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Abstract In this paper an attempt has been made to prepare an automatic tonal and

non-tonal pre-classification-based Indian language identification (LID) system using

multi-level prosody and spectral features. Languages are first categorized into tonal

and non-tonal groups, and then, from among the languages of the respective groups,

individual languages are identified. The system uses syllable, word (tri-syllable) and

phrase level (multi-word) prosody (collectively called multi-level prosody) along

with spectral features, namely Mel-frequency cepstral coefficients (MFCCs), Mean

Hilbert envelope coefficients (MHEC), and shifted delta cepstral coefficients of

MFCCs and MHECs for the pre-classification task. Multi-level analysis of spectral

features has also been proposed and the complementarity of the syllable, word and

phrase level (spectral ? prosody) has been examined for pre-classification-based

LID task. Four different models, particularly, Gaussian Mixture Model (GMM)-

Universal Background Model (UBM), Artificial Neural Network (ANN), i-vector

based support vector machine (SVM) and Deep Neural Network (DNN) have been

developed to identify the languages. Experiments have been carried out on National

Institute of Technology Silchar language database (NITS-LD) and OGI Multi-lan-

guage Telephone Speech corpus (OGI-MLTS). The experiments confirm that both

prosody and (spectral ? prosody) obtained from syllable-, word- and phrase-level

carry complementary information for pre-classification-based LID task. At the pre-

classification stage, DNN models based on multi-level (prosody ? MFCC) features,

coupled with score combination technique results in the lowest EER value of 9.6%

for NITS-LD. For OGI-MLTS database, the lowest EER value of 10.2% is observed

for multi-level (prosody ? MHEC). The pre-classification module helps to improve
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the performance of baseline single-stage LID system by 3.2% and 4.2% for NITS-

LD and OGI-MLTS database respectively.

Keywords Tonal and non-tonal languages � Multi-level analysis �
Prosody and spectral features � Databases � Classifiers

1 Introduction

The main purpose of LID system is to automatically recognize the spoken language

from a given portion of speech. One application of LID systems is to prepare a

system for routing an incoming phone call to an appropriate human switchboard

operator who is well versed in a particular language. In multilingual countries like,

India, a multilingual spoken-dialog system that can serve in multiple languages,

finds application in various fields (Mary 2006). In this type of multilingual

operation, the machine should be capable of distinguishing among different

languages. Several approaches and computationally advanced methods have been

proposed in the literature for language distinguishing task with state-of-the-art

performance.

The number of target languages has direct bearing on the performance of an LID

system. Also, in countries, like India where the languages share common phoneme

sets, distinguishing among languages become more challenging. Several researchers

attempted to identify the closely related Indian languages. In one such case,

Jothilakshmi et al. (2012) presented a hierarchy-based LID system for 9 Indian

languages using spectral features, namely MFCC, delta/ double delta and SDCs of

MFCC. Here, in the first level, the languages were divided into two language

families, namely Indo-Aryan and Dravidian and then individual languages were

identified from languages of the corresponding language family. They studied the

efficacy of the two-level LID system in discriminating languages having the same

origin. The authors also studied the effectiveness of MFCC features and they

reported an accuracy of 80.56% (9 target languages) for the GMM-UBM model and

(MFCC ? delta-double delta features). However, they didn’t study the comple-

mentarity of prosodic features with MFCC for hierarchical Indian language

identification system.

Reddy et al. (2013) proposed another LID system for 27 languages of Indian

origin using spectral (MFCC) and prosodic features. Here, prosodic features

extracted for different levels, namely syllable, word, and phrase were used and then

the final score was obtained by combining the scores obtained for different levels.

Complementary nature of prosodic and spectral features at the utterance level was

exploited and the evidences from spectral and prosodic features were fused to obtain

better language recognition accuracy. In this case, the average accuracy for the

identification of 27 Indian languages was 62.13%. To build a more accurate system

with larger number of target languages, a module may be added to initially pre-

classify the languages into different categories or sub-language families. Also, to

accurately identify languages, which are closely related or are having the same

origin, properly, a reliable pre-classification module is required.
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In one such case, Wang et al. (2007) outlined a tonal/non-tonal pre-classification-

based LID system for 16 world’s distinct languages using prosodic features only and

reported accuracies of 77.9% and 49.2% for 30 s and 10 s test data respectively.

However, the system is dependent on phonetically labelled data, which is not always

available and requires expertise in linguistics. Countries, like India where language

diversity is very high, it is even more difficult to obtain the phonetically labelled

data for all the languages. Also, in (Wang et al. 2007) the researchers examined the

efficacy of pre-classification module with only the world’s distinct languages. No

study, however, has been reported on pre-classification of closely related Indian

languages.

Additionally, in Wang et al. (2007) only a few parameters of prosodic features,

like pitch and duration have been used for both pre-classification and pre-

classification-based LID task and the features are extracted considering the whole

utterance as a unit. However, literature study confirms the alignment of tonal events

with syllables for tonal languages (Atterer and Ladd 2004; Zhang 2014). Also, most

of the Indian languages are syllable-centric (Singh 2006), and so language-specific

information are manifested at syllable level itself. For tonal languages the pitch

changes within a syllable is of a regular pattern (Maddieson et al. 2013). In one of

the recent works (China Bhanja et al. 2018), we have observed the usefulness of

syllable-level features for pre-classification-based LID system. Some new param-

eters of prosody have also been proposed to boost the performance of tonal/non-

tonal language classification task. However, the system performance was analysed

only for seven Northeast (NE) Indian languages. Moreover, the tonal languages

included in this database are mostly having monosyllabic words. However, for di-

syllabic or poly-syllabic tonal languages, all the syllables may not carry tone

information. In case of those languages, features obtained from other levels, like

word (three consecutive syllables) or phrases (multi-word) may provide better tone

information. In paper (Reddy et al. 2013) researchers observed the complementarity

among different levels of prosodic features when identifying individual languages.

However, no such study analysed either the complementarity of syllable, word and

phrase level prosody or the combining effects of the different levels of prosody for

tonal/non-tonal classification or tonal/non-tonal pre-classification-based LID sys-

tem. Literatures reveals that MFCC carries tone information (Le et al. 2009; Ryant

et al. 2014). However, for tonal/non-tonal pre-classification-based LID system,

frame level analysis of MFCC has not been explored so far. Since tones in tonal

languages lie within a syllable (China Bhanja et al. 2018), MFCC frames

corresponding to a syllable are further modelled using Legendre coefficients to

obtain syllabic level characterization. However, for di-syllabic or poly-syllabic tonal

languages any of the utterance or syllable level MFCC modelling may not be the

most suitable in terms of capturing the tone information. To study this aspect,

MFCC feature modelling can be analysed at multiple levels so as to explore both the

local and global characteristics of the speech signal. Also, its combination with

multi-level prosodic features is studied.

MFCCs, though have been the most extensively used features for language

identification (Burgos 2012), are sensitive to background noise, acoustic mis-

matched training and testing environments, room reverberation etc. In another
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study, researchers showed that the performance of MFCC features reduces

significantly with the increase of noise power (Li and Huang 2011). Several

researchers (Li and Narayanan 2014; Sadjadi and Hansen 2015) have worked, in

recent times, towards developing a front-end system, robust to noise and

mismatched acoustic training and testing environments. In Sadjadi and Hansen

(2015), the authors proposed another noise robust LID system which works well on

noisy data of DARPA-RATS database, utilizing MHEC features extracted from the

frames of an utterance. However, no study discusses if MHEC carries tone

information that could be useful for discrimination of tonal languages from non-

tonal. Since MHEC carries finer details of the information of human auditory

perception which may be useful for identifying different tones, therefore it may be

more effective for discriminating tonal/non-tonal languages with higher accuracy.

