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Abstract
We present the Radboud Coregistration Corpus of Narrative Sentences (RaC-
CooNS), the first freely available corpus of eye-tracking-with-EEG data collected 
while participants read narrative sentences in Dutch. The corpus is intended for 
studying human sentence comprehension and for evaluating the cognitive validity 
of computational language models. RaCCooNS contains data from 37 participants 
(3 of which eye tracking only) reading 200 Dutch sentences each. Less predicta-
ble words resulted in significantly longer reading times and larger N400 sizes, rep-
licating well-known surprisal effects in eye tracking and EEG simultaneously. We 
release the raw eye-tracking data, the preprocessed eye-tracking data at the fixation, 
word, and trial levels, the raw EEG after merger with eye-tracking data, and the pre-
processed EEG data both before and after ICA-based ocular artifact correction.

Keywords  Narrative sentence reading · Eye tracking · Electroencephalography · 
Fixated-related potentials · Dutch · Surprisal effects

1  Introduction

Psycholinguistic studies of sentence and discourse comprehension traditionally rely 
on experiments with a small number of hand-crafted stimuli in which just one or two 
factors are manipulated and that contain only a single critical word or clause. More 
recently, however, it has become increasingly common to collect measures of human 
cognitive or neural processing over all words of a collection of (semi-)natural 
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sentences or texts. In many cases, these measures are then analysed by comparing 
them to the quantitative predictions of computational language models that pro-
cess the same items; or conversely (from a computational linguistic perspective) the 
human processing measures are used to evaluate and compare models’ cognitive 
validity.

The Dundee Corpus (Kennedy & Pynte, 2005) was possibly the first corpus of 
this kind. It comprises British newspaper editorials that were read by ten partici-
pants while their eye movements were tracked. The word-reading times from this 
corpus were used for model evaluation by Demberg and Keller (2008) and Frank 
and  Bod (2011), among several others. Other examples of sentence or text corpora 
with human behavioural data are the Potsdam Sentence Corpus (Kliegl et al., 2006), 
which consists of isolated German sentences that were designed to include vari-
ous syntactic structures, and comes with eye-tracking data; the UCL Corpus (Frank 
et al., 2013) of English sentences that were sampled from novels, and has both eye-
tracking data and self-paced reading times; the Natural Stories Corpus (Futrell et al., 
2021) of self-paced reading times on English narratives that were adapted to cover 
a range of syntactic complexities; and the Ghent Eye-Tracking Corpus (GECO; Cop 
et  al., 2017) with eye-movements recorded while participants read an entire Aga-
tha Christie novel in either English or Dutch. The recently published Multilingual 
Eye-Movements Corpus (MECO; Siegelman et al., 2022) is particularly interesting 
because it includes materials in 13 different languages.

There are also corpora that come with neuroimaging (rather than behavioural) 
data collected during language comprehension. For example, in studies by Wehbe 
and colleagues, participants read one chapter of a Harry Potter book while their 
brain activity was recorded using functional magnetic resonance imaging (fMRI; 
Wehbe et  al., 2014) or magnetoencephalography (MEG; Wehbe et  al., 2014). 
Another series of studies had participants listen to spoken Dutch narratives (audio 
book excerpts) while in an fMRI (Lopopolo et al., 2018) or MEG (Armeni et al., 
2019, 2022) scanner.

The sentences of the above-mentioned Potsdam and UCL eye-tracking corpora 
were also presented to participants in electroencephalography (EEG) studies (Dam-
bacher et al., 2006; Frank et al., 2015) using the standard ‘rapid serial visual presen-
tation’ (RSVP) approach where a sentence’s words are flashed sequentially at a fixed 
location in order to prevent eye movements. Thus, EEG and eye-movement data 
are available on the same set of sentences, allowing for direct comparison between 
language models’ ability to predict the behavioural and electrophysiological meas-
ures. Unfortunately, such a comparison is hampered by the fact that the two data 
types were recorded from different sets of participants and in different experimental 
sessions.

