+n(u−m+ n)−1 .

Proof. Note that the second part of the expression for bm|n(u) in Definition 2.1 is
the image under the isomorphism ρn|m ◦ ωn|m : Y (gln|m)→ Y (glm|n) of∑

σ∈Sn

sgn(σ)tn,σ(n)(u−m+ 1) · · · t2,σ(2)(u−m+ n− 1) t1,σ(1)(u+m− n) , (4)

where we follow in this expression (4) the convention for denoting generators in
the Yangian Y (gln|m). We recognise (by comparing with (8.3) of [5]) that this is
Cn(u−m+n), the image of the quantum determinant of Y (gln) under the natural
inclusion Y (gln) ↪→ Y (gln|m). So to verify the claim we calculate the image of
Cn(u −m+ n) under this map explicitly in terms of the quasideterminants di(v).
Applying Proposition 1.6 of [7], we find that the image of di(v) in Y (gln|m) is
(dm+n+1−i(v))−1 in Y (glm|n). This gives the desired result.

The following theorem is a result of Nazarov [1]. We give a new proof.

Theorem 2. The coefficients of the quantum Berezinian (2.1) are central in the
algebra Y (glm|n).

Proof. By Remark 1.2, the quantum Berezinian bm|n(u) commutes with di(v) for
1 ≤ i ≤ m+n. In addition, if we know that the quantum Berezinian commutes with
ei(v), then by applying the automorphism τ , we find that it also commutes with
fi(−v). So we need to show that bm|n(u) commutes with ei(v) for each i between
1 and m+ n− 1. We break this problem into three cases:

Case 1: 1 ≤ i ≤ m− 1. By Theorem 7.2 in [5], ei(v) commutes with Cm(u). On
the other hand, ei(v) is an element of the subalgebra generated by {t(r)

jk }1≤j,k≤m

and so by Remark 1.2 it commutes with dm+s(u−m+ s)−1 = t′m+s,m+s(u−m+ s)
for 1 ≤ s ≤ n.

Case 2: m+1 ≤ i ≤ m+n− 1. Applying Propositions 1.6 and 1.4 of [7] in turn
to fi(v), we find an alternative expression:

fi(v) =

−

��������

t′i+1,i+1(v) · · · t′i+1,m+n(v)

...
...

t′m+n,i+1(v) · · · t′m+n,m+n(v)

��������

−1

×

����������

t′i+1,i(v) t′i+1,i+2(v) · · · t′i+1,m+n(v)

t′i+2,i(v) t′i+2,i+2(v) · · ·
...

...
. . .

...
t′m+n,i(v) · · · t′m+n,m+n(v)

����������
.
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Then, for m+ 1 ≤ i ≤ m+ n− 1, we have
ei(v) = ρn|m ◦ ωn|m

(
−fm+n−i(v)

)
.

Now apply this isomorphism to the results of Case 1 in the Yangian Y (gln|m).
Case 3: i = m. Consider the Yangian Y (gl1|1) first. For this algebra we have

b1|1(u) = d1(u)d2(u)−1 and we would like to show that it commutes with e1(v). So
it will suffice to show

d1(u)e1(v)d2(u) = d2(u)e1(v)d1(u) . (5)

We have �
t11(u) t12(u)
t21(u) t22(u)

�
=

�
d1(u) d1(u) e1(u)
f1(u)d1(u) f1(u)d1(u)e1(u) + d2(u)

�
, (6)

�
t′11(v) t

′
12(v)

t′21(v) t
′
22(v)

�
=

�
d1(v)

−1+ e1(v)d2(v)
−1f1(v) −e1(v) d2(v)

−1

−d2(v)
−1f1(v) d2(v)

−1

�
. (7)

An application of (2) gives

(u− v)[t11(u), t′12(v)] = t11(u)t′12(v) + t12(u)t′22(v) .
We substitute in this the expressions from (6) and (7), then cancel d2(v) and rear-
range to find

(u− v)e1(v)d1(u) = (u− v − 1)d1(u)e1(v) + d1(u)e1(u) .

Similarly, by considering the commutator [t12(u), t′22(v)], we derive the relation

(u− v)e1(v)d2(u) = (u− v − 1)d2(u)e1(v) + d2(u)e1(u) .

From these relations it is clear that (5) holds.
Now we return our attention to the general Yangian Y (glm|n). By similar

appeals to Remark 1.2 as in the first case, we see that em(v) commutes with
d1(u) · · · dm−1(u − m + 2) and with dm+2(u − m + 2)−1 · · ·dm+n(u − m + n)−1.
So we need only show that em(v) commutes with dm(u−m+1)dm+1(u−m+1)−1.
This follows immediately if we apply the homomorphism ψm−1 to the identity (5)
in Y (gl1|1).
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