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Abstract
Geocoding, the task of converting unstructured text to structured spatial data, has 
recently seen progress thanks to a variety of new datasets, evaluation metrics, and 
machine-learning algorithms. Geocoding plays a critical role in tasks such as track-
ing the evolution and emergence of infectious diseases, analyzing and searching doc-
uments by geography, geospatial analysis of historical events, and disaster response 
mechanisms. To assist those new to this area of research, we provide a survey that 
reviews, organizes and analyzes recent work on geocoding (also known as toponym 
resolution) where text is matched to geospatial coordinates and/or ontologies. We 
summarize the findings of this research, including the domains and databases cov-
ered by current geocoding corpora, point-based and polygon-based evaluation met-
rics, and features and architectures of geocoding systems.

Keywords  Geocoding · Geographical entity normalization · Toponym resolution

1  Introduction

Geocoding, also called toponym resolution or toponym disambiguation, is the sub-
task of geoparsing that disambiguates place names in text. The goal of geocoding is, 
given a textual mention of a location, to choose the corresponding geospatial coordi-
nates, geospatial polygon, or entry in a geospatial database. Geocoders must handle 
place names (known as toponyms) that refer to more than one geographical loca-
tion (e.g., Paris can refer to a town in the state of Texas in the United States, or the 
capital city of France), and geographical locations that may be referred to by more 
than one name (e.g., Leeuwarden and Ljouwert are two names for the same city in 
the Netherlands), as shown in Fig. 1. Geocoding plays a critical role in tasks such 
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as tracking the evolution and emergence of infectious diseases (Hay et  al., 2013), 
analyzing and searching documents by geography (Bhargava et al., 2017), geospatial 
analysis of historical events (Tateosian et al., 2017), and disaster response mecha-
nisms (Ashktorab et al., 2014; de Bruijn et al., 2018)).

The field of geocoding, previously dominated by geographical information sys-
tems communities, has seen a recent surge in interest from the natural language pro-
cessing community due to the interesting linguistic challenges this task presents. The 
four most recent geocoding datasets (see Table 1) were all published at venues in the 
ACL Anthology. And the recent ACL-SIGLEX sponsored SemEval 2019 Task 12: 
Toponym Resolution in Scientific Papers (Weissenbacher et  al., 2019) resulted in 
several new natural language processing approaches to geocoding. The field has thus 
changed substantially since the most recent survey of geocoding (Gritta et al., 2017), 
including a doubling of the number of geocoding datasets, and the advent of modern 
neural network approaches to geocoding.

Those new to this area of research would thus benefit from a survey and criti-
cal evaluation of the currently available datasets, evaluation metrics, and geocoding 
algorithms. Our contributions are:

•	 The first survey on geocoding to include recent deep learning approaches
•	 Coverage of new geocoding datasets (which increased by 100% since 2017) and 

geocoding systems (which increased by 50% since 2017)
•	 Discussion of new directions, such as polygon-based prediction

In the remainder of this article, we first highlight some previous geocoding surveys 
(Sect. 2) and explain the scope of the current survey (Sect. 3). We then categorize 
the features of recent geocoding datasets (Sect.  5), compare different choices for 
geocoding evaluation metrics (Sect. 6), and break down the different types of fea-
tures and architectures used by geocoding systems (Sect.  7). We conclude with a 
discussion of where the field should head next (Sect. 8).

Fig. 1   An illustrative example of geocoding challenges. One toponym (Paris) can refer to more than one 
geographical location (a town in the state of Texas in the United States or the capital city of France in 
Europe), and a geographical location may be referred to by more than one toponym (Leeuwarden and 
Ljouwert are two names for the same city in the Netherlands)
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2 � Related works

An early formal survey of geocoding is Leidner (2007), which distinguished 
finding place names (known as geotagging or toponym recognition) from link-
ing place names to databases (known as geocoding or toponym resolution). They 
found that most geocoding methods were based on combining natural language 
processing techniques, such as lexical string matching or word sense matching, 
with geographic heuristics, such as spatial-distance minimum and population 
maximum. Most geocoders studied in this thesis were rule-based.

Monteiro et al. (2016) surveyed work on predicting document-level geographic 
scope, which often includes mention-level geocoding as one of its steps. Most of 
this survey focused on the document-level task, but the geocoding section found 
techniques similar to those found by Leidner (2007).

