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Abstract This article presents a comparison of different Word Sense Induction

(WSI) clustering algorithms on two novel pseudoword data sets of semantic-simi-

larity and co-occurrence-based word graphs, with a special focus on the detection of

homonymic polysemy. We follow the original definition of a pseudoword as the

combination of two monosemous terms and their contexts to simulate a polysemous

word. The evaluation is performed comparing the algorithm’s output on a pseu-

doword’s ego word graph (i.e., a graph that represents the pseudoword’s context in

the corpus) with the known subdivision given by the components corresponding to

the monosemous source words forming the pseudoword. The main contribution of

this article is to present a self-sufficient pseudoword-based evaluation framework

for WSI graph-based clustering algorithms, thereby defining a new evaluation mea-

sure (TOP2) and a secondary clustering process (hyperclustering). To our knowledge,

we are the first to conduct and discuss a large-scale systematic pseudoword eval-

uation targeting the induction of coarse-grained homonymous word senses across a

large number of graph clustering algorithms.
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1 Introduction: graph-based word sense induction and pseudowords

Word Sense Induction (WSI) is the branch of Natural Language Processing (NLP)

concerned with the unsupervised detection of all possible senses that a term can

assume in a text document. It could also be described as ‘‘unsupervised Word Sense

Disambiguation’’ (Navigli 2009). Since ambiguity and arbitrariness are constantly

present in natural languages, WSI can help improve the analysis and understanding of

text or speech (Martin and Jurafsky 2000). At its core we find the notion of

distributional semantics, exemplified by the statement by Harris (1954): ‘‘Difference
of meaning correlates with difference of distribution.’’

In this article, we focus on graph-based WSI methods. Graphs provide an intuitive

mathematical representation of the relations between words (Biemann and

Quasthoff 2009). A graph can be defined and built in a straightforward way, but

allows for a very deep analysis of its structural properties. This and the discrete

nature of a graph, contrary to the continuous generalisations represented by vector

spaces of semantics (Turney and Pantel 2010), favour the identification of

significative patterns and subregions, among other things allowing the final number

of clusters to be left unpredetermined, an ideal condition for WSI.

The main contribution of this article is threefold:

1. we present two parallel pseudoword ego word graph1 data sets, based on

semantic similarities and co-occurrences;
2. on them, using these data sets, we compare the performances of six WSI

clustering algorithms;

3. we define a new ad hoc evaluation measure for this task, called TOP2.

In the process, we highlight the properties of pseudoword ego graphs with respect to

their components, the different structures of word graphs originating from semantic

similarities and co-occurrences, and the biased behaviour of some existing and

widely-used significance measures.

This article is structured as follows. Section 2 is a brief overview of previous

works that deal with WSI and pseudowords. In Sect. 3 we give a definition and a

motivation for pseudowords. Section 4 introduces the framework of pseudoword

evaluation, focused on our task of homonymy detection. Section 5 details the

specific components that we used to implement our pseudoword evaluation

framework, including a brief description of the considered clustering algorithms.

Lastly, Sect. 6 comments the results of the comparisons, and Sect. 7 concludes the

article.

1 An ego word graph of a word w is a graph that represents the context of w in the corpus; alternatively, it

can be seen as the neighbourhood of w in a word graph that globally represents the corpus. See Sect. 5.1.1

for the definition of ego word graph in our framework.
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2 Related works

Pseudowords were first proposed in Gale et al. (1992) and Schütze (1992) as a way

to create artificial ambiguous words by merging two (or more) random words. We

will discuss them more in depth in Sect. 3. We note that ours is not the first

approach making use of pseudowords: we are aware of the works Otrusina and Smrž

(2010) and Pilehvar and Navigli (2013, 2014) (which find an application e.g., in

Başkaya and Jurgens 2016) on a pseudoword generation method that better models

polysemous words with an arbitrary degree of polysemy. The aim of these works is

to use pseudowords molded into the ‘‘form’’ of existing polysemous words,

following the semantic structure of WordNet.2 Given a word with more than one

synset in WordNet, for each such synset the goal is to find a monosemous term (i.e.,

with only one synset) that is as close as possible to that synset according to some