This problem can be solved by coregistration, that is, the simultaneous record-
ing of eye movements and EEG, thereby allowing participants to read naturally 
during EEG recording. Natural reading and RSVP differ in early orthographic pro-
cessing (Kornrumpf et  al., 2016; Nárai et  al., 2022) and evoke different cognitive 
processes (Metzner et al., 2015), highlighting the importance of natural reading in 
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EEG studies.1 Although eye movements cause strong ocular artifacts in the EEG 
signal, techniques are available for removing these to obtain a fairly clean EEG sig-
nal (Dimigen et al., 2011).

As far as we are aware, the only currently available corpus of eye-tracking-with-
EEG data is the Zurich Corpus (ZuCo; Hollenstein et al., 2018). The ZuCo stimuli 
were isolated sentences extracted from expository texts, namely movie reviews and 
Wikipedia pages about well-known individuals, in English. A potential drawback 
of using such items is that they can be hard to interpret out of context, for exam-
ple because of a pronoun that refers to a specific but unnamed individual (as in the 
ZuCo item ‘He won a Nobel Prize in Chemistry in 1928’). Moreover, when the spe-
cific movie or individual is mentioned, readers’ understanding and appreciation of 
the statement will surely depend on their knowledge and opinion about the movie/
individual. Such knowledge- and opinion-dependent processing factors are difficult 
to capture in a computational language model and increase by-participant variance 
in the data.

In the eye-tracking-with-EEG data set we present here, we took a slightly dif-
ferent approach and followed the UCL Corpus method of extracting from narrative 
texts individual sentences that are comprehensible out of context. From the eye-
movement corrected EEG signal, we derive the voltages time-locked to fixation 
onset, known as fixation-related potentials (FRPs). These FRPs show positive- and 
negative-going deflections, called components, the earliest of which are indicative 
of the fixation itself and of early orthographic processing. Our main interest here is 
in the so-called N400 component, a negative-going deflection on central electrodes 
that tends to peak at around 400 ms after the appearance of a word and is larger for 
words that are semantically implausible (Kutas & Hillyard, 1980) or less predictable 
(Kutas & Hillyard, 1984).

We analyse and validate the data by comparing word-reading times and N400 
sizes to word-surprisal values estimated by a simple computational language model 
on the same sentence stimuli. A word’s surprisal is the negative log-transformed 
probability of its occurrence given the sentence so far (Hale 2001; Levy 2008) and 
earlier research has repeatedly shown that words with higher surprisal take longer to 
read (Goodkind & Bicknell, 2018; Monsalve et al., 2012; Smith & Levy, 2013) and 
yield larger N400 (Frank et al., 2015; Michaelov & Bergen, 2020). We find the same 
effects in our data, after correcting for word frequency, length, and position in the 
sentence.

We call our data set the Radboud Coregistration Corpus on Narrative Sentences, 
or RaCCooNS for short. In the remainder of this paper, we will discuss stimuli selec-
tion, participant properties, procedural details, and data recording, preprocessing, 
and analysis. Next, we show how word surprisal relates to word-reading time, N400 
size, and the shapes of the FRPs. Finally, we discuss the quality of ocular artifact 
correction and possible avenues for future research. The RaCCooNS data set is 
freely downloadable (see Supplementary information section).

1  Weiss et  al. (2016), however, found that ‘the time course of orthographic processing during natural 
reading might be remarkably similar to that found during word reading with fixed gaze.’ (p. 12).
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2 � Methods

2.1 � Stimuli

All 200 sentence stimuli were taken from the ‘books’ section (excluding biblical texts) 
of the SONAR-500 Dutch corpus (Oostdijk et al., 2014), according to the following 
procedure: 

1.	 The 20,000 most frequent word types were selected from the first slice of the 
NLCOW2014 Dutch web corpus (Schäfer, 2015; Schäfer & Bildhauer, 2012).

2.	 From the SONAR-500 texts, all 266,132 sentences were selected that:

•	 Contain only word types from the 20,000 most frequent word list, or any of the 
following punctuation markers: period, comma, question mark, exclamation 
mark;

•	 Are at least 5 words long (not counting punctuation);
•	 Are at most 30 tokens (i.e., words or punctuation markers) long.