Gritta et al. (2017) reviewed both geotagging and geocoding, and proposed a 
new dataset, WikToR. The survey portion of this article compared datasets for 
geoparsing, explored heuristics of rule-based and feature-based machine learning-
based geocoders, summarized evaluation metrics, and classified common errors 
from several geocoders (misspellings, case sensitivity, processing fictional and 
historical text presents, etc.). Gritta et al. (2017) concluded that future geoparsers 
would need to utilize semantics and context, not just syntax and word forms as 
the geocoders of the time.

Leidner (2021) reviewed many geospatial information processing tasks, but 
discussed only two geocoding systems in its section on geocoding.

Geocoding research since these previous surveys has changed in several 
important ways, as will be described in the remainder of this article. Most nota-
bly, new datasets and evaluation metrics are enabling new polygon-based views 
of the problem, and deep learning methods are offering new algorithms and new 
approaches for geocoding.

3 � Article inclusion criteria

We focus on the geocoding problem, where mentions of place names are resolved 
to database entries or polygons. We thus searched the Google Scholar and 
Semantic Scholar search engines for papers matching any of the keyword queries: 
geocoding, geoparsing, geolocation, toponym resolution, toponym disambigua-
tion, or spatial information extraxtion. From the results, we excluded articles that 
described tasks other than mention-level geocoding, for example:

•	 Matching an entire document or microblog post to a single location (Luo 
et al., 2020; Hoang & Mothe, 2018; Kumar & Singh, 2019; Lee et al., 2015; 
Melo & Martins, 2017), as in geographic document retrieval and classification 
(Gey et al., 2005; Adams & McKenzie, 2018)

•	 Matching typonyms to each other within a geographical database (Santos 
et al., 2018)
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•	 Location name recognition (geotagging) (Chen et al., 2022)

We also excluded papers published before 2010 (e.g., Smith and Crane, 2001), as 
they have been covered thoroughly by prior surveys.

In total, we reviewed more than 60 papers and included more than 30 of them in 
this survey.

4 � Overview of the survey

The survey is divided into three parts: geocoding datasets, geocoding evaluation 
metrics, and geocoding systems. In each part, we break down the relevant research 
to reveal the most common features shared across different research efforts and ana-
lyze the challenges and opportunities presented.

For geocoding datasets, we find that recent advances have led to an increased 
variety of domains, while the available geographic databases and geospatial label 
types have changed little. GeoNames remains the dominant geographic database, 
and point-based labels dominate over polygons. The availability of free polygon data 
on OpenStreetMap presents an opportunity to create new datasets that emphasize 
polygons over points.

For evaluation metrics, median error distance is preferred over mean error dis-
tance, and area under the curve of geocoding error distances (AUC) is favored over 
Accuracy@161 km. Yet these point-based metrics ignore the size and shape of geo-
graphic locations, while polygon-based metrics represent an opportunity to more 
carefully evaluate geocoding systems.

For geocoding systems, features like string matching and population are included 
in most systems regardless of whether they treat the problem as ranking or classifi-
cation or whether they use deep neural networks or more traditional machine learn-
ing algorithms. Variability in selection of evaluation datasets makes direct compari-
son across systems difficult, but several systems have reported results on the LGL, 
WikTOR, GeoVirus, and WOTR datasets. These results generally show that deep 
neural network models outperform more traditional machine learning algorithms. 
The neural network models typically incorporate fewer features (e.g., having lim-
ited notion of spatial distance), thus there is an opportunity to design deep learning 
architectures that can incorporate such features.

The remainder of this survey elaborates on these findings in detail.

5 � Geocoding datasets

Many geocoding corpora have been proposed, drawn from different domains, link-
ing to different geographic databases, with different forms of geocoding labels, and 
with varying sizes in terms of both articles/messages and toponyms. Table 1 cites 
and summarizes these datasets, and the following sections walk through some of the 
dimensions over which the datasets vary.
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5.1 � Domains

The news domain is the most common target for geocoding corpora, covering 
sources like broadcast conversation, broadcast news, news magazines, and news-
papers. Examples include the ACE 2005 English SpatialML Annotations (ACS), 
the Local Global Lexicon (LGL), CLUST, TR-NEWS, GeoVirus, GeoWebNews, 
and TopRes19th. Though all these datasets include news text, they vary in what 
toponyms are included. For example, LGL is based on local and small U.S. news 
sources with most toponyms smaller than a U.S. state, while GeoVirus focuses on 
news about global disease outbreaks and epidemics with larger, often country-level, 
toponyms.