distance on the WordNet graph. This term will then be selected as one of the

pseudosenses of the pseudoword. However, we want to remark on the different

nature of our article. Here we compare the behaviours of different clustering

algorithms on two data sets of pseudowords built to emulate homonymy, and relate

these behaviours to the structure of the pseudowords’ ego word graphs. As

homonymy is more clear-cut than generic polysemy, we deem that the efficacy of a

WSI algorithm should be first measured in this case before being tested in a more

fine-grained and ambiguous situation. Homonymy recognition itself is relevant for

many tasks like lexical substitution, where the ability to distinguish completely

different senses and uses is more important than the subtle distinction between

facets of the same meaning. Also, the task we define does not depend on the

arbitrary granularity of an external lexical resource, which might be too fine-grained

for our purpose. Further, the sense distinctions e.g., in WordNet might not be

mirrored in the corpus, and conversely, some unforeseen senses might be observed.

We also mention (Marco and Navigli 2013), where pseudowords are used as part

of a complex evaluation framework investigating the quality of web search results.

There, different WSI algorithms (among them Chinese Whispers, considered also in

the present work; see Sect. 5.1.3) are tuned on a small pseudoword data set before

being tested with regard to the organisation and diversification of results of web

queries. This way, the algorithms are quite indirectly compared in terms of quality

of their clusterings. Collaterally, the authors also sketch out an ‘‘in vitro’’ evaluation
of the clusterings relying on the rankings obtained from human annotators.

However, the fact that pseudowords are not central to that setting, and that the

performances of graph-based WSI algorithms are principally interpreted in the light

of desirable properties of web search results (also noticing that the graph-building

step varies for each algorithm and relies on a corpus different than the retrieved web

text snippets), let us assert that in the end the cited work has a very different nature

than our article, even if some techniques are similar. In particular, the authors want

to cluster word instances and do not induce a representation of word senses: this

becomes more apparent when new data are introduced, as instances needs to be re-

clustered every time this happens.

2 http://wordnetweb.princeton.edu/perl/webwn, Miller (1995).
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Another work, more closely related to ours, where pseudowords play a major role

as a means to evaluate a WSI algorithm is proposed by Bordag (2006), where a

triplet-based approach is presented. While the methodology and the data sets of our

work may surely be seen as an expansion of Bordag’s paper, we can affirm that the

pseudoword evaluation framework presented in this article, while describing a

generic method for algorithm evaluation, is more focused on the task of graph-based

homonymy detection rather than on the generic assessment of the validity of an

algorithm. Moreover, the algorithms are not evaluated against themselves (i.e., the

sense-identifying clusters yielded by an algorithm for two words v and w are

compared to those yielded by the same algorithm for the pseudoword v w), but

instead compared to the objective ground truth underlying each pseudoword. In our

setting, this is achieved by defining more precise restrictions on the pseudoword

components. Further, we also consider semantic similarities alongside mere co-

occurrences (see again Sect. 5.1.1) to build pseudoword ego graphs.

Finally, in our opinion current WSI tasks have some shortcomings. A fundamental

problem is the vagueness regarding the granularity (fine or coarse) of the senses that

have to be determined. As a consequence, the definition of an adequate evaluation

measure becomes difficult, as many of them have been showed to be biased towards

few or many clusters.3 Further, small data sets often do not allow obtaining

significant results. Pseudoword evaluation, on the contrary, presents an objective

and self-contained framework where the classification task is well characterised and

gives the opportunity to define an ad hoc evaluation measure, at the same time

automating the data set creation. Therefore, we tackle the following research

questions: what are the limitations of a graph-based pseudoword evaluation for

homonymy detection? How does the structure of a pseudoword ego word graph

depend on its components? How do different clustering strategies compare on the

same data set, and what are the most suited measures to evaluate their

performances?

3 Pseudowords

A pseudoword is an artificial lexical construct used to help in the creation of data

sets for the evaluation of Word Sense Induction clustering algorithms.

Pseudowords were independently first proposed in Gale et al. (1992) and Schütze

(1992). The underlying idea is to treat usually two, but sometimes three or more,

different words in a given data set as one and the same word: we treat the

occurrences of the first word as if they were also occurrences of the other word.