Syllable-level representation of MHEC feature may provide better tonal/non-tonal

language discriminating information. Multi-level MHEC may provide complemen-

tary information and they may be used as complementary features with prosody to

improve the system performance at the pre-classification stage which would further

improve the overall performance. Further, this paper studies the system performance

for two different datasets that have been collected using two different channels.

These experiments may thus help study the effectiveness of acoustic features for

two different channel conditions.

In the back-end, a significant advancement can be observed in the context of LID

task. Several research efforts have been made in the form of Joint Factor Analysis

(JFA), i-vector based approach (Dehak et al. 2011) etc. i-vector based approach uses

GMM-UBM to model the acoustic features and various scoring methods, namely

probabilistic linear discriminant analysis (PLDA) (Prince and Edler 2007), SVM

(Dehak et al. 2011) and cosine distance (CD). In recent study, the effectiveness of

DNN (Richardson et al. 2015a, b; Mounika et al. 2016) has also been studied in LID

task. In existing literature (Dehak et al. 2011; Prince and Edler 2007; Richardson

et al. 2015a, b; Mounika et al. 2016) i-vector based SVM and DNN are used to

model the frame-level features. Also, in Martinez et al. (2013), researchers

presented a method whereby an utterance is first divided into fixed length segments.

Then the segment-level features are used to compute the i-vector of that utterance.

However, in tonal languages, features should preferably be extracted syllable by

syllable. Nevertheless, the use of multi-level features and subsequent score

combination can also be helpful. Syllable-level or multi-level features have not

been used with DNN or i-vector SVM frameworks so far.

This paper particularly focusses on the identification of closely related Indian

languages. The influence of one language on other is very high in India. Also, there

are several under-resourced and/or well-resourced languages in India. Very few

databases (ciil-spokencorpus 2009; Maity et al. 2012) have been prepared for Indian

languages. Moreover, in India, the existing databases either include less number of

target languages or are not commercially available. This makes it important to

prepare a database which may cover many more Indian languages.
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2 Motivation

It can be observed from the literature that the existing tonal/non-tonal pre-

classification-based LID system (Wang et al. 2007) for the world’s distinct

languages depend on phonetically labelled data. Also, only syllable-level MFCCs

and prosody have been explored in a similar system for NE Indian languages (China

Bhanja et al. 2018). No study of such a system is available using multi-level MFCCs

which carry useful information for di-syllabic or polysyllabic tonal languages and

no work studies the effectiveness of MHEC features or their complementarity with

prosody in any pre-classification-based LID task. No pre-classification-based LID

system has so far explored multi-level analysis of MHECs and prosody.

Additionally, most of the LID systems (Sadjadi and Hansen 2015; Dehak et al.

2011; Prince and Edler 2007; Richardson et al. 2015a; Richardson et al. 2015b;

Mounika et al. 2016) reported so far, has given emphasis on the modelling of

utterance-level features extracted from the frames of an utterance. Modelling of

multi-level features using i-vector based SVM or DNN has not been explored.

Commercially available databases for Indian languages are very less in number.

This paper tries to address the above-mentioned issues. The main contributions of

this paper may be summarized as follows:

• A tonal/non-tonal pre-classification-based LID system has been developed for

languages of Indian origin using multi-level prosody spectral features. This

system does not use phonetically labelled data.

• Comparative study of the frame-level and syllable-level spectral features has

been done. Also, performance analysis of MHEC and MFCC features has been

carried out. Complementarity of MHEC and MHEC ? SDC with prosody has

also been studied.

• Comparative performance analysis of systems based on multi-level prosody and

multi-level (prosody ? spectral) feature with respect to that based on syllable-

level feature has been carried out in this work.

• A comparative analysis of the various modelling techniques, namely GMM-

UBM, i-vector based SVM, ANN and DNN has been done for a pre-

classification-based LID system using multi-level features.

• NITS-LD (Studio-quality) has been prepared in-house and it covers twelve

closely related Indian languages, namely Bengali, Assamese, Indian English,

Hindi, Nagamese, Odia, Tamil, Mizo, Punjabi, Manipuri, Bodo, and Gojri of

different language families. The data has been acquired from news archives of

AIR (All India Radio). Moreover, the systems are also evaluated on OGI-MLTS

(telephonic) database that consists of world’s distinct languages of different

families.

The rest of the paper is organized as follows: Sect. 3 provides the description of

the databases; the description of the proposed language identification system is

given in Sect. 4—system architecture, features and the language modelling
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techniques. Experimental results and analysis are given in Sects. 5 and 6 concludes

the work by mentioning the future works.

3 Dataset details

In this work, two databases namely, OGI-MLTS database and NITS-LD have been

used for validation of the systems.

3.1 OGI-MLTS database

OGI-MLTS speech (Muthusamy et al. 1992) corpus is made up of spontaneously

spoken fixed-vocabulary utterances of 11 different languages: Spanish, Farsi,

Mandarin Chinese, French, English, German, Vietnamese, Korean, Japanese, Tamil

and Hindi. The Japanese language has been not been considered in the

experimentation because of the uncertainty of its tonal/ non-tonal nature (Beckman

and Pierrehumbert 1986). 90 speakers of each of the languages have been used to

prepare the database. It is collected over a telephone line at a sampling frequency of

8 kHz. It covers two tonal languages (Vietnamese and Mandarin) and nine non-

tonal languages. The systems have been evaluated for 10 languages (after omitting

the Japanese language). Only two Indian languages have been covered in OGI-

MLTS database, which is why the NITS-LD database which covers 12 Indian

languages has been prepared.

3.2 NITS-LD

NITS-LD includes 12 Indian languages, namely, Bengali (Be), Assamese (As),

Hindi (Hi), Indian English (En), Nagamese (Na), Odia (Od), Tamil (Ta), Manipuri

(Ma), Mizo (Mi), Bodo (Bo), Gojri (Go) and Panjabi (Pu).

In this database five languages (Manipuri, Mizo, Bodo, Gojri and Panjabi) are

tonal and the rest seven are non-tonal. AIR news archives have been used for data

preparation. It involves well matured and highly professional speakers. Thus, the

speech extracts are all well-articulated and spoken with standard speaking rate and

pronunciation. Table 1 compares the OGI-MLTS and the NITS-LD databases. The

database prepared using speech samples of AIR news archives have some issues like

lesser number of speakers for some of the languages and lesser variability across

different sessions in terms of vocabulary. In short, data variability across speakers

and words are limited. In order to have sufficiently large training set, a subset of

Indic database is also used in addition to NITS-LD database. From the Indic

database, around 5 h data of each of the 5 languages namely Hindi, Bodo, Odia,

Tamil and Manipuri have been used for this experiment. The details of Indic

database are given in (Baby et al. 2016).
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4 Language identification system

A pre-classification-based LID system with a tonal/non-tonal pre-classification

module has been developed in this work to achieve better performance over the

baseline single-stage LID system. This section describes the proposed pre-

classification and the pre-classification-based LID systems prepared using multi-

level prosody and the spectral features. It also describes the extraction and

parameterization of different features and the language modelling techniques used

in this experiment.

4.1 Language pre-classification

The proposed tonal/non-tonal language pre-classification system is described in this

section. In one of the recent works (China Bhanja et al. 2018), one such system has

been prepared using syllable-level prosody and MFCC features. In this paper, a

systematic analysis of system performance has been done for all the syllable, word

and phrase levels features. It also explores score combination using multi-level

features-based models. Two systems have been developed which both use multi-

level prosody but use spectral features of different levels. System-I is developed

using prosody of syllable, word and phrase levels, and spectral features, particularly

MFCC, MFCC ? SDC, MHEC, MHEC ? SDC extracted from all the speech

frames constituting an utterance (utterance-level). The second system, system-II,

uses multi-level spectral features along with multi-level prosody.

4.1.1 Description of system-I

In system-I, we propose multi-level analysis of prosodic features and utterance-level

analysis of spectral features for tonal/non-tonal pre-classification of different

languages. Working of system-I is shown in Fig. 1. The first step of this system is to

detect the vowel onset points (VOPs) (Prasanna et al. 2009) locations that

correspond to the time instants of starting of vowel regions in a speech signal. The

speech samples between two consecutive VOPs are said to constitute a syllable.