Web text is also a common target for geocoding corpora. Wikipedia Toponym 
Retrieval (WikToR) and GeoCoDe are both based on Wikipedia pages. ACS, men-
tioned above, also includes newsgroup and weblog data. And social media, specifi-
cally Twitter, is the target for ZG and GeoCorpora. TUD-Loc-2013 contains a vari-
ety of webpages including news articles and blogs. These corpora vary as widely 
as the internet text upon which they are based. For example, GeoCoDe and Wik-
ToR include the first paragraphs of Wikipedia articles, while ZG and GeoCorpora 
contain Twitter messages with place names that were highly ambiguous and mostly 
unambiguous, respectively.

Other geocoding domains are less common, but have included areas such as his-
torical documents and scientific journal articles. The Official Records of the War of 
the Rebellion (WOTR) corpus annotates historical toponyms of the U.S. Civil War. 
Ardanuy and Sporleder (2017) created 5 historical multi-lingual datesets based on 
national, regional, local, and colonial historical newspapers. CLDW contains his-
torical writings about the English Lake District in the early seventeenth and early 
twentieth centuries. The SemEval-2019 Task 12 dataset is based on scientific jour-
nal papers from PubMed Central.1

5.2 � Geographic databases

All geocoding corpora rely on some database of geographic knowledge, sometimes 
also called a gazetteer or ontology. Such a database includes canonical names for 
places along with their geographic attributes such as latitude/longitude or geospatial 
polygon, and may include other information, such as population or type of place.

Most geocoding corpora have used GeoNames2 as their geographic database, 
including ACS, LGL, CLUST, ZG, WikToR, TR-NEWS, GeoCorpora, GeoVi-
rus, GeoWebNews, and SemEval-2019-12. GeoNames is a crowdsourced database 
of geospatial locations, with almost 7 million entries and a variety of information 
such as feature type (country, city, river, mountain, etc.), population, elevation, 
and positions within a political geographic hierarchy. The freely available version 

1  https://​www.​ncbi.​nlm.​nih.​gov/​pmc/​tools/​openf​tlist/
2  https://​www.​geona​mes.​org/

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.geonames.org/
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of GeoNames contains only a (latitude, longitude) point for each location, with the 
polygons only available with a premium data subscription, so most corpora based on 
GeoNames do not use geospatial polygons.

Geocoding corpora where recognizing geospatial polygons is important have typ-
ically turned to OpenStreetMap.3 OpenStreetMap is another crowdsourced database 
of geospatial locations, which contains both (latitude, longitude) points and geospa-
tial polygons for its locations. WOTR and GeoCoDe are based on OpenStreetMap.

Wikipedia and Unlock4 have also been utilized although they are less common 
geographic databases. For example, in TopRes19th, the toponyms are annotated 
with the link to the corresponding Wikipedia entries, which can be used to obtain 
the geographic coordinates of the locations through their URLs.

5.3 � Geospatial label types

Three different types of geospatial labels have been considered in geocoding cor-
pora: database entries, (latitude, longitude) points, and polygons. All corpora except 
WTOR and GeoCoDe assign to each place name the (latitude, longitude) point 
that represents its geospatial center. Many of the GeoNames-based corpora (LGL, 
CLUST, TUD-Loc-2013, TR-NEWS, GeoCorpora, GeoWebNews, and SemE-
val-2019-12) also assign to each place name its GeoNames database ID. The WTOR 
corpus assigns to each place name a point or a polygon, and GeoCoDe assigns to 
each place name only a polygon. Figure 2 shows an example of a polygon annotation 
from GeoCoDe.

5.4 � Challenges: geocoding datasets

While there have been significant improvements in geocoding datasets, the commu-
nity has not successfully pivoted from point-based labels to the more precise repre-
sentation of geographic areas as polygons. This is due primarily to the dominance of 
GeoNames as a geographic database. GeoNames provides polygons only for a fee, 

Fig. 2   The red-shaded area is 
the polygon label for Biancav-
illa, which is defined by the 
set of its boundary coordinates 
retrieved from OpenStreetMap

3  https://​www.​opens​treet​map.​org/
4  https://​groups.​inf.​ed.​ac.​uk/​geopa​rser/​docum​entat​ion/​v1.1/​epub/​unlock.​html

https://www.openstreetmap.org/
https://groups.inf.ed.ac.uk/geoparser/documentation/v1.1/epub/unlock.html


	 Z. Zhang, S. Bethard 

1 3

creating a barrier for individuals and organizations that that would like to pursue 
polygon-based geocoding research.