From the point of view of Word Sense Induction, for which we are interested in

modelling a word’s context, this is equivalent to joining the contexts of both words.

We are effectively creating a new, non existent word from the conflation of two

distinct terms, a pseudoword which potentially carries all the senses of its original

3 See for example the results at task 14 of SemEval 2010 (Manandhar et al. 2010), where adjusted mutual

information was introduced to correct the bias: https://www.cs.york.ac.uk/semeval2010_WSI/task_14_

ranking.html.
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components; these are also called pseudosenses. A pseudoword is thus an artificial

lexical object that is the mere sum of its parts. We can take banana_door as an

example: this pseudoword encompasses all and only the meanings of banana and

door. So, if our data set included the sentences

• This afternoon I ate a banana.
• Remember to close the door!

we would treat banana and door as instances of the same fictive word banana_door.
In our notation, the pseudoword originating from the combination of words A and B
will be written as A B, with an underscore joining the two components, which

represents the equal importance of both components. We do not resort to a hyphen,

since this might incorrectly lead to interpret a pseudoword (a mere sum of its

components) as a compound word (a new word with its own meaning).

From the above discussion, if we denote a generic context4 of a word v as C(v), a
set whose elements are words, we will identify the context of v w with

Cðv wÞ ¼ CðvÞ [ CðwÞ:

In other words, the context of a pseudoword simply consists in the union of the

respective contexts of its components.

Going back to the previous example, we could extract the following contexts:

CðbananaÞ ¼ fafternoon; eatg

CðdoorÞ ¼ fclose; rememberg

Cðbanana doorÞ ¼ fafternoon; close; eat; rememberg:

As mentioned in Sect. 1, from the perspective of distributional semantics word

senses are determined by a word’s context. It follows immediately that the senses of

a pseudoword are themselves determined by the union of the senses of its com-

ponents (its pseudosenses), and that consequently a pseudoword can roughly

simulate ambiguity. Pseudowords bring two main advantages to WSI:

1. they allow us to greatly expand data sets of ambiguous words using only few

building blocks and no human intervention;

2. knowing the sense distribution of the components translates into knowing the

pseudosense distribution of a pseudoword.

With regard to the first point, we observe that if we have n words with known

distributions, there are
n

2

� �
pseudowords that can be generated from them, for a

nearly quadratic increase of available terms.

4 In this example a context is informally understood as the lemmatised versions of content words co-

occurring with the target word. A formal definition of the kind of context used in our work will be given

in Sect. 5.1.1.
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The second point is crucial for the evaluation frameworks that have been

proposed in the past and for the one that we want to propose in this article: it means

that, knowing the sense distribution of words v and w, we already know the ideal

clustering of the context of v w and that we can use this information to gauge the

performance of a WSI algorithm on v w. Despite the potentialities we have shown,

there are also issues that we need to confront before better defining the

implementation of pseudoword evaluation in Sect. 4.

We recall that proper homonymy arises when two semantically and etymologically

unrelated senses are expressed by the same spoken or written sign, i.e., word, such as

count in the sense of a nobleman, as opposed to the act of enumerating (Lyons 1968).

This word is ambiguous because we can not assign it a meaning without first having

some clarifying context. At the opposite side of the ambiguity spectrum lie

polysemous words, whose different senses are more or less strictly related to each

other and often revolve around a common concept. Combining random words will

generate pseudowords that fall in between these two extremes. If v and w only possess

unrelated senses, v w will be equivalent to a case of proper homonymy. Sometimes,

however, some kind of overlap between the semantic spheres of v and w is likely to

exist, up to the point that the senses of v w are ultimately blurred and not easily

distinguishable anymore. For example, using two near-synonyms like door and gate
will produce a pseudoword which is substantially equivalent to any one of its two

components. On another note, door andwindowwill surely share an important amount

of contexts, as they both express a metaphorical or architectural concept of opening in

a building, and the resulting pseudoword will probably represent this more abstract

notion. Therefore, even if the previous statement about the knowledge of a

pseudoword’s sense distribution still remains true, we notice that haphazardly mixing

words will possibly yield rather unpredictable and unwanted results, in the sense that it

is not clear how to define a priori the type of ambiguity that a generic pseudoword

simulates. Further, if we perform the process of pseudoword creation using three or

more component words, this issue will naturally sharpen.