Here, Pitch is calculated (Talkin 1995) from the spontaneous speech signal to obtain

the pitch contour of the whole utterance. The energy contour is formed by the

energy values calculated from 10 ms frames of the utterance. A 5th order median

filter is used to smoothen the pitch and energy contours. Then the identified VOPs

are mapped with the smoothened contours. The contour portions between every

consecutive VOPs are considered as syllables. A duration feature is calculated for

every syllable, based on the number of frames between its two VOPs. The pitch and

energy contours and the duration features pertaining to every syllable are all

parameterized. The parameters are row-wise concatenated to form the final feature

vector to represent prosody for that syllable. As discussed in (Mary 2006; Reddy

et al. 2013), word-level features, obtained from preceding and succeeding syllables

along with the present syllable, effectively represent temporal dynamics. Thus, a

word-level feature vector is extracted for every ‘‘M’’ syllable as shown in Fig. 1.
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System performance has also been analysed for phrase-level prosody which are

obtained considering a sequence of 12 syllables of the speech signal. The reason for

choosing 12 syllables for representing phrase is that the gross observation of the

languages of NITS-LD suggest that a 3 s duration utterance may contain 9–15

syllables. The mean of the phrase length distribution is around 12 syllables for most

of the languages.

For 10 s and 30 s duration data number of syllables will always be higher than 12

syllables. Thus, a sequence of 12 syllables may be considered as phrase length for

three different duration of data. For phrase-level analysis of the system, the

combination of three parameters, namely D pitch contour, D energy contour and

duration contour has been used as in the case of tonal languages, change in pitch

within a syllable is an important phonological cue and there is a correlation with

change in energy and duration with the pitch change. A shift of one syllable at a

time is considered such that the number of phrase-level feature vectors is equal to

the number of syllables in the utterance. In case the number of syllables is fewer

than 12, as an approximation, the last syllable feature vector is replicated to meet the

required count of syllables. In this manner, a phrase-level feature vector is obtained

for every ‘‘M’’ syllable. The spectral features (MFCC, MFCC ? SDC, MHEC and

MHEC ? SDC) are extracted from the utterance frames. Only the voiced frames of

the utterance are considered for further processing. After normalizing different

features, seven separate GMM-UBM models are trained for syllable-level prosody,

word-level prosody, phrase-level prosody, utterance-level MFCC, MFCC ? SDC,

MHEC and MHEC ? SDC. At the testing phase, the average prosody scores

corresponding to the syllables, words and phrases of an utterance are obtained

separately. Thus, three different scores are obtained for an utterance for syllable-,

word- and phrase-level prosody and are used in different combinations to form

feature vectors. Similarly, for the utterance-level spectral features, the score

obtained from all the frames of an utterance are averaged to obtain the final score

corresponding to that utterance. At a time, only one of the spectral features, i.e.

MFCC, MFCC ? SDC, MHEC, or MHEC ? SDC is used along with multi-level
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prosody. The dotted boxes in Fig. 1 indicate the other features besides MFCCs,

which have been explored in this work. Thus, four different scores, one for spectral

feature and three others for prosody, are obtained against every test utterance.

Depending on the classification scores, individual performances of different features

are calculated. To analyse the effect of score combination, experiments have been

carried out in three phases. In the first phase, scores obtained for syllable and word

levels prosody are stacked together to form a two-dimensional feature vector. A

classifier is then trained on these feature vectors to study this score combination. In

the second phase, a third score from phrase-level prosody model is concatenated

with the two-dimensional score vector of the first phase, yielding three-dimensional

feature vector. Another classifier is trained on these three-dimensional features to

study the complementarity of the phrase-level score. Lastly, the score feature vector

is augmented with one of the utterance-level spectral model scores and a third

classifier is built on four-dimensional features. Three different types of classifiers

are explored with the scores-based features. The classifiers used are Logistic

regression (LR) (Lee et al. 2011), SVM (Campbell et al. 2006) and Random forest

(Casale et al. 2008). Here, the scores are used as inputs to any one of the classifiers

at a time. The test set data has been split into two parts—one to train the classifier

models as described above and other to test the models.

4.1.2 Description of system-II

Unlike the use of only utterance-level spectral features as in system-I, spectral

features are analysed at multiple levels in system-II. Figure 2 shows the working of

system-II.

Here, similar to system-I, multi-level prosody is used. Spectral features namely,

MFCC, MFCC ? SDC, MHEC and MHEC ? SDC are extracted at syllable, word

and phrase levels. A speech activity detection algorithm is used to find the speech

frames. For syllable-level features, the MFCCs of all speech frames of a syllable are
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further parameterized coefficient-wise using Legendre polynomial. That is, the

contours of the different dimensions of MFCC features of a syllable are

parameterized. Similarly, the other spectral features are further parameterized

using Legendre polynomial. The final feature vector of a syllable or word is

obtained by concatenating the parameters of prosody with that of MFCC,

MFCC ? SDC, MHEC or MHEC ? SDC. In the case of phrase-level analysis, D
MFCC or D MHEC is also used along with the phrase-level prosody.

Separate GMM-UBM models are trained for syllable-level MFCC, syllable-level

(MFCC ? SDC), syllable-level MHEC, syllable-level (MHEC ? SDC), syllable-

level (prosody ? MFCC), syllable-level (prosody ? MHEC), word-level (pro-

sody ? MFCC), word-level (prosody ? MHEC), phrase-level (prosody ? MFCC)

and phrase-level (prosody ? MHEC). Besides this, three other modelling tech-

niques have been explored using the same set of features as is described in

Section in 4.6. As done in the case of system-I, firstly individual performances are

calculated for the various feature levels and subsequently, classifiers are trained on

score-based features in two different phases.

4.2 Pre-classification-based LID system (system-III)

In pre-classification-based LID system, languages are first pre-classified into tonal

or non-tonal categories and then individual languages are identified from their

respective categories. Here, depending on the decision on the pre-classification

stage, the languages are processed through either the tonal or the non-tonal language

identification modules in the second stage. Figure 3 depicts the pre-classification-

based LID. The first stage is constituted by a tonal/non-tonal classification module

(i.e. system-II) and it is followed by individual language models in two different
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modules corresponding to the tonal and non-tonal categories. Multi-level prosody

and spectral features are used in the second stage of the system. The language

modelling technique (described in Sect. 4.6) that provides the best performance for

the pre-classification task is used for the individual language identification task as

well. Score combination of the different models developed using features of various

levels is also done in way similar to that in system-II. Then, final scores from

individual language models are obtained and the decision is taken based on the top-

scored language.

4.3 Feature extraction

In one of the recent works (China Bhanja et al. 2018), some parameters of prosody

have been proposed which are found to be effective for the tonal/non-tonal language

discrimination of seven NE Indian languages. In this work, their effectiveness in

pre-classifying Indian languages has been investigated for a larger set of 12

languages.

4.3.1 Syllable-level prosody

Different parameters of prosodic features used to represent syllable level prosody

are: (China Bhanja et al. 2018) F1: mean pitch, F2: pitch changing level, F3:

amplitude tilt for pitch contour, F4: duration tilt for pitch contour, F5: change in

pitch, F6: distance of pitch contour’s peak from VOP, F7: distance of the pitch

contour point, reading 60% of the peak value, from VOP, F8: mean energy, F9:

change in log energy, F10: normalized energy changing level, F11: distance of

energy contour’s peak from VOP, F12: amplitude tilt of energy contour, F13:

duration tilt of energy contour, F14: distance of the pitch contour point, reading 60%

of the peak value, from VOP, F15: syllable duration, F16: ratio of the duration of

voiced segment to that of the total segment (Rhythm).

