On the Yangian $Y(\mathfrak{gl}_{m|n})$ and its quantum Berezinian^{*})

Lucy Gow

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Received 28 July 2005

Jonathan Brundan and Alexander Kleshchev recently introduced a new family of presentations for the Yangian $Y(\mathfrak{gl}_n)$ of the general linear Lie algebra \mathfrak{gl}_n . In this article, we extend some of their ideas to consider the Yangian $Y(\mathfrak{gl}_{m|n})$ of the Lie superalgebra $\mathfrak{gl}_{m|n}$. In particular, we give a new proof of the result by Nazarov that the quantum Berezinian is central.

PACS: 02.20.Uw Key words: quantum Berezinian, Yangians

1 Introduction

1.1 Definition of Yangian

The Yangian $Y(\mathfrak{gl}_{m|n})$ is defined in [1] to be the \mathbb{Z}_2 -graded associative algebra over $\mathbb C$ with generators $t_{ij}^{(r)}$ and certain relations described below. We define the formal power series

$$
t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \cdots
$$

and a matrix

$$
T(u) = \sum_{i,j=1}^{m+n} t_{ij}(u) \otimes E_{ij} (-1)^{\overline{j}(\overline{i}+1)}, \qquad (1)
$$

where E_{ij} is the standard elementary matrix and \overline{i} is the parity of the index i. In analogy with the usual Yangian $Y(\mathfrak{gl}_n)$ (see for example [2–4]), the defining relations are expressed by the matrix product

$$
R(u - v)T_1(u)T_2(v) = T_2(v)T_1(u)R(u - v),
$$

where

$$
R(u - v) = 1 - \frac{1}{(u - v)} P_{12}
$$

and P_{12} is the permutation matrix: $P_{12} = \sum_{i,j=1}^{m+n} E_{ij} \otimes E_{ji}(-1)^{j}$. Then we have the following equivalent form of the defining relations:

$$
[t_{ij}(u), t_{kl}(v)] = \frac{(-1)^{\overline{ij}+\overline{ik}+\overline{jk}}}{(u-v)} (t_{kj}(u)t_{il}(v) - t_{kj}(v)t_{il}(u)).
$$

 C zechoslovak Journal of Physics, Vol. 55 (2005), No. 11 1415

[∗]) Presented at the International Colloquium "Integrable Systems and Quantum Symmetries", Prague, 16–18 June 2005.

L. Gow

Throughout this article we observe the following notation for entries of the inverse of the matrix $T(u)$:

$$
T(u)^{-1} =: (t'_{ij}(u))_{i,j=1}^n.
$$

A straightforward calculation yields the following relation in $Y(\mathfrak{gl}_{m|n})$:

$$
[t_{ij}(u), t'_{kl}(v)] = \frac{(-1)^{\overline{ij} + \overline{ik} + \overline{jk}}}{(u - v)} \left(\delta_{kj} \sum_{s=1}^{m+n} t_{is}(u) t'_{sl}(v) - \delta_{il} \sum_{s=1}^{m+n} t'_{ks}(v) t_{sj}(u) \right). \tag{2}
$$

1.2 Gauss decomposition of $T(u)$

In [5], the Drinfeld presentation is described in terms of the quasideterminants of Gelfand and Retakh [6, 7]. We make use of the analogous set of generators for the Yangian $Y(\mathfrak{gl}_{m|n})$. First we recall the definition of quasideterminant.

Definition 1.1. Let X be a square matrix over a ring with identity such that its inverse matrix X^{-1} exists, and such that its (j, i) th entry is an invertible element of the ring. Then the (i, j) th quasideterminant of X is defined by the formula

$$
|X|_{ij} = ((X^{-1})_{ji})^{-1}.
$$

Equivalently, we may define quasideterminants inductively as follows.