The study by Nakov and Hearst (2003) shows that the performances of Word

Sense Disambiguation (WSD) algorithms used to disambiguate the senses of totally

random pseudowords might act as an ‘‘optimistic’’ upper bound with respect to the

same performances on true polysemous words: while pseudowords might not be a

case of perfect homonymy, their senses are still easier to separate in most cases, as

they lack the usual kind of correlation between sense categories and sense

distributions of a real polysemous term. Introducing some sorts of restrictions, like

requiring a minimum frequency for each component or taking components with

similar distributions, we can obtain a pseudoword closer to the real case, and in fact

a drop in the disambiguation performances is noted. From a set-theoretic point of

view, the quality of a pseudoword greatly depends on the cardinality of the

intersection CðvÞ \ CðwÞ. The smaller its cardinality, the better v w will approx-

imate a case of homonymy. This point will be investigated in Sects. 4.1 and 4.1.1,

and further in Sect. 5.2. Essentially, we can claim that on the scale between clear-cut

homonymy and fuzzy polysemy random pseudowords lie closer to the former; on

the other hand, the more words are combined together, the more we approach the

latter.
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4 Pseudoword evaluation framework

In Sect. 3 we point out how the kind of ambiguity modelled by a pseudoword v w is

not always clearly predictable. To keep the complexity of such lexical interactions

as limited as possible, we want to restrict ourselves to the simplest and most

unambiguous case of a pseudoword, namely: the combination of two monosemous
terms. This way, we want to simulate a disemous (i.e., with two senses) case of

homonymy.

Our motivation is that homonymy is usually more clear-cut than generic

polysemy: the senses will be more distinguishable in terms of contexts, and their

respective distributions will be independent from each other with good approxi-

mation. On the contrary, the senses of a polysemous words tend to have more

intricate relationships and the line between one and the other is often hazy;

WordNet’s fine-grainedness is an example of how some subtle distinctions between

different meanings may appear arbitrary at times. For this reason, as already stated,

we deem that the efficacy of a WSI algorithm should first be measured in the case of a

well-defined homonymy before being tested in a more fine-grained and vague

circumstance. Also, we do not want our evaluation to depend on the subjective

granularity of an external lexical resource, like in Pilehvar and Navigli (2014).

Considering only monosemous components for our pseudowords allows us to

perform the following analysis of the structure of a pseudoword.

4.1 Structure of the ego graph of a disemous pseudoword

Since we want to evaluate graph-based clustering algorithms for WSI, we will

associate a weighted word graph to each generic word z in our corpus and each

pseudoword v w. Such a graph is called an ego graph, and we write it respectively

as Gz and Gvw. This kind of graph represents the context, i.e., a portion of the text,

found in the corpus in relation to that specific pseudoword or word: each node

represents a word and edges the relationships between them. More details on what

kinds of ego graphs we use in our framework and how we construct them are given

in Sect. 5.1.1. Here, we want to focus on the particular structure of a pseudoword’s

ego graph Gvw with respect to the components’ ego graphs Gv and Gw.

As discussed in Sect. 3, the knowledge about v and w translates into being able to

tell if a node u of Gvw belongs to either ego graph Gv or Gw, or if it can be found in

both. This means respectively that u is more strongly tied to the contexts of either v
or w, or instead that it acts neutrally with respect to both.

More formally, we denote the node sets of Gv, Gw and Gvw respectively as Vv,

V w and Vvw, and we write

V 0
v ¼ Vv \ Vvw

V 0
w ¼ Vw \ Vvw:

The sets V 0
v and V 0

w thus represent all the terms appearing in the graphs Gv and Gw

(i.e., the terms that we associate respectively to v and w) that also appear in Gvw. We
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use this notation because we observe that not every element of Vv and V w will

necessarily appear in Gvw: when ‘‘combining’’ the two contexts, terms which are

less strongly related to either component will be left out in favor of other ones more

significant to the pseudoword (cf. Sect. 5.1.1).