Tonal language has a definite set of tones. For example, Manipuri language has

two tones, Mizo language has four tones, Mandarin has four tones and so on.

Generally, in level tone system, tones are distinguished by the pitch level, like, high

(H) or low (L), relative to each other. In contour tone system, tones are

distinguished by their pitch contours, like fall, rise, fall-rise or rise-fall relative to

each other. These contours help in characterization of the different languages.

Amplitude tilt (F3) and duration tilt (F4) explain the contour dynamics (Adami et al.

2003). Some work suggests the presence of a relation between tone height, the jaw’s

movements and lingual articulation and studied their roles in effecting different

degrees of emphasis. Tone height which is represented by the parameter, change in

pitch (F5) (Dediu and Ladd 2007) can be used to differentiate tonal and non-tonal

languages. Also, the pitch contour peak and the onset point of the accented syllable

are consistently aligned for some languages, namely Greek and English, which are

non-tonal in nature (Qu and Goad 2012). And in Mandarin, which is a tonal

language, the peak is aligned with the tone-bearing syllable’s offset point (Reddy

et al. 2013). Therefore, distance of the peak location from VOP may provide
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information for discriminating tonal from non-tonal languages. On the other hand,

for some Tibeto-Burman family languages, like Dimasa and Mizo (Sarmah and

Wiltshire 2010), the influence of the place features of consonants penetrates

substantially into the contour of the next tone. Also, the interaction that exist

between tones and segments (syllables) may cause shift in the tonal onset point

(Gandour 1977). It has been experimentally found that the phenomenon of the tonal

onset point propagating into the segment can be roughly parameterize by the

distance of the pitch contour point, reading 60% of the peak value, from VOP. This

feature parameter denoted by F7, may be used for language pre-classification.

Stress may be present up to a certain extent in any language. In certain scenes,

some syllables are perceptually more prominent than others. These are termed as

stressed syllables. The phonetic correlates of other features like duration and pitch

also result in stress. Stress manifestation in the speech signal is often language-

dependent and the energy parameter is commonly used to quantify it. Tonal

languages which have register tones manifest correlation between tone and stress

(Dusan and Deng 1998). Otherwise, most of the tonal languages don’t have obvious

stress (Qu and Goad 2012). Non-tonal languages, like English, on the other hand,

has definite stress. Thus, stress is found to be a language-specific characteristic and

can be used as a complementary feature with pitch contour. Stress is computed

using the energies of all the speech (voiced) frames of the syllable. In this work,

seven parameters (F8–F14) have been used for stress quantization and two

parameters (F15 and F16) have been used to parameterize the duration character-

istics. In this experiment, each individual parameters denotes single dimension and

thus 16-dimensional prosodic feature vector is used for each syllable. Feature

vectors corresponding to each word units are represented by 48-dimensional

prosody.

4.3.2 Phrase-level prosody

In order to obtain the pitch feature at phrase-level (D pitch contour), an average of

the successive differences of pitch values within a syllable are calculated. These

average values for the sequence of 12 syllables are used to represent the D pitch

contour of that phrase. Phrase-level energy contour (D energy contour) is obtained

in a similar way. Phrase-level duration contour (duration contour) is formed using

the duration values corresponding to 12 syllables in sequence. Then these

parameters are concatenated in a row, resulting in 36-dimensional phrase-level

prosody.

4.3.3 MFCC and MFCC ? SDC features

MFCCs are the most widely used features for any LID task. It models the vocal tract

information. Study has revealed that the vocal tract changes observed to be

associated with the different tones of languages like, Mandarin and Vietnamese, are

found to have a strong correlation with MFCC features (Le et al. 2009). It also

reflects the human auditory perception. Besides, MFCCs have been found to carry
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complementary information to pitch (Le et al. 2009), which is a robust feature

widely used for LID task. MFCC feature extraction is performed according to the

standard algorithm described in (Steven and Mermelstein 1980). In this experiment,

first 7 MFCC coefficients have been considered as used in (Yin et al. 2006).

SDC features are used to exploit the temporal context information of the speech

signal. It is computed using parameters of the standard configuration 7–1–3–7 (N–

d–P–k) (Torres-Carrasquillo et al. 2007). The static Cepstral coefficients are

augmented with these SDC features resulting in 56-dimensional features.

4.3.4 MHEC and MHEC ? SDC features

Another spectral features used in this experiment is MHEC (Sadjadi and Hansen

2015) where instead of using conventional triangular filter banks, Gammatone filter

banks can be employed to replicate the human ear cochlea response (Patterson et al.

1987). The amplitude modulation spectrum of a subband is calculated based on the

Hilbert envelope of the output of the Gammatone filter bank. Here, 32-channel

Gammatone filter banks are used and with centre frequencies uniformly spaced on

the equivalent rectangular bandwidth (ERB) scale between 200 and 3400 Hz.

Hilbert envelope obtained in this experiment is divided into frames of 20 ms

duration with 50% shift. Each frame is subjected to Hamming window to minimize

the abrupt discontinuities that occur at the edges due to truncation of the signal. The

windowing also reduce the correlation that may exist between adjacent frames. In

order to compress the dynamic range of the envelope, root compression by a factor

of 1/15 is done. First 7 coefficients (including c0) of the MHEC has been used in our

experiment. SDC of MHEC is calculated in the similar way as explained in

Sect. 4.3.3 and a 56-dimensional feature vector is obtained for SDC features of 7

coefficients of MHEC.

4.4 Contour modelling of spectral features for system-II

After extracting the spectral features for all frames of the syllable, a contour of

every cepstral coefficient is obtained from values across all the frames of the

syllable. It is modelled as a linear combination of Legendre polynomials as given in

Eq. (1).

f tð Þ ¼
XM

i¼0

aiPi tð Þ ð1Þ

where f(t) represents the contour, Pi(t) is the ith Legendre Polynomial and ai
encodes a characteristic feature of the contour shape (Martinez et al. 2013); a0is the
mean, a1represents the slope, a2defines the curvature, and the more precise details

of the contour are encoded by the higher order coefficients. With fourth order

Legendre polynomials, this method gives 35-dimensional MFCCs, 280-dimensional

MFCC? SDC, 35-dimensional MHECs and 280-dimensional MHEC? SDC for a

syllable. In order to represent word-level MFCC/MHEC, 105-dimensional feature

vectors are used. D MFCCs or D MHECs at phrase-level are obtained in a similar
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way to that in case of phrase-level prosody where each syllable is represented by 12-

dimensional D MFCCs or D MHECs.

4.5 Data normalization

The features require to be normalize for speaker variation, channel variation etc.

GMM-UBM and i-vector based SVM classifiers have been trained on z-normalized

(Ng et al. 2009) feature, while, for training ANN classifier, features are normalized

to values in the range of - 1 to ? 1.

4.6 Language modelling

In this work, four different modelling techniques namely, GMM-UBM (Reynolds

2015), i-vector based SVM (Dehak et al. 2011), ANN (Dorofki et al. 2012), and

DNN (Mounika et al. 2016) are used. GMMs are used to model the language

specific characteristics from the given feature set. UBM model is trained using EM

algorithm and a specific GMM for each of the languages are adapted using

maximum a posterior adaptation. GMM models are trained for the prosodic and

spectral feature vectors obtained from each syllable. ANN has also been used for

identifying different languages. A shallow architecture of ANN with one or two

hidden layers is one of the approaches used for language identification. Generally, in

case of ANN, the numbers of hidden neurons are chosen using trial and error

method so that the best possible result may be obtained from the system. In this

experiment feed forward neural networks are used which uses gradient descent

algorithm. However, they have a poor convergence rate and no definite rules for

choosing the optimal parameters of the training stage are available.

4.6.1 i-vector based SVM

Utilizing the same UBM (GMM), as explained in Sect. 4.6, i-vector extractor is

trained. i-vector is a compact form representation of acoustic features. It is based on

a factor analysis model given by (Dehak et al. 2011).

s ¼ mþ Tw ð2Þ

where srepresents the GMM supervector of the speech segment with respect to the

UBM. mis the supervectors’ mean, Tis the total variability matrix andw represents

the i-vector.