An additional challenge is associative toponyms, such as Canadian or Russian. 
Associative toponyms are included in many geocoding datasets, such as LGL, 
GWN, and TR-News, but the geographic databases include only literal toponyms 
(e.g., Canada or Russia). Resolving such toponyms will thus be more difficult, espe-
cially when their demonymic forms diverge from their names (e.g., Netherlands vs. 
Dutch).

5.5 � Opportunities: geocoding datasets

An opportunity for future research on geocoding datasets is to pivot to polygon 
based labels, which can more faithfully represent complex regions. OpenStreetMap, 
though used less widely in geocoding research to date, offers free polygon data, and 
thus provides an opportunity to design new polygon-based geocoding datasets that 
are not limited by GeoNames fees. Such datasets would allow the development of 
geocoding systems that better reflect the geography of the world.

Another opportunity in geocoding is to take advantage of the increased variety of 
domains now available, including historical documents, scientific documents, Wiki-
pedia, and social media. Most work to date has focused on a single one of these 
domains, meaning there is a need to develop approaches to unify the various data-
sets, allowing more general and robust geocoding systems to be trained.

6 � Geocoding evaluation metrics

Geocoding systems are evaluated on geocoding corpora using metrics that depend 
on the corpus’s geospatial label type.

6.1 � Database entry correctness metrics

When the target label type is a geospatial database entry ID, common evaluation 
metrics for multi-class classification tasks are applied. These metrics can also be 
used for corpora with (latitude, longitude) point labels by breaking the globe down 
into a discrete grid of geospatial tiles, and treating each geospatial tile like a data-
base entry.

Accuracy is the number of place names where the system has predicted the cor-
rect database entry, divided by the number of place names. Accuracy is sometimes 
also called Precision@1 or P@1 when there is only one correct answer (as in the 
case for current geocoding datasets) and when the ranking-based system is turned 
into a classifier by taking the top-ranked result as its prediction (the current standard 
for geocoding evaluation).
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where U is the set of human-annotated place names, Û is the set of place names 
where the system’s single prediction or top-1 ranked result is correct.

6.2 � Point distance metrics

When the target label type is a (latitude, longitude) point, common evaluation metrics 
attempt to measure the distance between the system-predicted point and the human-
annotated point.

Mean error distance calculates the mean over all predictions of the distance between 
each system-predicted and human-annotated point:

where U is the set of all human-annotated place names, ls(u) is the system-predicted 
(latitude, longitude) point for place name u, lh(u) is the human-annotated (latitude, 
longitude) point for place name u, and dis is the distance between the two points on 
the surface of the globe.

Median Error Distance is defined in a similar way to mean error distance, but takes 
the median of the error distances rather than the mean.

Accuracy@k km/miles measures the fraction of system-predicted (latitude, longi-
tude) points that were less than k km/miles away from the human-annotated (latitude, 
longitude) points. Formally:

where U, ls , lh , and dis are defined as above, and k is a hyper-parameter. A common 
choice for k is 161 km ≈ 100 miles (Cheng et al., 2010).

Area Under the Curve (AUC) calculates the area under the curve of the distribution 
of geocoding error distances. A geocoding system is better if the area under the curve is 
smaller. Formally:

where ActualErrorDistance is the area under the curve, and MaxPossibleErrors is 
the farthest distance between two places on earth.

Accuracy =

|||Û
|||

|U|

Mean Error Dist =

∑
u∈U

dis
�
ls(u), lh(u)

�

�U�

Acc@k =

|||
{
u|u ∈ U ∧ dis

(
ls(u), lh(u)

)
<= k

}|||
|U|

AUC = ln
Actual Error Distanc

Max Possible Errors
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6.3 � Polygon‑based metrics

When the target label type is a polygon, evaluation metrics attempt to compare 
the overlap between the system-predicted polygon and the human-annotated 
polygon.

Polygon-based precision and recall were proposed by Laparra and Bethard 
(2020) based on the intersection of system-predicted and human-annotated geom-
etries. Formally:

where the S is the system-predicted set of polygons and H is the human-annotated 
set of polygons.