Now we can express the pseudoword’s ego graph node set Vvw as

Vvw ¼ a [ b [ c [ d; ð1Þ

with

a ¼ V 0
vnV 0

w

b ¼ V 0
wnV 0

v

c ¼ V 0
v \ V 0

w

d ¼ VvwnðV 0
v [ V 0

wÞ:

ð2Þ

Elements in a are nodes in Vvw that are specific only to v, and the same goes for

elements in b with respect to w. The subset c gathers elements associated to both

components v and w and gives a measure of how much the contexts of the two

words overlap in our corpus. The last set d contains all terms that appear only in the

combined context of v and w that underlies the pseudoword. It is indeed possible

that such words are not significant enough (cf. Sect. 5.1.1) to appear in Gv or Gw,

but merging their contexts lets them gain enough relevance to appear in Gvw.

For the purpose of evaluation, we can not take elements of d into consideration,

as in our model they are not relatable to either v or w: they are absent from the word

graphs that model their respective contexts. The same can be said for nodes in c,
which act as neutral, non discriminating elements and can not be taken to influence

the evaluation process: we do not want to penalise an algorithm for associating

elements in c with elements in a rather than in b, as both choices are equivalent.

Fig. 1 The partition of a pseudoword’s ego graph, with a ¼ fA;B;Cg, b ¼ fD;E;Fg, c ¼ fG;Hg,
d ¼ fIg. Therefore, the ground truth clustering is T ¼

�
fA;B;Cg; fD;E;Fg

�
. If we had another

clustering C ¼
�
fA;B;D;G;Hg; fC;E;F; Ig

�
, for evaluation purposes we would just consider

C0 ¼
�
fA;B;Dg; fC;E;Fg

�
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Therefore, we will identify just a and b as constituting the desired underlying

partition5 of Vvw. We define the ground truth clustering of Vvw as

T ¼ fa; bg: ð3Þ

We want to compare the clustering C obtained by any given clustering algorithm on

Gvw to the ground truth clustering T ; to this end, we have to consider a reduced

version of C, more precisely

C0 ¼ fCnfc [ dg j C 2 Cg; ð4Þ

i.e., what remains of the clustering C if all the neutral and unrelated elements are

ignored. Figure 1 illustrates this situation, while Sect. 5.2.1 shows a practical

application of the analysis conducted here with regard to the structure of a pseu-

doword ego graph.

4.1.1 Collapsed pseudowords

Looking back at partition (1) of the node set Vvw of Gvw, we observe that it is

entirely possible that either relation

a ¼ ; or b ¼ ;

holds. This means equivalently that either relation

V 0
v � V 0

w or V 0
w � V 0

v

holds. We will observe this case when the terms in the selected context of pseu-

doword v w which are associated to the component v are all also already associated

to the other component w: one component totally overshadows the other one. If we

assume the case a ¼ ;, then w will be the dominant component word, and Gvw will

mostly or totally collapse onto a near-copy of Gw. Therefore, Gvw loses its interest as

a potential disemous word and no real Word Sense Induction can be performed on

it.

Definition 1 We define a collapsed pseudoword as a pseudoword v w for which,

in the notation of (1), either a ¼ ; or b ¼ ; holds.

We decide to ignore all collapsed pseudowords for evaluation purposes. We note

that this phenomenon is linked to the difference in frequency between the

components of a pseudoword (cf. Sect. 5.1.2 for our definition of frequency class).

In fact, we observe that a pseudoword never collapses if its components have a

comparable frequency in the corpus, and conversely, that the majority of the more

uneven combinations, with a larger gap between the respective frequencies, tend to

collapse; further, some words are seemingly more dominant than others. Still, many

non-collapsed pseudowords remain very skewed towards one component (cf. Sect.

5 If c 6¼ ; and/or d 6¼ ;, we are actually considering a non-exhaustive partition or a subpartition, i.e., a
collection of disjoint, non-empty subsets whose union is not necessarily the whole set.
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5.2). Despite pseudowords being often criticised for their supposed artificialness and

for not obeying the true sense distribution of a proper polysemic word, we note that

a similar skewness is very realistic in the case of homonymy, where sense

distributions tend to be dominated by a most frequent sense (MFS). In coarse-grained

Word Sense Disambiguation evaluations, the MFS baseline is often in the range of

70–80% (Navigli et al. 2007), not unlike for the pseudowords in our data sets. An

example of collapsed pseudoword in our data set is presented in Sect. 5.2.1.