An utterance can be considered as a sequence of a number of syllables. In order

to improve the system performance, in one study (Dey et al. 2017), the i-vector with

reference to a particular frame of an utterance has been computed with a left and a

right context of L frames. Motivated by their study, in this work, i-vectors are

computed for each of the M syllables in the utterance with a left and a right context

of L syllables each. That is, the Baum-Welch statistics for the Nth syllable are

calculated using syllables from N � LtoN þ L. The i-vector sequence obtained as a

result may be denoted byw ¼ ½w1;w2; ::::wM�.
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The total variability matrix is trained on similarly short segments of speech

obtained by dividing the training utterances. For word-level and phrase-level i-

vectors a similar procedure is followed. i-vectors entirely contain the language,

channel and speaker variability’s. Variability compensation techniques, like linear

discriminative analysis (LDA), WCCN or nuisance attribute projection (NAP) are

required to reduce the variability in i-vector space for the following SVM classifier.

In this case, within-class covariance normalization (WCCN) (Hatch et al. 2006) of

the data has been done to generalize the linear kernel of SVM classifier.

4.6.2 DNN

For ANN, It would be problematic to train neural networks with more than 2 hidden

layers. In a recent study, several advanced optimization software or fast computing

hardware make it possible to train much deeper networks. DNN can have 5 or more

hidden layers and training of DNN uses stochastic gradient descent (SGD) algorithm

with a mini-batch for updating the DNN. It uses backpropagation algorithm to

estimate the gradients of the DNN parameters for each mini batch. In this case, input

to the DNN is a stacked set of features obtained from the syllables. Here, ±L

syllables/ words/phrases of context around the current syllable or word have been

stacked together to obtain input feature vectors of different dimensions for different

features.

5 Experiments, results and discussions

Several experiments have been carried out to evaluate the performance of the

proposed system implemented using multi-level prosody and spectral features.

Equal Error Rate (EER) based performance analysis has been presented in this

paper. Besides, Detection Error Trade-off (DET) curve is also presented. Systems

have been tested for 30 s, 10 s and 3 s data.

5.1 Experimental setup

In this experiment, the whole dataset (described in Table 1) of NITS-LD has been

split into three parts: NITS-train, NITS-development and NITS-test data set. Around

7–10 h data of each of the 12 languages totalling to around 100 h data forms the

NITS-train set for this experiment. Out of the100 h NITS-train set, 39 h of data has

been obtained from five tonal languages and the remaining 61 h of data has been

obtained from seven non-tonal languages. Also, 1 h of data of each of the 12

languages, totalling to around 12 h makes up the NITS-development set and 1 hr

data from each of the 12-languages totalling to around 12 h makes up the NITS-test

set. NITS-train, NITS-development and NITS-test set are mutually exclusive.

Performance of the system is dependent on the duration of the test utterances.

Experiments, therefore, have been conduction with three different durations of test

data, namely 30 s, 10 s and 3 s data.
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In case of GMM-UBM, UBM has been built using NITS-development set and a

GMM has been adapted using NITS-train set for each of the language categories

(39 h of data of tonal language and 61 h of data of non-tonal language). The models

have been tested for three different durations of test utterances. i-vector extractor is

trained using the same NITS-development set. For i-vectors based SVM, a context

size of L = 3, leading to a sliding window of 7 syllables/words/phrases is used with

a shift step size of 1. In the case of ANN, NITS-train set has been used to train the

models and NITS-development set to validate the models after each epoch. fivefold

cross-validation approach is used in this experiment.

Feed-forward DNNs with fully connected layers have been used in these

experiments. There are three hidden layers in the network and each hidden layer

contains 512 hidden units with ReLU activation functions for the prosody model

and 1024 hidden units with the same activation functions for rest of the DNN

models. The learning rate and the L2 regularization parameters have been set at

0.001 and 10–7 respectively. The output has been configured as a single output

neuron with sigmoid activation to produce the class probabilities of the pre-

classification stage and as a softmax layer with a dimension equal to the number of

target languages for the second stage. Also, the model minimizes cross entropy loss

using Adadelta optimizer. The models have been trained for 100 epochs with a

mini-batch size of 256. NITS-train set has been used to train the models and NITS-

development set to validate the models after each epoch. fivefold cross-validation

approach has been used in this experiment and the model that gives the best

accuracy at validation stage has been used as the final model. Finally, the NITS-test

has been used for evaluating and reporting results on developed models.

To analyse the performance of OGI-MLTS database, the same procedure has

been followed for all the modelling techniques. 15 h of training data (9 h data from

non-tonal category and 6 h data from tonal category), 5 h of development data and

5 h of test data (30 min data from each language) of this database are used to

perform the experiments.

5.2 Results of the tonal and non-tonal language pre-classification system

5.2.1 Results of system-I

In the case of GMM-UBM, experiment has been conducted using different number

of Gaussian components particularly 2, 4, 8, 16, 32, 64, 128, 256, 512, etc. and it is

observed that for syllable-level prosody, 16; for word-level prosody, 32; for phrase-

level prosody, 16; for utterance-level MFCC or MHEC, 256; and for utterance-level

(MFCC ? SDC) or (MHEC ? SDC), 512 result in the lowest individual EERs.

Here, for syllable /word /phrase level analysis, the likelihood of all the syllables /

words /phrases of a test utterance are averaged to obtain the score for the utterance.

The top scored language is considered to be the identified language. EERs are

calculated for individual languages. The average EER of the pre-classification stage

is also calculated.

From Table 2, it can be observed that among syllable, word and phrase level

prosody, syllable-level prosody provides the lowest EERs, followed by word-level
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and then phrase-level prosody. Therefore, it can be inferred that tones in tonal

languages are coded more distinctly in syllables than in words or phrases. Moreover,

in this experiment, some of the tonal languages are monosyllabic and possibly

because of that the word-level prosody provides the second lowest EER readings.

Here, the average EERs for tonal languages are lesser for MHECs than MFCCs

whereas, average EERs for non-tonal languages are lesser for MFCCs than MHECs.

It is possibly because MHECs are based on the Hilbert envelop of the Gammtone

filterbanks output which is the time–frequency representation of the cochleagram.

Human cochlea which is a part of inner ear perceives the pitch variation more

accurately than outer ear. Moreover, at low frequency range, the ERB scale,

involved in the extraction of MHECs has finer resolution than Mel scale (Zhao and

Wang 2013) and hence the better performance for tonal languages. It can also be

observed that MFCC provides the lowest EERs among all individual features and

the EERs further reduce when their SDC coefficients are considered. Here, SDC

coefficients of both MFCCs and MHECs are found to carry useful information

relevant to the pre-classification task. Also, for NITS-LD, SDCs of MFCC features

are more effective than the SDCs of MHEC features.

Table 3 shows the performance of system-I for NITS-LD when combining the

scores obtained using GMM-UBM for different levels of prosody and also for the

combination of the scores of spectral and multi-level prosodic features. From

Tables 2 and 3 it can be observed that, combining the scores of GMM-UBM

obtained for syllable and word level prosody, improves the system performance by

2.7%, 1.8% and 1.7% over the syllable-level prosody and it shows further

improvements of 4.8%, 4.6% and 4.3% (30 s, 10 s and 3 s test data respectively)

after combining the scores from syllable, word and phrase level prosody. This may

be due to the presence of some non-overlapping tonal/ non-tonal language

discriminating information in the individual features. Moreover, some of the

languages like Manipuri, Mizo, Bodo etc. are monosyllabic or are having most of

the words monosyllabic in nature. On the other hand languages like Assamese,

Indian English etc. are polysyllabic. Therefore, individual EERs of monosyllabic

languages are lesser for syllable-level prosody than word-level prosody and for

some of the polysyllabic languages, word-level prosody provides lesser EERs than

syllable-level prosody. Hence the better performance obtained on combining the

scores of different levels of prosody.