If $X = (x_{11})$ is a (1×1) -matrix, then there is only one quasideterminant of X; this is $|X|_{11} = x_{11}$. For $n > 1$, we have

$$
|X|_{ij} = x_{ij} - \sum_{k \neq i, l \neq j} x_{ik} (|X^{ij}|_{lk})^{-1} x_{lj},
$$

where X^{ij} is the matrix obtained from X by removing both the *i*th row and the jth column. We also use the following notation for quasideterminants:

$$
|X|_{ij} = \begin{vmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{in} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{nn} \end{vmatrix}.
$$

The matrix $T(u)$ defined in (1) has the following Gauss decomposition in terms of quasideterminants (by Theorem 4.96 in [6]; see $\S 5$ in [5]):

$$
T(u) = F(u)D(u)E(u)
$$

for unique matrices

$$
D(u) = \begin{pmatrix} d_1(u) & \cdots & 0 \\ & d_2(u) & \vdots & \\ \vdots & \ddots & \vdots & \\ 0 & \cdots & d_{m+n}(u) \end{pmatrix},
$$

1416 Czech. J. Phys. 55 (2005)

On the Yangian $Y(\mathfrak{gl}_{m|n})$ *and its quantum Berezinian*

$$
E(u) = \begin{pmatrix} 1 & e_{12}(u) & \cdots & e_{1,m+n}(u) \\ \vdots & & & e_{2,m+n}(u) \\ & \ddots & & \vdots \\ 0 & & & 1 \end{pmatrix}, \qquad F(u) = \begin{pmatrix} 1 & & & \cdots & 0 \\ f_{21}(u) & & & & \vdots \\ & \vdots & & & \ddots \\ f_{m+n,1}(u) & f_{m+n,2}(u) & \cdots & 1 \end{pmatrix},
$$

where

$$
d_i(u) = \begin{vmatrix} t_{11}(u) & \cdots & t_{1,i-1}(u) & t_{1i}(u) \\ \vdots & \ddots & & \vdots \\ t_{i1}(u) & \cdots & t_{i,i-1}(u) & \boxed{t_{ii}(u)} \\ \vdots & & \ddots & \vdots \\ t_{i1}(u) & \cdots & t_{1,i-1}(u) & t_{1j}(u) \\ \vdots & & \ddots & \vdots \\ t_{i-1,i}(u) & \cdots & t_{i-1,i-1}(u) & t_{i-1,j}(u) \\ t_{i1}(u) & \cdots & t_{i,i-1}(u) & \boxed{t_{ij}(u)} \\ \vdots & & \ddots & \vdots \\ t_{i-1,1}(u) & \cdots & t_{1,i-1}(u) & t_{1i}(u) \\ \vdots & & \ddots & \vdots \\ t_{i-1,1}(u) & \cdots & t_{i-1,i-1}(u) & t_{i-1,i}(u) \\ t_{j}i(u) & \cdots & t_{j,i-1}(u) & \boxed{t_{j}i(u)} \end{vmatrix},
$$

It is easy to recover each generating series $t_{ij}(u)$ by multiplying together and taking commutators of the series $d_i(u)$, $e_j(u) := e_{j,j+1}(u)$, and $f_j(v) := f_{i+1,i}(u)$ for $1 \leq i \leq m+n, 1 \leq j \leq m+n-1$ (see §5 of [5]). Thus the Yangian $Y(\mathfrak{gl}_{m|n})$ is generated by the coefficients of the latter.

1.3 Some useful maps

Here we define some automorphisms of the Yangian $Y(\mathfrak{gl}_{m|n})$ and homomorphisms between Yangians, so that we may refer to them in the next section.

Let $\omega_{m|n}: Y(\mathfrak{gl}_{m|n}) \to Y(\mathfrak{gl}_{m|n})$ be the automorphism defined by

 $\omega: T(u) \mapsto T(-u)^{-1}.$

Let $\tau: Y(\mathfrak{gl}_{m|n}) \to Y(\mathfrak{gl}_{m|n})$ be the automorphism defined by

$$
\tau(t_{ij}(u)) = t_{ji}(-u) \times (-1)^{\overline{i}(\overline{j}+1)}.
$$

Let $\rho_{m|n}: Y(\mathfrak{gl}_{m|n}) \to Y(\mathfrak{gl}_{n|m})$ be the isomorphism defined by

$$
\rho_{m|n}(t_{ij}(u)) = t_{m+n+1-i,m+n+1-j}(-u) \, .
$$

Let $\varphi_{m|n}: Y(\mathfrak{gl}_{m|n}) \hookrightarrow Y(\mathfrak{gl}_{m+k|n})$ be the inclusion which sends each generator $t_{ij}^{(r)} \in Y(\mathfrak{gl}_{m|n})$ to the generator $t_{k+i,k+j}^{(r)}$ in $Y(\mathfrak{gl}_{m+k|n})$.