3.	 From these sentences, the subset containing at least three content words (not 
including the last word, i.e., the pre-final token under the assumption that the 
last token is punctuation) was selected. Content words are adjectives, verbs, and 
nouns, as determined by the Frog part-of-speech tagger (Van der Sloot et al., 
2018)

4.	 From the remaining 175,948 sentences, 400 items were identified that

•	 Form a grammatical sentence;
•	 Are comprehensible outside of their context without requiring uncommon world 

knowledge;
•	 Do not contain possibly offensive words nor describe potentially upsetting 

events (e.g., extreme violence).

5.	 From these 400 items, 200 were selected to represent a wide range of words and 
constructions. Five other sentences were chosen as practice items.

6.	 The occasional exclamation mark was replaced by a period.

The 200 stimuli sentences comprised 2783 word tokens of 1015 word types (excluding 
punctuation). One hundred of the stimuli sentences and three of the practice items were 
paired with a yes/no comprehension question. Correct answers were divided equally 
between ‘yes’ and ‘no’.

All stimuli, questions, and correct answers can be found in the shared folder Stim-
uli, which also contains the list of 20,000 most frequent words and a data frame (tab-
separated values text file) with information about each word in the sentence stimuli (for 
details, see the README.md file in the same folder).
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2.2 � Participants

Participants were recruited via Radboud University’s Research Participation Sys-
tem. Forty-three native Dutch speaking participants were tested, none of which 
reported experiencing reading difficulties (e.g., due to visual impairment or 
dyslexia). The eye-tracking and EEG data from six participants were discarded 
because of technical issues. The EEG data from an additional three participants 
was discarded because of an extremely noisy signal. Table  1 lists basic demo-
graphic information for the remaining participants. Information about individual 
participants is in the tab-separated text table ET_Participants.tsv in the 
shared folder eyetracking (for details, see the README.md file in the same 
folder).

2.3 � Procedure

All experimental protocols were approved by Radboud University’s Ethics 
Assessment Committee Humanities (application nr. 1036). All procedures were 
carried out in accordance with the relevant guidelines and regulations. Informed 
consent was obtained from all participants.

Participants were tested individually in a soundproof booth at the Centre for 
Language Studies experiment lab (Radboud University, Nijmegen). Their domi-
nant eye was determined using the Miles test and they were fitted with an EEG 
cap and four electrooculography (EOG) electrodes (see Sect.  2.5 for electrode 
locations). A conduction gel was injected into the electrodes to ensure high 

Table 1   Demographic 
information of included 
participants

 All participants’ EEG data has corresponding eye-tracking data, but 
there are three participants with eye-tracking data only

Eye-tracking EEG

N 37 34
Age
 Range 18–49 18–49
 Mean 26.2 25.8

Gender
 Male 11 10
 Female 26 24

Handedness
 Left 5 5
 Right 31 28
 Unclear 1 1

Dominant eye
 Left 10 9
 Right 27 25
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conductivity between the electrode and the scalp. The impedance was considered 
sufficient if it was below 20 k Ω.

Participants were then asked to put their chin on the eye-tracker chin rest and to 
find a comfortable position to remain in for the duration of the experiment. Their 
eyes were at a distance of 105.5 cm from the top of the monitor and 108 cm from 
the bottom.2 The experiment description, which appeared on the monitor, instructed 
participants to read the sentences like they would normally read a book.

After the participants were given the opportunity to ask questions, a nine-point 
eye-tracking calibration was performed and the five practice sentences were pre-
sented, followed by a repetition of the calibration. Next, the 200 experimental sen-
tences were presented in randomized order.

Participants were encouraged to take a break after every 33 or 34 sentences, 
which was followed by another nine-point calibration. Upon finishing the reading 
task, participants were asked about their gender, age, and handedness, and received 
a €20 gift voucher or course credit. The duration of an experiment session was 
between 100 and 120 min.

2.4 � Stimulus presentation

Sentences were presented left aligned with a 40-pixel margin on the right-hand side. 
The 19 longest sentences were split into two left-aligned lines3 with a 76-pixel dis-
tance between the two lines. Stimuli were presented in Courier font, with a 16-pixel 
character width (0.26° visual angle). The screen resolution was set to 1920 × 1018 
and the top-left coordinates of each stimulus sentence were (62, 352) so that it 
appeared at approximately one-third from the top of the screen. Because we used a 
fixed-width font, the character width, start coordinates, and (if applicable) line break 
location suffice to reconstruct the screen position of each character.