4.2 Pseudoword evaluation goal

We now state the goal of pseudoword-based evaluation formally:

Pseudoword evaluation goal Given:

• a corpus,

• two different words v and w in the corpus and their ego graphs Gv and Gw,

• the pseudoword v w resulting from their combination and its corresponding ego

graph Gvw (cf. Sect. 5.1.1),

• a graph-based clustering algorithm A,

• a measure l to gauge the significance of clustering overlap,

we want to assess how well the clustering AðGvwÞ ¼ C coincides with the desired

ground truth clustering T ¼ fa; bg, defined on the basis of relation (1), by means of

the score

lðC0; T Þ;

with C0 defined by (4).

We will perform this pseudoword evaluation for different clustering algorithms

and significance measures, on two different, parallel ego graph data sets. The choice

of the evaluation metric l is very delicate and can introduce a certain bias, as

discussed in Sect. 6.1.2. Motivated by this fact, in Sect. 5.1.5 we will define a new,

ad hoc measure for this evaluation setting, called TOP2.

5 Evaluation implementation, techniques and data set analysis

In this section we will present the elements that compose our particular

implementation of the pseudoword evaluation framework. We will also describe

the new techniques that we introduce and perform a brief analysis of our two

pseudoword ego graph data sets, one for co-occurrences and the other one for

semantic similarities.
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5.1 Framework details

5.1.1 Corpus, distributional thesauri, LMI and word graphs

Our corpus is a combination of the Leipzig Corpora Collection6 (LCC) (Richter et al.

2006) and the Gigaword corpus (Parker et al. 2011), and consists of 105 million

English newspaper sentences. The corpus has been parsed using the Stanford Parser

(De Marneffe et al. 20016) to extract syntactic dependencies. Following the

approach found in JoBimText7 (Biemann and Riedl 2013), we use a term-context

frequency-weighted version of pointwise mutual information called lexicographer’s
mutual information (or local mutual information—LMI) (Evert 2004; Kilgarriff et al.

2004) to compute similarity scores between any two co-occurring words or between

a word and a syntactic context in which it appears.

LMI is a variant of pointwise mutual information (PMI) (Cover and Thomas 2012),

which is expressed between two random variables X and Y in terms of their

respective individual and joint probability distributions PX , PY and PXY as

log
PXYðx; yÞ

PXðxÞPYðyÞ
; ð5Þ

for their respective observations x and y. PMI measures how significant the co-

occurrent observation of two values assumed by X and Y is: the higher, the more

meaningful their co-occurrence is, whereas a value of 0 represents independence.

However, in the case where our observations are e.g., two words v and w in a text,

the formula (5) has been shown to overestimate the significance of co-occurrences

of infrequent terms. To counterbalance this phenomenon, LMI is defined as the

product of PMI with the frequency of the observed pair (v, w). If we denote their

individual frequencies by cv and cw, the frequency of their co-occurrence by cvw and

the total number of words in the text as n, we will write their lexicographer’s mutual

information as

LMIðv;wÞ ¼ cvw log N
cvw

cvcw

� �
: ð6Þ

This way, it will be given much more importance to word pairs that also appear a

significant number of times in the text than to random infrequent co-occurrences

[see Riedl (2016) on this issue].

The goal is to create both a first-order and a second-order distributional thesaurus
for each word w in the corpus, i.e., a ranking of words from the most to the least

similar to w according to the LMI computed respectively for co-occurrences or for

syntactic contexts. A word in a second-order distributional thesaurus of w does not

necessarily co-occur with w in a sentence of the corpus. We notice that, for each

word, we take its lemmatised version and that we distinguish the difference between

lowercase and uppercase letters as found in the corpus.