Finally, let $\psi_k : Y(\mathfrak{gl}_{m|n}) \to Y(\mathfrak{gl}_{m+k|n})$ be the injective homomorphism defined by

$$
\psi_k = \omega_{m+k|n} \circ \varphi_{m|n} \circ \omega_{m|n} . \tag{3}
$$

Czech. J. Phys. 55 (2005) 1417

L. Gow

This last homomorphism is useful for studying quasideterminants, so we discuss it in some detail with the following remarks.

Remark 1.1. We can calculate $\psi_k(t_{ij}(u))$ explicitly for any $1 \le i, j \le m+n$ (see Lemma 4.2 of $(5!)$:

$$
\psi_k(t_{ij}(u)) = \begin{vmatrix} t_{11}(u) & \cdots & t_{1k}(u) & t_{1,k+j}(u) \\ \vdots & \ddots & \vdots & \vdots \\ t_{k1}(u) & \cdots & t_{kk}(u) & t_{k,k+j}(u) \\ t_{k+i,1}(u) & \cdots & t_{k+i,k}(u) & t_{k+i,k+j}(u) \end{vmatrix}.
$$

In particular, this means that for $k \geq 1$, we have $\psi_k(d_1(u)) = d_{k+1}(u)$, $\psi_k(e_1(u)) =$ $e_{k+1}(u)$, and $\psi_k(f_1(u)) = f_{k+1}(u)$. Furthermore, by (3), we have for any $k, l \geq 1$ that $\psi_k \circ \psi_l = \psi_{k+l}$, so we may generalize this observation to give for instance $\psi_k(d_l(u)) = d_{k+l}(u).$

Remark 1.2. Notice that the map ψ_k sends $t_{ij}^{(r)} \in Y(\mathfrak{gl}_{m|n})$ to the element $t_{k+i,k+j}^{(r)}$ in $Y(\mathfrak{gl}_{m+k|n})$. Thus the subalgebra $\psi_k(Y(\mathfrak{gl}_{m|n}))$ is generated by the elements $\{t_{k+s,k+t}'\}_{s,t=1}^n$. Then, by (2), all elements of this subalgebra commute with those of the subalgebra generated by $\{t_{ij}^{(r)}\}_{i,j=1}^k$. By Remark 1.1, this implies in particular that for any $i, j \geq 1$, the quasideterminants $d_i(u)$ and $d_j(v)$ commute.

2 The quantum Berezinian

The quantum Berezinian was defined by Nazarov [1] and plays a similar role in the study of the Yangian $Y(\mathfrak{gl}_{m|n})$ as the quantum determinant does in the case of the Yangian $Y(\mathfrak{gl}_n)$ (see [3]).

Definition 2.1. The quantum Berezinian is the following power series with coefficients in the Yangian $Y(\mathfrak{gl}_{m|n})$:

$$
b_{m|n}(u) := \sum_{\tau \in S_m} \text{sgn}(\tau) t_{\tau(1)1}(u) t_{\tau(2)2}(u-1) \cdots t_{\tau(m)m}(u-m+1)
$$

$$
\times \sum_{\sigma \in S_n} \text{sgn}(\sigma) t'_{m+1,m+\sigma(1)}(u-m+1) \cdots t'_{m+n,m+\sigma(n)}(u-m+n).
$$

For convenience, let us write:

$$
C_m(u) := \sum_{\tau \in S_m} \text{sgn}(\tau) t_{\tau(1)1}(u) t_{\tau(2)2}(u-1) \cdots t_{\tau(m)m}(u-m+1).
$$