Each sentence was preceded by a fixation cross located where the beginning of 
the first word would appear. After the fixation cross had been visible for 500 ms, the 
eye-tracker waited for the occurrence of a fixation in a 25 × 25 pixel square centered 
on the fixation cross. As soon as such a fixation was automatically detected by the 
built-in function of SR Research Experiment Builder, the fixation cross was replaced 
by the stimulus sentence. Failure to detect a fixation on the fixation cross would have 
resulted in recalibration, but in practice this was never required.

2.5 � Data recording

Eye movements were recorded at a time resolution of 1000 Hz, using an SR 
Research EyeLink 1000+ desk-mounted eye tracker.

2  The monitor was a BenQ type XL2430T with a pixel dot pitch value of 0.276 mm.
3  Line-break locations are indicated by \n in stimuli_with_linebreaks.txt in the shared 
folder Stimuli.
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We used an ActiCHamp EEG system with 28 EEG channels (locations Fp2, Fz, 
F3, F7, F4, F8, FT9, T7, T8, FC5, FC1, FC6, FC2, C3, C4, CP5, CP1, CP6, CP2, 
Pz, P3, P7, P4, P8, Oz, O1, O2; and Cz as reference). EOG electrodes were located 
under and above the left eye, and at left and right outer canthi. EEG and EOG were 
recorded at 500 Hz using Brain Vision Recorder acquisition software.

Synchronization between the eye-tracker and EEG signals was established by 
sending simultaneous EEG triggers and eye-tracker messages at each stimulus sen-
tence onset and at the start and end of recording.

2.6 � Preprocessing

2.6.1 � Eye tracking

A research assistant inspected all trials for monotonous change in vertical fixa-
tion location resulting in fixations consistently falling below or above the area-of-
interests that SR Research Data Viewer automatically assigned to the words. The 
research assistant then used Data Viewer to correct these vertical drifts by vertically 
re-assigning fixations to words. Fixations were never moved horizontally. A trial 
was marked for rejection when fixations could not reliable be attributed to words 
(according to the subjective opinion of the research assistant) or if no fixation on the 
sentence was recorded due to track loss. In total, 309 of 7209 trials (4.29%) were 
rejected.

We make available the raw eye-tracking data (converted from edf to ascii for-
mat), as well as pre-processed participant/session-level, trial-level, word-level, and 
fixation-level data as tab-separated text tables. Word-level data includes four read-
ing-time measures (Rayner, 1998): the duration of the first fixation on the word, the 
first-pass duration (amount of time from the onset of the first fixation until the offset 
of the last consecutive fixation on the word), the regression-path duration (amount 
of time from the onset of the first fixation on the word until the offset of the last 
fixation that is followed by a fixation on a later word in the sentence), and the total 
reading time (sum of durations of all fixations on the word). A list of rejected tri-
als is provided in bad_data.txt in the main shared folder. For further details 
of the shared eye-tracking data, see the README.md file in the shared folder 
eyetracking.

2.6.2 � EEG

2.6.2.1  Merger with eye‑tracking data  We used the MATLAB EYE-EEG toolbox 
(v0.85) by Dimigen et al. (2011) for EEGLAB (v2021.0; Delorme & Makeig, 2004) 
to merge the eye-tracker and EEG data. The toolbox function synchronize first 
performs a linear interpolation between the start- and end-of-recording eye-tracker 
messages and EEG triggers, in order to match the number of samples between the 
two signals. Next, it detects the sentence-onset events shared between the eye-tracker 
and EEG, and measures the latency difference between the shared events. All stimuli 
onsets were found to be well synchronised between the EEG and eye-tracker signals, 
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with no more than 1 sample (2 ms) difference, except for the single occurrence of a 
2-sample asynchrony.

EEG data was rejected when the tracker coordinates fell outside of a rectangu-
lar window with top left pixel coordinates (40, 300) and bottom right coordinates 
(1880, 500); these mostly correspond to track losses, often due to blinks. Data 
recorded during the 100 ms leading up to or following out-of-bound gaze coordi-
nates was also rejected.