6 http://corpora.uni-leipzig.de.
7 https://sourceforge.net/p/jobimtext/wiki/Home/.
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For a given term w, its first-order distributional thesaurus will use LMI to rank

every word that co-occurs with w in a sentence. Based on these rankings, we choose
a number n of significantly (syntagmatically) similar words to consider for each

resulting distributional thesaurus. Then, for every word w, we build the graph

Gw ¼ ðV;EÞ with the n highest ranked entries in its thesaurus as its node set v, so
that Vj j ¼ N. An edge will be drawn between u; v 2 V if u is part of the first n
entries of v’s thesaurus or, viceversa, v appears in the first n entries for u. We notice

that both conditions will not necessarily be satisfied at the same time, but, if this

happens, since LMI is symmetric the two scores will be the same. Knowing this, we

define a weight mapping on Gw by setting the weight of (u, v) equal to the LMI co-

occurrence score of the couple. We call the graph Gw the (co-occurrence-based)

weighted ego graph of w. We remove w from Gw, as, following the same reasons

found in Widdows and Dorow (2002), we want to focus on the relations between

terms co-occurring with w, and not on the relations between them and w. We might

use some extra care to exclude stop words, which are already penalised by the PMI

part of LMI, but which nonetheless keep appearing in the distributional thesaurus

because of their high frequency.

The passage to the second order takes place by using LMI on the first-order

relations given by the extracted syntactic dependencies. The resulting second-order
distributional thesaurus induces a semantic similarity ego word graph that is shaped

analogously as the previously detailed co-occurrence-based ego graph.

Whichever its form, an ego graph Gw based on co-occurrences or semantic

similarities can be clustered to induce the word senses of w in form of sense clusters.

We consider a word w to be monosemous with respect to a given clustering

algorithm if that clustering of Gw yields a single cluster. We might call this a

‘‘bottom-up approach’’, as it relies just on instruments already present in our

evaluation setting and does not introduce new ones from outside. In particular, we

use a fine-grained version8 of Chinese Whispers (described in Sect. 5.1.3).

Additionally, we check that w exists in WordNet and has only a single synset

there. This double criterion is quite strict and, while an external look-up is not

indispensable to our setting, it is helpful for avoiding the bias coming from

algorithms which favour a coarse clustering (cf. Sect. 6.1.2).

Lastly, we notice that word graphs have been shown to be of the small-world type

(Watts and Strogatz 1998; Ferrer i Cancho and Solé 2001) and often also scale-free

(Barabási and Albert 1999). This lends them a peculiar structure that can be

exploited for WSI purposes, but that might also create unwanted behaviours by part

of a clustering algorithm. However, in this article we will not further analyse this

issue.

5.1.2 Pseudoword components

To create our pseudoword ego graph data sets, we have chosen to focus only on

nouns for the pseudosenses. This choice is dictated both by practical reasons, such

8 Precisely, the implementation found in https://sourceforge.net/p/jobimtext/wiki/Sense_Clustering/ with

parameters: -n 200 -N 200.
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as the fact that nouns are easier to lemmatise than e.g., verbs, and by the more

theoretical observation that nouns are open-class words9 that are not subordinated to

other word classes (as is e.g., for adjectives or adverbs) and with a more immediate

reference to real or abstract entities than verbs. Also, keeping the focus on just one

word class reduces the noise deriving from syntagmatic relations between different

classes: if we are simulating homonymy for nouns, we only want to mix nouns as

pseudosenses. For similar reasons, we will restrict the elements of semantic-

similarity-based ego graphs to nouns only (as the comparison between two nouns is

more appropriate than the one e.g., between a noun and a verb), whereas this

restriction is absent for co-occurrences.

We divide all the nouns in the corpus into 5 logarithmic frequency classes, based on

the frequency of the most common one, i.e., year, which appears 6,179,666 times.We

take the binary logarithm of this value, approximately 22.6, and assess the frequency

class (FC) of a word according to where its logarithmicised frequency falls with respect

to its quintiles.10 For example, if a word w appears 10,000 times in the corpus, the

binary logarithm is approximately 13.3 and w will belong to frequency class 3.

Conversely, a member of frequency class 3 will have a frequency between ca 526 and

12,077. In general, the member of one of our frequency classes is expected to be 23

times as frequent in the corpus as a member of the next-lower class.