It is clear that $C_m(u)$ is an element of the subalgebra of $Y(\mathfrak{gl}_{m|n})$ generated by the $\text{set }\left\{ t_{ij}^{(r)} \right\}_{1\leq i,j\leq m;r\geq 0}$. This subalgebra is isomorphic to the Yangian $Y(\mathfrak{gl}_m)$ of the Lie algebra \mathfrak{gl}_m by the inclusion $Y(\mathfrak{gl}_m) \to Y(\mathfrak{gl}_{m|n})$ which sends each generator $t_{ij}^{(r)}$ in $Y(\mathfrak{gl}_m)$ to the generator of the same name in $Y(\mathfrak{gl}_{m|n})$. Moreover, $C_m(u)$ is

the image under this map of the *quantum determinant* of $Y(\mathfrak{gl}_m)$ (see [3, 5]). Then it is well known (see Theorem 2.32 in [4]) that we have:

$$
C_m(u) = d_1(u)d_2(u-1)\cdots d_m(u-m+1).
$$

We can extend this observation as follows:

Theorem 1. We can write the quantum Berezinian as follows:

$$
b_{m|n}(u) = d_1(u) d_2(u-1) \cdots d_m(u-m+1)
$$

$$
\times d_{m+1}(u-m+1)^{-1} \cdots d_{m+n}(u-m+n)^{-1}.
$$

Proof. Note that the second part of the expression for $b_{m|n}(u)$ in Definition 2.1 is the image under the isomorphism $\rho_{n|m} \circ \omega_{n|m} : Y(\mathfrak{gl}_{n|m}) \to Y(\mathfrak{gl}_{m|n})$ of

$$
\sum_{\sigma \in S_n} \text{sgn}(\sigma) t_{n, \sigma(n)}(u - m + 1) \cdots t_{2, \sigma(2)}(u - m + n - 1) t_{1, \sigma(1)}(u + m - n), \quad (4)
$$

where we follow in this expression (4) the convention for denoting generators in the Yangian $Y(\mathfrak{gl}_{n|m})$. We recognise (by comparing with (8.3) of [5]) that this is $C_n(u-m+n)$, the image of the quantum determinant of $Y(\mathfrak{gl}_n)$ under the natural inclusion $Y(\mathfrak{gl}_n) \hookrightarrow Y(\mathfrak{gl}_{n|m})$. So to verify the claim we calculate the image of $C_n(u-m+n)$ under this map explicitly in terms of the quasideterminants $d_i(v)$. Applying Proposition 1.6 of [7], we find that the image of $d_i(v)$ in $Y(\mathfrak{gl}_{n|m})$ is $(d_{m+n+1-i}(v))^{-1}$ in $Y(\mathfrak{gl}_{n|m})$. This gives the desired result. $(d_{m+n+1-i}(v))^{-1}$ in $Y(\mathfrak{gl}_{m|n}).$ This gives the desired result.

The following theorem is a result of Nazarov [1]. We give a new proof.

Theorem 2. The coefficients of the quantum Berezinian (2.1) are central in the algebra $Y(\mathfrak{gl}_{m|n}).$

Proof. By Remark 1.2, the quantum Berezinian $b_{m|n}(u)$ commutes with $d_i(v)$ for $1 \leq i \leq m+n$. In addition, if we know that the quantum Berezinian commutes with $e_i(v)$, then by applying the automorphism τ , we find that it also commutes with $f_i(-v)$. So we need to show that $b_{m|n}(u)$ commutes with $e_i(v)$ for each i between 1 and $m + n - 1$. We break this problem into three cases:

Case 1: $1 \le i \le m-1$. By Theorem 7.2 in [5], $e_i(v)$ commutes with $C_m(u)$. On the other hand, $e_i(v)$ is an element of the subalgebra generated by $\{t_{jk}^{(r)}\}_{1 \leq j,k \leq m}$ and so by Remark 1.2 it commutes with $d_{m+s}(u-m+s)^{-1} = t'_{m+s,m+s}(u-m+s)$ for $1 \leq s \leq n$.

Case 2: $m+1 \le i \le m+n-1$. Applying Propositions 1.6 and 1.4 of [7] in turn to $f_i(v)$, we find an alternative expression:

$$
f_i(v) =
$$

$$
-\left|\frac{t'_{i+1,i+1}(v)}{t'_{i+1,m+1}(v)}\cdots t'_{i+1,m+n}(v)\right|^{-1} \times \left|\frac{t'_{i+1,i}(v)}{t'_{i+2,i}(v)}\frac{t'_{i+1,i+2}(v)}{t'_{i+2,i+2}(v)}\cdots t'_{i+1,m+n}(v)\right|
$$

$$
\vdots \qquad \vdots \qquad \vdots \qquad \vdots
$$

$$
t'_{m+n,i+1}(v) \cdots t'_{m+n,m+n}(v)\right|
$$

Czech. J. Phys. 55 (2005) 1419

Then, for $m + 1 \leq i \leq m + n - 1$, we have

 $e_i(v) = \rho_{n|m} \circ \omega_{n|m}(-f_{m+n-i}(v))$.