2.6.2.2  Ocular artifact correction  Data from an individual electrode was excluded 
when visual inspection revealed it to be faulty (not transmitting a signal) or to show 
nothing but very strong noise; this was the case for one electrode for 7 participants, 
and for 3 electrodes for a single participant (see bad_data.txt for details). We 
did not use interpolation to estimate the missing electrode data. EEG data were re-
referenced to the average over the remaining EEG channels, turning the original Cz 
reference into a proper EEG channel.

We then performed ICA-based ocular artifacts removal, following Dimigen 
(2020) as closely as possible. First, a 4 Hz passband edge high-pass filter (but no 
low-pass filter) was applied. Stretches of data from 0.2 s before until 2.9 s after 
every even-numbered stimulus appearance event were selected as ICA training data. 
Spike potentials caused by saccades are overweighted in the training data by copy-
ing (appending) the data 20 ms before until 10 ms after a saccade; this was repeated 
until the total amount of data increased by 50%. Next, we ran fastICA with compo-
nents estimated in parallel, using the FastICA package for MATLAB.4 We then 
removed ICA components whose variance during saccades was over 10% higher 
than variance during fixations (a method originally proposed by Plöchl et al. 2012). 
The results are stored in a single EEGLAB struct variable per participant.

2.6.2.3  Fixation‑related potentials  FRPs were extracted for all non-excluded EEG 
electrodes and for all first fixations on each word. Following Dimigen et al. (2011), 
we excluded fixations that start within 700 ms from trial onset and fixations rejected 
in the eye-tracking data.

The N400 size in response to the first fixation on a word was defined as the aver-
age FRP over electrodes Cz, C3, C4, CP1, CP2, Pz, P3, and P4 (based on Fig.  3 
of Dimigen et al., 2011) in a time window between 250 ms and 450 ms from the 
start of fixation. This time window was based on Dimigen et al. (2011) who report 
slightly earlier N400 effects than the standard 300–500 ms window in EEG reading 
studies using RSVP. The N400 baseline was taken to be the average voltage over the 
same set of electrodes in the 100 ms leading up to the fixation.

We make the following EEG data available (for details, see the README.md file 
in the shared folder EEG):

4  https://​resea​rch.​ics.​aalto.​fi/​ica/​fasti​ca/.

https://research.ics.aalto.fi/ica/fastica/
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•	 The merged raw EEG and eye-tracker data: one MATLAB file per participant in 
folder EEG/Merged.

•	 The preprocessed EEG data: one MATLAB file per participant in folder EEG/
Preprocessed.

•	 The FRPs for all non-rejected fixations, including information about channel 
locations (in EEGLAB format), fixated words, and fixation onset times: a single 
MATLAB file FRP.mat in folder EEG.

•	 N400 sizes for all words and participants, including baseline level: a single tab-
separated text table N400.tsv in folder EEG.

2.7 � Analysis

A 5-gram language model was trained on the first slice of the NLCOW14 cor-
pus, using the The SRI Language Modeling Toolkit (Stolcke, 2002) with modified 
Kneser-Ney smoothing (Chen & Goodman, 1999). This model then generated a sur-
prisal estimate for each word in the stimuli sentences.

These surprisals served as the main predictor of interest in linear mixed-effects 
models fitted to either the log-transformed first-pass reading times or the N400 sizes; 
the latter on content words only because surprisal effects on the N400 are known to 
be driven almost exclusively by content words (Frank et al., 2015). Other predictors 
were the log-transformed word frequency in the SUBTLEX-NL corpus (Keuleers 
et al., 2010), the length of the word (number of characters), and the position of the 
word in the sentence, which was included as a covariate of no interest. For the N400 
analysis, the N400 baseline is also a covariate of no interest. By-word-token and 
by-participant random intercepts were also included, as were by-participant random 
slopes of all fixed effects.

Data from trials marked for rejection (see Sect. 2.6.1) was excluded, as was data 
on sentence-initial words and words attached to punctuation. This left 56,876 data 
points for the reading time analysis and 16,277 data points for N400 analysis. The 
regression models were fit using the MixedModels package (v4.8.0; Bates et  al., 
2022) in Julia (v1.8.3; Bezanson et al., 2017).

3 � Results

Due to a programming error, the responses to comprehension questions were not 
recorded for the first nine included participants. The mean error rate across the other 
28 participants was 7.0% (range: 2.0% to 23.3%).