It can also be observed that both utterance-level (MFCC ? SDC) and

(MHEC ? SDC) perform better than multi-level prosody and EER values reduce

on combing the scores of GMM-UBM model developed using either utterance-level

(MFCC ? SDC) and multi-level prosody or (MHEC ? SDC) and multi-level

prosody. Additionally, for system-I, lowest EERs have been obtained for the

combination of multi-level prosody and utterance-level (MFCC ? SDC) and for

this combination EERs reduce by 11.7%, 12.5% and 11.8% with respect to that for

multi-level prosody for 30 s, 10 s and 3 s test data respectively. Of the classifiers

trained on scores, SVM with polynomial kernel outperforms the rest with slightly

better EER readings.

Similar experiments have been conducted on OGI-MLTS database and the

experimental results are shown in Fig. 4. In this case, the number of Gaussians of
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GMM-UBM modelling techniques used for different features is same as used in the

case of NITS-LD. From Fig. 4 it can be observed that syllable-level prosody carries

more tonal/non-tonal language discriminating information than word or phrase level

prosody. In this case, relative to syllable-level prosody, EER values reduce by 1.7%,

2.7% and 2.3% (30 s, 10 s, and 3 s test data) when the scores of syllable and word

level prosody are used in combination, and 5.1%, 4.9% and 4.7% when the scores of

syllable, word and phrase level prosody are combined. Like NITS-LD, both

utterance-level MHECs and MFCCs carry complementary information with respect

to multi-level prosody for OGI-MLTS database. The system provides the lowest

EERs of 19.8%, 21.4% and 23.8% for the three respective test data for the

combination of scores of multi-level prosody and utterance-level (MHEC ? SDC)

features which are 11.6%, 12.8% and 12% lesser than that obtained for multi-level

prosodic features. In this case, score combination has been done using SVM with

polynomial kernel. The following observations can be made from Tables 2, 3 and

Fig. 4:

• Both utterance-level MHECs and MFCCs are useful for tonal and non-tonal

discrimination. Also, both utterance-level MFCC and MHEC carry comple-

mentary information with respect to multi-level prosody.

• Prosody obtained from syllable, word and phrase levels carry complementary

information.

• MFCC performs better than MHEC for NITS-LD, however, MHEC performs

better than MFCC for OGI-MLTS database. It may be due to the fact that

MHEC extraction uses nonlinear rectification step prior to the DCT, whereas

MFCC uses log scale. This log operation on the Mel-power-spectrum makes the

MFCCs scale-invariant whereas the MHECs are not scale-invariant because of

the power-law compression with the factor of 1/15. This could make MHECs

more noise robust and it provides better performance for the noisy OGI-MLTS

database.

• System-I provides the EER of 19.8%, 21.4% and 23.8% for OGI-MLTS

database using 30 s, 10 s and 3 s test data respectively which are slightly higher
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than the lowest EERs obtained for NITS-LD (19.3%, 21% and 23.2%). This is

possibly because the collected speech samples of OGI-MLTS database are noisy

whereas in case of NITS-LD the speech samples are noise free.

5.2.2 Results of system-II

This section shows the performances of different models namely, ANN, GMM-

UBM, i-vector based SVM and DNN for multi-level spectral ? prosodic features. It

also analyses the system performance for the score combination of different models

developed using multi-level features.

In case of GMM-UBM, for syllable-level MFCCs or MHECs, 256; for syllable-

level (MFCC ? SDC) or (MHEC ? SDC), 512; for syllable-level (prosody ?

MFCC) or (prosody ? MHEC), 512; for word-level (prosody ? MFCC) or

(prosody ? MHEC), 512; and for phrase-level (prosody ? MFCC) or (prosody ?

MHEC), 256 result in the lowest individual EERs. Score combination is performed

in a similar way to that of system-I. From Tables 2, 3 and 4 it can be observed that

syllable-level MFCC or MHEC features provide better performance than the

MFCCs or MHECs of utterance-level. The improvements are 3.1%, 4.6% and 4%

for MFCCs and 3.9%, 3.4% and 4.8% for MHECs using 30 s, 10 s and 3 s test data

respectively. Here SDCs of both MFCC and MHEC extracted of syllables are

identified to be insignificant for syllable-level analysis of pre-classification task. In

this case, the system provides the lowest EER readings on combining scores

corresponding to multi-level prosody ? MFCC features which are 3.5%, 2% and

1.2% (for the three respective test data) lesser than the respective lowest EER

readings of system-I. As explained in Sect. 5.2.1, the score for a particular utterance

is calculated by averaging the likelihood scores of all the syllables/words/phrases of

that utterance. The score combination among different levels of features has been

performed in a similar way to system-I.

System performance has been analysed using ANN classifier. Several exper-

iments have been carried out with different network structures and 16L–29N–8N–

2L, for syllable-level prosody; 35L–50N–12N–2L, for syllable-level MFCC or

MHEC; 280L–150N–40N–2L for syllable-level (MFCC ? SDC) or (MHEC ?

SDC); 51L–82N–35N–2L, for syllable-level (prosody ? MFCC) or (prosody ?

MHEC); 153L–182N–63N–2L, for word-level (prosody ? MFCC) or (prosody ?

MHEC) and 48L–70N–16N–2Lfor phrase-level (prosody ? MFCC) or (prosody ?

MHEC) prove to be the most effective network structures in case of NITS-LD.

Here, L represents the linear units, N represents the non-linear units and selection of

the most effective architecture of ANN is based on the trial and error procedure. For

instance, in case of network structure 16L–29N–8N–2L, the number of nodes in the

input layer is 16; the number of nodes at the output layer is 2 and the number of

hidden units in the two hidden layers are 29 and 8 respectively. In case of all the

network structure, same convention has been followed. In this experiment, the

epochs limit is set to 500. Tan-sigmoid is used as the activation function. In this

case, like GMM-UBM, the output scores corresponding to all the syllables/words/

712 C. C. Bhanja et al.
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phrases of a test utterance are averaged to calculate the final score for that utterance.

Here, syllable-level prosody provides EERs of 29.8%, 32.3% and 34.6% for 30 s,

10 s and 3 s test data respectively. Performances of ANN classifier for system-II

using different features are given in Table 5.

In order to get i-vectors corresponding to different features, same number of

Gaussian mixtures have been used as used in case of GMM-UBM in system-II.

Linear kernel of SVM and TV matrix dimensions of 100, 200, 400, 200, 250 and

200 for syllable-level prosody, syllable-level MFCC or MHEC, syllable-level

(MFCC ? SDC) or (MHEC ? SDC), syllable-level (prosody ? MFCC) or (pro-

sody ? MHEC), word-level (prosody ? MFCC) or (prosody ? MHEC) and

phrase-level (prosody ? MFCC) or (prosody ? MHEC) lead to the lowest

individual EERs. The scores of the SVM are converted into posterior probabilities

based on optimal sigmoid transformation and then in a way similar to GMM-UBM,

scores of all the syllables/words/phrases are averaged to calculate the score of the

utterance. In this case, syllable-level prosody provides EERs of 32.3%, 34.6% and

37.4% for 30 s, 10 s and 3 s test data respectively. Score combination has been

performed in a way similar to the ANN models. Table 6 shows the performances of

system-II using i-vector based SVM and different features.