Now apply this isomorphism to the results of Case 1 in the Yangian $Y(\mathfrak{gl}_{n|m}).$

Case 3: $i = m$. Consider the Yangian $Y(\mathfrak{gl}_{1|1})$ first. For this algebra we have $b_{1|1}(u) = d_1(u)d_2(u)^{-1}$ and we would like to show that it commutes with $e_1(v)$. So it will suffice to show

$$
d_1(u)e_1(v)d_2(u) = d_2(u)e_1(v)d_1(u).
$$
\n(5)

We have

$$
\begin{pmatrix} t_{11}(u) t_{12}(u) \\ t_{21}(u) t_{22}(u) \end{pmatrix} = \begin{pmatrix} d_1(u) & d_1(u) e_1(u) \\ f_1(u) d_1(u) & f_1(u) d_1(u) e_1(u) + d_2(u) \end{pmatrix}, \tag{6}
$$

$$
\begin{pmatrix} t'_{11}(v) t'_{12}(v) \\ t'_{21}(v) t'_{22}(v) \end{pmatrix} = \begin{pmatrix} d_1(v)^{-1} + e_1(v) d_2(v)^{-1} f_1(v) & -e_1(v) d_2(v)^{-1} \\ -d_2(v)^{-1} f_1(v) & d_2(v)^{-1} \end{pmatrix}.
$$
 (7)

An application of (2) gives

$$
(u-v)[t_{11}(u),t'_{12}(v)]=t_{11}(u)t'_{12}(v)+t_{12}(u)t'_{22}(v).
$$

We substitute in this the expressions from (6) and (7), then cancel $d_2(v)$ and rearrange to find

$$
(u-v)e_1(v)d_1(u) = (u-v-1)d_1(u)e_1(v) + d_1(u)e_1(u).
$$

Similarly, by considering the commutator $[t_{12}(u), t'_{22}(v)]$, we derive the relation

$$
(u-v)e_1(v)d_2(u) = (u-v-1)d_2(u)e_1(v) + d_2(u)e_1(u).
$$

From these relations it is clear that (5) holds.

Now we return our attention to the general Yangian $Y(\mathfrak{gl}_{m|n})$. By similar appeals to Remark 1.2 as in the first case, we see that $e_m(v)$ commutes with $d_1(u)\cdots d_{m-1}(u-m+2)$ and with $d_{m+2}(u-m+2)^{-1}\cdots d_{m+n}(u-m+n)^{-1}$. So we need only show that $e_m(v)$ commutes with $d_m(u-m+1)d_{m+1}(u-m+1)^{-1}$. This follows immediately if we apply the homomorphism ψ_{m-1} to the identity (5) in $Y(\mathfrak{gl}_{1|1})$. in $Y(\mathfrak{gl}_{1|1}).$

The author would like to acknowledge the guidance and support of her PhD supervisor Alexander Molev and associate supervisor Ruibin Zhang.

References

- [1] M. Nazarov: Lett. Math. Phys. **21** (1991) 123.
- [2] V. Chari and A. Pressley: A Guide to Quantum Groups. CUP, Cambridge, 1994.
- [3] A. Molev, M. Nazarov, and G. Olshanskii: Russian Math. Surveys **51** (1996) 205.
- [4] A. Molev: in Handbook of Algebra, Vol. 3, North-Holland, Amsterdam, 2003, p. 907.
- [5] J. Brundan and A. Kleshchev: Commun. Math. Phys. **254** (2005) 191.
- [6] I.M. Gelfand, S. Gelfand, V. Retakh, and R.L. Wilson: Adv. Math. **193** (2005) 56.
- [7] I.M. Gelfand and V.S. Retakh: Funct. Anal. Appl. **25** (1991) 91.