Table 2   Fixed effects of interest 
from regression model fitted 
to log-transformed first-pass 
reading times

Predictor b (× 1000) SE (× 1000) z p

Surprisal 9.9 1.4 6.89 < .00001

Log wordfreq 3.0 4.3 0.70 0.48
Word length 16.4 2.8 5.87 < .00001
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3.1 � Eye tracking

Table  2 shows the estimated regression coefficients of the most important pre-
dictors for the analysis of log-transformed first-pass reading times. For the full 
regression output and results on non-transformed reading times, see the file 
analysis_RT.jl in shared data folder eyetracking. As expected, there is 
a highly significant positive effect of word surprisal: less predictable words take 
longer to read. All Variance Inflation Factors (VIFs) were below 3.5, indicating 
that there were no multicollinearity issues.

Fig. 1   Topographically plotted fixation-related potentials (average voltage time-locked to first fixation on 
each word) after ocular artifact correction. Shaded areas are 95% confidence intervals
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3.2 � EEG

3.2.1 � Fixation‑related potentials

Figure 1 shows the baseline-corrected FRPs, averaged over all non-rejected fixations 
from all included participants. Fixations on sentence-initial words, function words, 
and words attached to punctuation were excluded. No clear N400 is visible, but the 
shapes of the FRP curves are similar to those reported by Dimigen et al. (2011).

3.2.2 � N400 effect

Table 3 shows the estimated regression coefficients of the most important predictors 
for the N400 analysis, excluding words if (part of) the corresponding eye-tracking 
signal in the N400 time window was rejected. For the full regression output, see 
the file analysis_N400.jl in shared data folder EEG. The significant, negative 
effect of surprisal shows that fixating on a less predictable word results in a stronger 
(more negative-going) N400 FRP component. All VIFs were below 1.9, indicating 
that there were no multicollinearity issues.

3.2.3 � N400 localisation

The definition of N400 size was based on earlier literature rather than the current 
data because making the definition dependent on the data itself constitutes statisti-
cal ‘double dipping’, which results in invalid p-values. Having established that an 
N400-effect of surprisal is visible in the FRPs, we can further localize the effect 
in space and time by computing ‘regression FRPs’, similar to the ‘regression ERP’ 
approach by Smith and Kutas (2015). We fit a linear mixed-effects regression model 
at each sample point (from 0 ms to 600 ms from fixation onset) and at each electrode 
included in the N400 plus six neighbouring electrodes (P7, P8, CP5, CP6, FC1, and 
FC2).5 This regression model has the same fixed and random factors as in the N400 
analysis above, but the dependent variable is the ocular artifact-corrected EEG volt-
age rather than the N400 average. We then plot the time-series of surprisal coef-
ficients as if they are FRPs. The results in Fig. 2 clearly show that the N400 effect 
is indeed limited to approximately the set of electrodes included in the N400-size 

Table 3   Fixed effects of interest 
from regression model fitted to 
N400 size after first fixations on 
content words

Predictor b SE z p

Surprisal − 0.0384 0.0122 − 3.15 .002
Log wordfreq 0.0359 0.0523 0.69 .493
Word length − 0.0153 0.0199 − 0.77 .440

5  See the supplementary materials for results on all electrodes.
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definition, but the timing is similar to what is commonly found in RSVP studies 
with a peak at about 400 ms from fixation onset.

4 � Discussion and conclusion

We have presented RaCCooNS: a new corpus of simultaneously recorded eye-
tracking and EEG data during naturalistic sentence reading. Co-registration of eye 
movements and EEG allows for an analysis of EEG patterns during natural reading 
behaviour (as opposed to the traditional RSVP method) as well as a rigorous com-
parison between effects on behaviour (e.g., reading times, skipping rates, and regres-
sion probabilities) and neurophysiology (e.g., size of N400 and possibly earlier FRP 
components).

Many eye-tracking corpora already exist, often much larger than RaCCooNS, 
and several corpora with neural activation during language comprehension are also 
available. However, the number of data sets that combine synchronous eye-move-
ment and EEG data is still very small. To the best of our knowledge, RaCCooNS is 
the only such corpus with narrative sentences, as well as the only one in Dutch.