In the case of syllable-level analysis, input to the DNN is a stacked set of features

obtained from the syllables. Here, ± 3 syllables around the current syllable have

been stacked together to obtain input feature vectors of dimensions (16*7 = 112) for

prosody, (35*7 = 245) for MHEC or MFCC, (280*7 = 1960) for (MHEC ? SDC)

or (MFCC ? SDC) and (51*7 = 357) for (MHEC ? prosody) or (MFCC ?

prosody). Similarly, for words and phrases, a context size of ± 3 lead to input

feature vectors with the dimension of (153*7 = 1071) and (48*7 = 336) respec-

tively, both for (prosody ? MHEC) and (prosody ? MFCC). Again, the scores

corresponding to all of the syllables/words/phrases of a test utterance are averaged

to calculate the score for that utterance. EERs of DNN model for different features

are given in Table 7. Here, syllable-level prosody provides EERs of 27.2%, 29.6%

and 31.2% for 30 s, 10 s and 3 s test data respectively.

From Tables 4, 5, 6 and 7 following observations can be made:

• Both syllable-level MFCC and MHEC perform better than the utterance-level.

• At syllable level also, both MFCC and MHEC carry commentary information

with prosody for tonal/non-tonal discrimination task.

• Prosody ? spectral features obtained from syllable, word and phrase levels

carry non-overlapping tonal and non-tonal language discriminating information

and score combination of different levels of features provides the best

performance.

• SDC coefficients of both MFCC and MHEC do not carry any tonal and non-

tonal language discrimination information at syllable level. This is possibly

because the performance of SDC features are affected as the time span of the

syllable units which often prove too short to capture any significant spectral

transition cues between frames.

• DNN outperforms the other classifier, followed by ANN, GMM-UBM and then

i-vector based SVM. Modelling with DNN helps to reduce the EERs of system-

Modelling multi-level prosody and spectral features using... 713
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II over system-I with the values of 9.7%, 5.9% and 4% for 30 s, 10 s and 3 s test

data respectively.

Same experiments have been conducted for OGI-MLTS database. Performances

of OGI-MLTS database with GMM-UBM and DNN models are given in Tables 8

and 9 respectively. Modelling parameters remain the same as that used in case of

NITS-LD. Like NIT-LD, for OGI-MLTS database, both MFCC and MHEC perform

better when they are extracted at syllable-level than at utterance-level. Also, SDCs

of both MFCC and MHEC do not carry any significant information at syllable-level.

Here, the combined scores (using the polynomial kernel of SVM) of GMM-UBM

developed using multi-level (prosody ? MHEC) feature provides the lowest EER

values, which are 3.5%, 2.2% and 1% (for the three respective test data) lesser than

the lowest EERs of system-I. EERs further reduce when the features are modelled

using DNN and the reductions are 9.6%, 5.6% and 3.8% for the three respective test

data.

5.3 Results of the tonal and non-tonal pre-classification-based LID system

Two different case studies have been considered in this paper to study the

effectiveness of pre-classification module in language identification.

5.3.1 Case study I (system-III)

In this case, we implement a pre-classification-based LID system for OGI-MLTS

and NITS-LD databases (system-III). Tonal/non-tonal language pre-classification

module as described in system-II (DNN-based) is used as a front-end of the

individual language identification system. A baseline system has been prepared for

identifying individual languages without any pre-classification module and the

combining scores of multi-level (prosody ? MFCC) features have been used. The

performance of the proposed pre-classification-based LID system is compared with

respect to the baseline system. For the baseline system, a single discriminative

model corresponding to each of the individual feature set is trained using DNN to

classify the participating languages. Thus, five separate DNN models for the

features, namely syllable-level prosody, syllable-level MFCC, syllable-level

(prosody ? MFCC), word-level (prosody ? MFCC) and phrase-level (prosody ?

MFCC) have been prepared. At the testing phase, identification is done based on

output of the DNN model. Here, for NITS-LD, prosody, MFCC and their

combinations are used as features. And the features are extracted for different levels

(syllable, words and phrases) in a way similar to that in the pre-classification stage

(system-II). Score combination and decision making are also done as explained

earlier. In case of OGI-MLTS database prosody, MHEC and their combination are

used to analyse the system performance. The features have been chosen based on

their performance measures obtained for the respective databases. The performances

of the baseline system and the pre-classification-based language identification

system are given in Table 10.
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From Table 10, it can be observed that the languages like Hindi, Nagamese,

Odia, Manipuri, Mizo etc. are identified better using MFCC feature whereas the

languages like Assamese, Gojri, Punjabi etc. are well distinguished by prosodic

features. Thus, it confirms that prosody and MFCC are complementary with each

other and their combination helps to improve the language identification perfor-

mance. In this case, the system performs better for the word-level

(prosody ? MFCC) features than syllable-level (prosody ? MFCC) features and

the overall EERs, in this case, reduce by 1.7%, 3.2% and 5.6% for 30 s, 10 s and 3 s

test data respectively. This is possibly due to the presence of dynamic information

of different features at word-level where 3 consecutive syllables are concatenated.

System performances are further improved for the score combination of the DNN

models prepared for syllable and word level (prosody ? MFCC) features or for

syllable, word and phrase level (prosody ? MFCC) features. The baseline system

provides the lowest EERs of 14.4%, 15.8% and 19% for 30 s, 10 s and 3 s test data

after combining the scores from syllable-, word- and phrase-level

(prosody ? MFCC).

From Table 10 it can also be observed that on the addition of a pre-classification

module, system performance improves. The pre-classification-based LID system

provides the EERs of 11.2%, 13% and 16.6% for the three respective test data.

Thus, the proposed system shows absolute improvement of 3.2%, 2.8% and 2.4% in

EER over the baseline system. It is also evident that the pre-classification module

may not necessarily improve the performance of all languages. The languages like

English, Nagamese, Odia, Mizo etc. show higher EERs when pre-classification is

done before individual language identification. The error in decision that occurs in

the pre-classification module is carried over to the second stage, thereby increasing

the EERs of certain languages. Nevertheless, those languages which are correctly

pre-classified are identified with significantly reduced EERs, and as a result the

overall EERs of the system reduce by a good margin.

The system performance has been analysed further by considering a hundred

percent accurate pre-classification module at the first stage. The system is found to

have lowest EER values of 9%, 10.8% and 14.4% for three different duration of test

data after combining the scores from syllable-, word- and phrase-level (prosody ?

MFCC). Thus, the system provides the absolute improvements of 5.4%, 5% and

4.6% over the baseline system.

Experimental results given in Table 11 show that pre-classification also help

boost the identification performance of the world’s distinct languages of OGI-MLTS

database. In this case the improvements are 4.2%, 4.1% and 3.2% for the three

respective test data. The system performance further improves when a hundred

percent accurate pre-classification module at the first stage has been considered. In

this case, after combining the scores of the syllable-word- and phrase- level

(prosody ? MHEC), the system provides the EERs of 10.1%, 13.7% and 15.4% for

30 s, 10 s and 3 s test data. Here, the system performance improves by 6.1%, 5.6%

and 5.2% over the baseline system. From Table 10 and Table 11 it is observed that

the pre-classification module results in more significant performance improvement

for OGI-MLTS database than NITS-LD. This observation is also made in the case

when a hundred percent accurate pre-classification module is considered at the first

722 C. C. Bhanja et al.

123



stage. This is possibly because OGI-MLTS database involves World’s distinct

languages, while NITS-LD languages are of the same origin and are closely related.

Table 12 shows the confusion matrix and Table 13 shows the FPR and FNR

values of the system when the languages are identified without pre-classifying them.

Experimental results are given for DNN model (fivefold cross validation) based on

multi-level (prosody ? MFCC) feature (after score combination). Table 12 and

Table 13 show that most of the languages are confused with Hindi and hence the

system reports the highest FPR value for it. The system shows the lowest FNR for

Nagamese language in this case and also, among all the languages Nagamese

language reads the lowest EER. The system reports the lowest FPR for Tamil

language indicating that languages are least confused with it.

Table 14 shows the confusion matrix and Table 15 depicts the FPR and FNR

values of the system for pre-classification-based LID task of NITS-LD. Following

observations can be made from Tables 14 and 15:

• It may be said that confusion of other languages with Manipuri is very less as the

system reports the lowest FPR for this language. Additionally, only Mizo

language is confused with it. It may be because of the fact that both Manipuri

and Mizo belong to the Sino-Tibetan family and hence the confusion.