6.4 � Challenges: geocoding evaluation metrics

Some challenges exist with specific metrics. A challenge of using mean error dis-
tance is its sensitivity to outliers: a few locations with large errors can skew the 
results and obscure the accuracy of the majority of locations. For instance, Gritta 
et al. (2017) found that roughly 20% of the places caused most of the errors. A chal-
lenge of using Accuracy@k km/miles is that it weights small and large errors equally, 
which may not properly reflect the expectations of users of geocoding systems.

A challenge for all point-based evaluation metrics is that locations are not points 
on the globe, but regions, and thus the point-based evaluation metrics that are cur-
rently popular do a poor job of measuring the actual shapes predicted by geocoding 
systems.

6.5 � Opportunities: geocoding evaluation metrics

For the metrics with specific challenges, alternative metrics have been defined and 
could be used more widely in future research. Median error distance is similar to 
mean error distance, but is more robust to outliers. AUC is similar to Accuracy@k 
km/miles, but it gives more weight to smaller errors, which are often more signifi-
cant than larger errors in practical applications (Jurgens et al., 2015).

A larger opportunity in geocoding evaluation is the application of polygon-based 
metrics. While to date such metrics have been applied only to one polygon-based data-
set, polygon-based metrics could also be applied to datasets with database entry labels. 
This would give credit to geocoding systems when two or more database entries are 
equally applicable, such as a mention of "Dallas" which is ambiguous between city and 
county, and where the polygons of both choices overlap. By considering the overlap of 

Precision =
1

|S|
∑

i∈|S|

area
(
Si ∩ Hi

)

area
(
Si
)

Recall =
1

|H|
∑

i∈|H|

area
(
Si ∩ Hi

)

area
(
Hi

)
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polygons, polygon-based metrics could provide a more precise evaluation of geocoding 
performance in such cases.

7 � Geocoding systems

Table 2 summarizes the approaches of geocoders over the last decade. These models 
have different approaches to the prediction problem, ranging from ranking to classifica-
tion to regression. They implement their predictive models with technology ranging 
from hand-constructed rules and heuristics, to feature-based machine-learning models, 
to deep learning (i.e., neural network) models that learn their own features.

7.1 � Prediction types

Ranking is the most common approach to making geospatial predictions ( Edinburgh 
Parser, TGBRW-2010, MAC-2010, IGeo, LS-2011, MG, CLAVIN, LS-2012, WISTR, 
GeoTxt, CMU-Geolocator, SMFCM-2015, GeoSem, CBH, SHS, DM_NLP, RS-2020, 
GeoNorm). For example, most rule-based systems index their geospatial database with 
a search system like Lucene (https://​lucene.​apache.​org/), and query that index to pro-
duce a ranked list of candidate database entries. This ranked list may be further re-
ranked based on other features such as population or proximity. The type of scores 
using in re-ranking include binary classification score ( MG, LS-2012, WISTR, CMU-
Geolocator, CBH, SHS, DM_NLP ), regression distance MAC-2010, the precision at 
the first position of the ranked list SMFCM-2015, and heuristics based on informa-
tion in the geospatial database ( Edinburgh Parser, TGBRW-2010, IGeo, LS-2011, 
CLAVIN, GeoTxt ).

Classification is commonly used in making geospatial predictions when the Earth’s 
surface has been discretized into tiny areas ( Topocluster, CamCoder, HIS-2019, CME-
2019, MLG, DeezyMatch, TR-2022, LGGeoCoder ). For example, CamCoder divides 
the Earth’s surface into 7,823 tiles, and then changes the geospatial label of each topo-
nym to the tile containing its coordinate. CamCoder then directly predicts one of 7823 
classes for each toponym mention.

Regression is sometimes used for geospatial predictions when the label type is a (lat-
itude, longitude) point or a polygon (CME-2019, LB-2020, Bi-LSTM). For example, 
LB-2020 predict a set of coordinates (i.e., a polygon) by applying operations over refer-
ence geometries, where the operations take sets of coordinates as inputs and produce 
sets of coordinates as outputs. Regression approaches to geocoding are rare because 
directly predicting coordinates over the entire surface of the Earth is challenging.