Using MATLAB with the free EEGLAB and EYE-EEG toolboxes, our EEG 
preprocessing script (EEG/preprocess.m) can fully recreate the FRPs from 
the merged raw EEG and raw eye-tracking data. In contrast, preprocessing of the 
eye-tracking data cannot be rerun automatically as this involved hand-correction 

Fig. 2   Topographically plotted regression coefficients of surprisal, time-locked to first fixation on each 
word. Shaded areas are standard errors
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of vertical drift. A similar limitation is that to-be-rejected participants, trials, and 
EEG electrodes were subjectively identified rather than by an algorithm that can be 
inspected and adjusted. However, the shared file bad_data.txt that lists all data 
rejections can be edited to investigate how these rejections affect the results.

RaCCooNS’s eye-movement and EEG measures are specifically intended for the 
evaluation of predictions by computational linguistic models. Word surprisal is the 
most popular (and, arguably, successful) linking hypotheses between probabilistic 
language models and psycholinguistic measures of human sentence processing such 
as reading time and N400 size. Hence, the corpus’s usability for language model 
evaluation is validated by the robust effects of surprisal on both first-pass reading 
times and the size of the N400 FRP component.

One possible weakness of RaCCooNS is that it is limited to individual sentences 
so it is not suitable for evaluating models that are sensitive to (discourse) relations 
across sentence boundaries. Indeed, we used surprisal values that were estimated by 
a sentence-bounded language model: a rather simplistic 5-gram model trained on 
individual sentences, which is both cognitively and linguistically very unrealistic. 
It stands to reason that more accurate surprisal values, which more accurately pre-
dict reading time and N400 size, can be obtained from more realistic models, such 
as (recurrent) neural networks and probabilistic grammars (Armeni et al., 2017). In 
principle, the RaCCooNS data can then be used to qualitatively compare the cogni-
tive validity of surprisal estimates from different model architectures or model vari-
ants. Other model-based measures can also be investigated, for example, Frank and 
Willems (2017) used a distributional semantics model to quantify the semantic relat-
edness between content words in the UCL corpus sentences and showed that weaker 
relatedness results in larger N400 size during sentence reading.

Another potentially fruitful avenue for further research would be to go beyond 
FRPs and analyse effects on neural oscillations. Oscillatory power in different fre-
quency bands can be predicted by surprisal (and related measures) from a trigram 
language model (Armeni et  al., 2019), and Vignali et  al. (2016) showed that the 
oscillatory dynamics from EEG reading studies are similar for RSVP and natural 
reading.

Two remaining questions are to what extent our ocular artifact removal proce-
dure (based on Dimigen, 2020) was successful, and whether it was required to reveal 
a surprisal effect. Figure  3 presents the FRPs before and after artifact correction, 
immediately revealing that the correction procedure indeed resulted in substantial 
artifact reduction. Nevertheless, some ocular artifacts remain visible, in particular 
during saccades (i.e., in the baseline period) and shortly after fixation onset.

Interestingly, a post-hoc analysis of N400 sizes extracted from the FRPs before 
ocular artifact correction revealed an equally strong and reliable effect of sur-
prisal ( b = − 0.0388, z = − 3.07, p = .002 ). Nevertheless, artifact correction 
did meaningfully affect N400 sizes: Pre-correction, there was a highly signifi-
cant effect of word position in the sentence ( b = − 0.0425, z = − 3.17, p = .0015 ) 
which was no longer present post-correction ( b = − 0.0104, z = − 1.07, p = 0.28 ). 
Apparently, the effect of word position on N400 size was in fact merely an ocular 
artifact that was successfully removed by the correction procedure. These conclu-
sions are corroborated by the pre- and post-correction regression FRPs presented 
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in the supplementary materials. Future work could include comparing the results 
of our artifact-correction pipeline to others (e.g., Henderson et al., 2013; Weiss 
et  al., 2016). We also expect that better results can be obtained by applying 
deconvolution to correct for overlap between EEG responses to consecutive fixa-
tions (Ehinger & Dimigen, 2019; Shain & Schuler, 2021).

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10579-​023-​09684-x.
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Fig. 3   Topographically plotted fixation-related potentials (average voltage time-locked to first fixation on 
each word) before (red) and after (blue) ocular artifact correction. Note the large y-axis scaling differ-
ences between channels. (Color figure online)
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