• The system provides the lowest FNR for Bodo language. It is only confused with

Gojri and Hindi language and other languages are less confused with it.

Therefore it provides the lowest EER for this system.

• The system provides the highest FPR for Hindi language. It can be observed that

use of pre-classification module helps to reduce the FPR value to certain extent

for this language. Since it is considered as the parent language of most of the

languages, FPR value turns out to be the highest for it.

From Tables 12, 13, 14 and 15 it can be clearly observed that an accurate pre-

classification stage help boost the system performance. FPR and FNR values are

reasonably high for the system where no such pre-classification module is present.

FPR values of some of the languages like Bengali, English, Hindi, Tamil, Manipuri,

Mizo etc. reduce for the pre-classification module and for some of the languages

like Hindi, Bengali, English, Tamil, Manipuri, Bodo, Gojri etc. both FPR and FNR

value reduce. The misclassification of some of the languages at pre-classification

stage leads to an increase in overall FNR for some languages. Therefore, it can be

inferred that if a perfectly accurate pre-classification module is present, languages of

tonal category would not confuse with the languages of non-tonal category and

cause the FPR and FNR values for all the languages to reduce.

5.3.2 Case study II

A comparative study of the pre-classification-based LID system with the system

proposed in (Reddy et al. 2013) is presented in this section. In the first experiment,

the performance of 12 individual languages of NITS-LD has been obtained using

the system described in Reddy et al. (2013). In the second experiment, an LID
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system using the pre-classification module, system-I, which is based on the same set

of features as in (Reddy et al. 2013), is evaluated.

Average EERs obtained, in this case, are given in Table 16. EERs for prosodic

features are obtained after score combination of different levels of syllable-, word-

and phrase-level prosody. It can be observed that in this case also, pre-classification

help boost the system performance and the improvements are 2.8%, 3.2% and 3.4%

for the three respective test data. The system performance further improves when a

hundred percent accurate pre-classification module is considered and the system

shows the improvements of 5.6%, 5.2% and 4.8% over the system where no such

pre-classification module is present.

6 Conclusions

This paper presents an automatic pre-classification-based LID system for the same

originated Indian languages based on multi-level prosody and spectral features.

Here, features are extracted from syllable, word, and phrase levels of the speech

signal and it is observed that syllable-level features are the most appropriate for

Table 12 Confusion matrix obtained for NITS-LD when no pre-classification module is present. (Rows

list the actual class and columns represent the assigned class)

As Be En Hi Na Od Ta Ma Mi Bo Go Pu

As 360 71 0 0 69 0 0 0 0 0 0 0

Be 30 418 5 5 0 32 10 0 0 0 0 0

En 0 0 415 29 0 0 0 0 30 26 0 0

Hi 0 38 0 390 0 15 10 0 0 0 0 47

Na 20 0 0 12 468 0 0 0 0 0 0 0

Od 10 34 0 20 0 436 0 0 0 0 0 0

Ta 0 0 0 24 0 0 418 0 0 0 38 20

Ma 0 0 17 0 0 0 0 384 74 25 0 0

Mi 0 0 0 0 7 0 0 21 467 5 0 0

Bo 0 0 0 30 0 0 0 0 21 449 0 0

Go 0 0 0 68 0 0 0 0 0 0 412 20

Pu 0 0 0 31 0 0 0 0 0 0 35 434

Table 13 FNR and FPR analysis (in %) for without pre-classification-based LID system using combi-

nation of prosody and MFCC features and DNN

Languages As Be En Hi Na Od Ta Ma Mi Bo Go Pu

FNR 28 16.4 17 22 6.4 12.8 16.4 23.2 6.6 10.2 17.6 13.2

FPR 1.09 2.6 0.40 4.0 1.3 0.85 0.36 0.38 2.27 1.01 1.3 1.5
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tonal/non-tonal pre-classification-based LID task. Experimental results also suggest

that multi-level features carry complementary information with each other and the

system performance improves when the scores obtained from different models using

multi-level features are combined. It is observed that at pre-classification stage,

fusion of scores from the prosodic features derived from multiple levels of speech

signal help to reduce the EERs from that of syllable-level prosody system by 4.8%,

4.6% and 4.3% (30 s, 10 s and 3 s) for NITS-LD and 5.1%, 4.9% and 4.7% for

OGI-MLTS database. Score combination of multi-level (spectral ? prosody) helps

to reduce the EERs by 3.8%, 5.7% and 4.8% for NITS-LD and 4%, 1.3% and 2.6%

for OGI-MLTS compared to the system developed using syllable-level (spec-

tral ? prosody). The effectiveness of MHEC/MHEC ? SDC features and their

complementarity with prosody for pre-classification-based LID task has been

analysed. It can also be noticed that MHEC performs better than MFCC for noisy

data condition. SDCs of both MHEC and MFCC are not effective for syllable level

analysis. However, they carry complementary information for utterance level

analysis of the system. Experiments have been conducted for twelve languages of

Table 14 Confusion matrix for pre-classification-based LID system for NITS-LD using DNN in both

stages (five-fold cross validation), (prosodic ? MFCC) feature and 30 s test data.(Rows list the actual

class and columns represent the assigned class)

As Be En Hi Na Od Ta Ma Mi Bo Go Pu

As 454 22 0 29 10 0 0 0 0 0 0 0

Be 25 434 0 0 0 39 0 0 0 0 0 0

En 44 0 441 10 0 0 0 0 0 0 0 20

Hi 0 27 0 449 0 25 8 0 0 0 0 0

Na 39 0 0 19 428 0 0 0 5 0 0 0

Od 0 42 0 35 0 400 0 0 0 0 0 0

Ta 25 0 0 0 0 0 458 0 0 0 6 47

Ma 6 0 10 0 0 0 0 449 34 0 0 0

Mi 0 0 0 38 4 0 0 4 394 13 0 0

Bo 0 0 0 19 0 0 0 0 0 485 17 0

Go 0 0 0 41 0 0 0 0 0 0 453 0

Pu 0 0 0 19 0 0 0 0 0 0 20 453

Table 15 FNR and FPR analysis (in %) for pre-classification-based LID system using combination of

prosody and MFCC features and DNN

Languages As Be En Hi Na Od Ta Ma Mi Bo Go Pu

FNR 11.8 12.8 14.3 11.7 12.8 16.4 14.5 10.02 13 6.9 8.2 7.9

FPR 2.5 1.6 0.18 3.8 0.25 1.15 0.14 0.07 0.703 0.23 0.78 1.21
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NITS-LD and ten languages of OGI-MLTS database. Four different models, namely

ANN, GMM-UBM, i-Vector based SVM, and DNN have been explored along with

different types of features. 30 s, 10 s and 3 s test data are used for validation of the

proposed systems. At the pre-classification stage, 30 s duration test data and the

choice of DNN models provide the lowest EERs of 9.6% and 10.2% for NITS-LD

and OGI-MLTS respectively. We have done two different case studies and observed

the effectiveness of pre-classification module in both the case studies. Our proposed

pre-classification-based LID system provides EERs of 11.2%, 13.0%, and 16.6% for

NITS-LD and 12%, 15.2% and 17.4% for OGI-MLTS database. Also, experimental

results indicate that the efficacy of pre-classification module for the world’s distinct

languages of OGI-MLTS database is more prominent than closely related Indian

languages of NITS-LD.

In future, some extra features may be added to improve the language

classification performance for short duration test data. Syllable boundary determi-

nation being an important part of the techniques presented in this paper, any error

therein can lead to performance degradation. Therefore, more accurate syllable

determination is an important area of research. Also, to improve system

performance of closely related Indian languages, instead of preparing a two-level

LID system, a hierarchical LID system can be prepared. In future, session, channel

and speaker variability may be dealt with more extensively to develop more

effective language classification system.
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