7.2 � Features and heuristics

All geocoding systems combine string matching (exact string matching, Levenshtein 
distance, etc.) with other features and/or heuristics (population, words in nearby 
context, etc.). Details of such features are described in this section.

https://lucene.apache.org/
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String match checks whether the place name matches any names in the geo-
spatial database ( Edinburgh Parser, TGBRW-2010, MAC-2010, IGeo, LS-2011, 
MG, CLAVIN, GeoTxt, CMU-Geolocator, SMFCM-2015, GeoSem, CBH, SHS, 
DM_NLP, HIS-2019, RS-2020, DeezyMatch, TR-2022, Bi-LSTM, GeoNorm). 
String matching can be done exactly, or approximately with edit distance metrics 
like Levenshtein Distance. For example, GeoTxt calculates the Levenshtein Dis-
tance between the place name in the text and each candidate entry from the geo-
spatial database, and selects the candidate with the lowest edit distance.

Population looks at the size of the population associated with candidate data-
base entry, typically preferring more populous entries to less populous ones ( 
Edinburgh Parser, TGBRW-2010, MAC-2010, IGeo, LS-2011, MG, LS-2012, 
CLAVIN, GeoTxt, CMU-Geolocator, SMFCM-2015, CBH, SHS, CamCoder, 
DM_NLP, GeoNorm). For example, when the Edinburgh Parser geocodes the text 
I love Paris, it resolves Paris to Paris, France instead of Paris, TX, U.S. since 
the former has a greater population in the geospatial database.

Type of place looks at the geospatial feature type (country, city, river, popu-
lated place, facility, etc.) of a candidate database entry, typically preferring the 
more geographically prominent ones ( Edinburgh Parser, TGBRW-2010, MAC-
2010, IGeo, LS-2011, MG, CLAVIN, LS-2012, GeoTxt, TRAWL, CMU-Geolo-
cator, SMFCM-2015, GeoSem, CBH, SHS, DM_NLP, TR-2022, GeoNorm). For 
example, TGBRW-2010 prefers “populated places” to “facilities” such as farms 
and mines, when there are multiple candidate geospatial labels.

Words in the nearby context are used to disambiguate ambiguous place names 
( LS-2012, WISTR, CMU-Geolocator, SMFCM-2015, Topocluster, GeoSem, 
CBH, SHS, DM_NLP, CamCoder, CME-2019, MLG, LGGeoCoder, TR-2022, 
GeoNorm). Ways of using context words range from simple to complex. For 
example, WISTR uses a context window of 20 words on each side of the tar-
get place name, aiming to benefit from location-oriented words such as uptown 
and beach. In contrast, CMU-Geolocator searches for common country and state 
names in other nearby location expressions, using these mostly unambiguous 
place names to help resolve the target place name.

One sense per referent is a heuristic that assumes that all occurrences of a 
unique place name in the same document will refer to the same geographical 
database entry ( Edinburgh Parser, TGBRW-2010, IGeo, LS-2011, GeoTxt, CBH, 
SHS, DM_NLP, GeoNorm). For example, after each time that IGeo resolves a 
place name to a geospatial label, it propagates the same resolution to all identical 
place names in the remainder of the document.

Spatial minimality is a heuristic that assumes that place names in a text tend 
to refer to geospatial regions that are in close spatial proximity to each other ( 
Edinburgh Parser, TGBRW-2010, IGeo, LS-2011, CLAVIN, SPIDER, Topoclus-
ter, GeoSem, CBH, SHS, GeoNorm). For example, when IGeo geocodes the text 
96 miles south of Phoenix, Arizona, just outside of Tucson, it takes Tucson as an 
“anchor” toponym and resolves that first to get a target region. Then for Phoenix, 
it selects the geospatial label that is most geographically proximate to the target 
region.
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7.3 � Method types

Rule-based systems use hand-crafted rules and heuristics to predict a geospa-
tial label for a place name ( Edinburgh Parser, TGBRW-2010, IGeo, LS-2011, 
CLAVIN, GeoTxt, HIS-2019, RS-2020, LB-2020 ). The rule bases range in size 
from 2 to more than 200 rules, and rules may be formalized in rule grammars 
or defined more informally and provided as code. For example, IGeo uses a rule 
defined via code to identify place names in comma groups (e.g., “New York, 
Chicago and Los Angeles”, all major cities in the U.S.), and then resolves all 
toponyms by applying a heuristic uniformly across the entire group. As another 
example, LB-2020 uses 219 synchronous grammar rules to parse a target poly-
gon from reference polygons by constructing a tree of geometric operators (e.g., 
BETWEEN(p1, p2) calculates the region between geolocation polygons p1 and p2).

Feature-based machine-learning systems use many of the same features and 
heuristics of rule-based systems, but provide these as input to a supervised clas-
sifier that makes the prediction of a geospatial label ( MAC-2010, MG, LS-2012, 
WISTR, CMU-Geolocator, SMFCM-2015, Topocluster, GeoSem, CBH, SHS, 
DM_NLP ). They typically operate in a two-step rank-then-rerank framework, 
where first an information retrieval system produces candidate geospatial labels, 
then a supervised machine-learning model produces a score for each candidate, 
and the candidates are reranked by these scores. Classification and ranking algo-
rithms include logistic regression (WISTR), support vector machines ( MAC-
2010, CMU-Geolocator ), random forests ( MG, LS-2012 ), stacked LightGBMs 
(DM_NLP), and LambdaMART (SMFCM-2015). For example, MAC-2010 trains 
a support vector machine regression model using features such as the population 
and the number of alternative names for each candidate.

Deep learning systems often approach geocoding as a one-step classification 
problem by dividing the Earth’s surface into an N × N grid, where the neural net-
work attempts to map place names and their features to one of these N × N cat-
egories ( CamCoder, CME-2019, MLG, DeezyMatch, Bi-LSTM, LGGeoCoder, 
TR-2022, GeoNorm). Each system has a unique neural architecture for combining 
inputs to make predictions, typically based on either convolutional neural net-
works (CNNs) or recurrent neural networks (RNNs).

CamCoder was the first deep learning based-geocoder. Its lexical model uses 
CNNs to create vectors representing context words (a window of 200 words, loca-
tion mentions excluded), location mentions (context words excluded) and the tar-
get place name. Its geospatial model produces a vector using a geospatial label’s 
population (from the database) as its prior probability. CamCoder concatenates 
the lexical and geospatial vectors for the final classification.

MLG is also a CNN-based geocoder, but it does not use population or other 
geospatial database information. It captures lexical features in a similar manner 
to CamCoder, but takes advantage of the S2 geometry (https://​s2geo​metry.​io/) to 
represent its geospatial output space in hierarchical grid-cells from coarse to fine-
grained. MLG can predict the geospatial label of a place name at multiple S2 
levels by mutually maximizing both precision and generalization of predictions.

https://s2geometry.io/
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CME-2019 and TR-2022 is an RNN-based geocoder that uses HEALPix geom-
etry Gorski et  al. (2005) to discretize the Earth’s surface. It uses long short-term 
memory network with pre-trained Elmo embeddings Peters et  al. (2018) or the 
embeddings generated by the pre-trained BERT Devlin et al. (2018) to create vec-
tors representing the place name, local context (50 words around the place name), 
and larger context (paragraph or 500 words around the place name). The three vec-
tors are concatenated and used to predict both the class of the HEALPix region and 
the coordinates of the centroid of the HEALPix class. This joint learning approach 
allows the two tasks to be mutually promoted and restricted.

GeoNorm is a geocoding architecture that improves toponym resolution by 
employing a two-stage generate-and-rerank method. Initially, it uses lexical-based 
information retrieval to suggest potential location entries from a geospatial ontol-
ogy, GeoNames. These candidates are then prioritized using a transformer-based 
model that incorporates data such as population size. The first stage resolves clear 
entities like countries and states, while the second stage addresses more ambiguous 
locations, using results from the first as contextual support. This approach allows 
GeoNorm to achieve top-notch accuracy in identifying geographical references in 
text.

Table 3   Reported results on LGL, WikToR, GeoVirus, and WOTR. For accuracy@161 km, larger is bet-
ter ( ↑ ). For mean error distance, smaller is better ( ↓)

GeoCoder Accuracy@161 km ( ↑) Mean error distance ( ↓)

LGL GeoVirus WikTOR WOTR LGL GeoVirus WikTOR WOTR

Edinburgh Parser (Grover 
et al., 2010)

76 78 42 – 8 5 31 –

CLAVIN (Berico Tech-
nologies, 2012)

71 79 16 – 13 6 43 –

GeoTxt (Karimzadeh et al., 
2013)

68 79 18 – 14 6 47 –

SPIDER (Speriosu & 
Baldridge, 2013)

68 – – 67 12 – – 4.8

SMFCM-2015 (Santos 
et al., 2015)

71 – – – 8 – – –

Topocluster (DeLozier 
et al., 2015)

63 – 26 – 12 – 38 –

GeoSem (Ardanuy & 
Sporleder, 2017)

– – – 68 – – – 4.5

CamCoder (Gritta et al., 
2018)

76 82 65 – 7 3 11 –

CME-2019 (Cardoso et al., 
2019)

86 – – 82 2.4 – – 1.6

MLG (Kulkarni et al., 
2020)

73 85 85 – 6.2 2.8 3.5 –

TR-2022 (Cardoso et al., 
2022)

91 – – 87 2.2 – – 1.1
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7.4 � Challenges: geocoding systems

One of the challenges in geocoding research is the lack of consistency in evalua-
tion datasets used by different geocoders. While the LGL, WikTOR, GeoVirus, and 
WOTR datasets have been shared by multiple geocoders, there is still much vari-
ability in the choice of evaluation datasets. This can make it difficult to compare the 
performance of different geocoders and to draw meaningful conclusions from the 
results. We nevertheless present the partial comparison that is possible in Table 3.

The table reveals a challenge for the neural network models: they are data hungry. 
The gains of neural network models over prior approaches are modest on smaller 
datasets, such as LGL and GeoVirus, and only become large on the larger datasets, 
such as WikTOR and WOTR. This need for large datasets may be due to the archi-
tectures themselves, or they may be a result of the simpler set of features input to 
neural network systems as compared to pre-neural-network systems.

7.5 � Opportunities: geocoding systems

One opportunity for geocoding system research is to increase the size of the training 
datasets. This could be achieved by applying techniques like multi-task learning to 
train a single model using the variety of available geocoding datasets.

Another opportunity is to incorporate additional features into the deep learning 
models. For instance, document-level consistency features like one sense per refer-
ent, geospatial consistency features like spatial minimality, and additional database 
information beyond population were used by geocoding systems before deep learn-
ing models. Designing neural architectures that can incorporate such features could 
yield performance gains not possible with the current feature sets.

8 � Future directions

A key direction of future research will be output representations. Many past geoco-
ders focused on mapping place names to geospatial database entries (see column 
4 of Table  2). This was convenient, enabling fast resolution by applying standard 
information retrieval models to propose candidate entries from the database, but was 
limited by the simple types of matching that information retrieval systems could per-
form. Modern deep learning approaches to geocoding allow more complex matching 
of place names to geospatial locations, but typically rely on discretizing the Earth’s 
surface into tiles to constrain the size of the network’s output space. For the neural 
networks to achieve the fine-grained level of geocoding available in geocoding data-
bases, they may need to consider hierarchical output spaces (e.g., Kulkarni et  al., 
2020) or compositional output spaces (e.g., Laparra and Bethard, 2020) that can 
express the necessary level of detail without exploding the output space.

Another key direction of future research will be the structure and evaluation of 
geocoding datasets. Most existing datasets and systems treat geocoding as a problem 
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of identifying points rather than polygons (see column 4 of Table 1 and column 5 
of Table 2). Yet the vast majority of real places in geospatial databases are complex 
polygons (as in Fig. 2), not simple points. More polygon-based datasets are needed, 
especially ones like GeoCoDe (Laparra & Bethard, 2020) that include complex 
descriptions of locations (e.g., between the towns of Adrano and S. Maria di Lico-
dia) and not just explicit place names (e.g., Paris). The current state-of-the-art for 
complex geographical description geocoding is rule-based, but more polygon-based 
datasets will drive algorithmic research that can improve upon these rule-based 
systems with some of the insights gained from deep neural network approaches to 
explicit place name geocoding.

Finally, geocoding evaluation is still an open research area. Future research will 
likely extend some of the new polygon-based evaluation metrics. For example, 
using polygon precision and recall would give credit to a geocoding system that pre-
dicted the GeoNames entry Nakhon Sawan even if the annotated data used the entry 
Changwat Nakhon Sawan, since the polygons of these two place names are nearly 
identical.

9 � Conclusion

After surveying a decade of work on geocoding, we have identifed several trends. 
First, combining contextual features with geospatial database information makes 
geocoders more powerful. Second, like much of NLP, geocoders have moved from 
rule-based systems to feature-based machine-learning systems to deep-learning sys-
tems. Third, the older rank-then-rerank approaches, combining information retrieval 
and supervised classification, are being replaced by direct classification approaches, 
where the Earth’s surface is discretized into many small tiles. Finally, the field of 
geocoding is just beginning to look beyond a point-based view of locations to a 
more realistic polygon-based view.
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