For each frequency class, we extract random candidates and retain only 10 of

them which are found to be monosemous according to the criteria presented in

Sect. 5.1.1. The number of their combinations, and thus of total different

pseudowords, amounts to
50

2

� �
¼ 1225. We then proceed to compute all their

respective first-order and second-order ego graphs. For pseudocomponents v and w,
we substitute all their occurrences in the corpus with v w and go normally through

the steps described in Sect. 5.1.1 to get a semantic-similarity and a co-occurrence-

based ego graph Gvw. We remark that this graph-building process has to be

performed separately for each pseudoword, as we want to merge only two contexts

at a time. That is, we notice that if a word z co-occurs with v or w, the pseudoword
v w does not have any sensible interpretation as an entry of the distributional

thesaurus of another possible pseudoword u z. We limit the size of all the

distributional thesauri, and consequently of the ego graphs, to N ¼ 500 nodes, be

they of regular words or pseudowords. For very infrequent terms, it is possible for

Gvw to have a smaller order.

We end up with 50 monosemous words evenly distributed among 5 frequency

classes that will serve as pseudosenses:

Frequency class 1: ackee, barque, bobolink, bufflehead, carryall, euonymus,
leatherette, pennywhistle, pneumococcus, tautog

Frequency class 2: afro, barman, catsup, dimwit, grosgrain, hyperthyroidism,
philanderer, southerly, tranquilliser, yellowcake

9 On this topic cf. Lyons (1968).
10 The quintiles are the four values that divide a quantity in five parts: in this case, they are the multiples

of ca 4.52, i.e., 4.52, 9.04, 13.56 and 18.08.
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Frequency class 3: astrologer, bullfight, curio, flamboyance, hairpiece, lightbulb,
showtime, tailwind, ugandan, wedlock

Frequency class 4: artistry, heartache, heartbreak, marshmallow, pillow,
reliability, reptile, shawl, tequila, tofu

Frequency class 5: ailment, beer, clothing, courage, credibility, dioxide, garment,
paycheck, psychologist, treasurer

Of the ensuing 1225 pseudowords, for evaluation purposes we have to discard a

total of 249 collapsed pseudowords (Sect. 4.1.1) from the semantic-similarity-based

ego graph data set and 143 from the co-occurrence-based one, mostly consisting of

combinations of terms of FC 1 with terms of FC 5 (the greatest possible difference in

frequency classes); some terms in FC 5 (like beer or courage) are particulary

dominant. This brings the actual count of pseudowords used in our evaluation down

to respectively 976 and 1082 pseudowords.

5.1.3 Clustering algorithms

We will evaluate and compare the performances of six clustering algorithms used in

the field of WSI: three selected from literature, the Markov cluster algorithm, Chinese

Whispers, MaxMax, and three defined by us in other works, the gangplank

clustering algorithm, a form of aggregative clustering algorithm and a new

curvature-based clustering algorithm. We give a short description of each in the

following paragraphs. Additionally, we will briefly touch upon the well-known WSI

algorithm HyperLex (Véronis 2004), which we also subject to our evaluation

framework, albeit their interaction is problematic (as also discussed in Sect. 6.1.1).

Markov Cluster Algorithm The Markov cluster algorithm (MCL) (van Dongen

2000) uses the concept of random walk on a graph, or Markov chain: the more

densely intra-connected a region in the graph, the higher the probability to remain

inside it starting from one of its nodes and moving randomly to another one. The

strategy of the algorithm is then to perform a given number n of steps of the random

walk, equivalent to taking the n-th power of the corresponding Markov random

field’s adjacency matrix. Subsequently, entries of the matrix are raised to a given

power to further increase strong connections and weaken less significant ones. This

cycle is repeated an arbitrary number of times, and, as weaker connections tend to

disappear, the resulting matrix is interpretable as a graph clustering. Not rooted in

the NLP community, MCL was used for the task of WSI on co-occurrence graphs in

Widdows and Dorow (2002). We use two implementations of the algorithm: one

with inflation factor 1.4 and another one with inflation factor 2. In both cases, the

expansion factor is 2 and the maximum number of iterations is 100.

Chinese Whispers The Chinese Whispers (CW) algorithm is originally described

in Biemann (2006). It is inspired by MCL as a simplified version of it and similarly

simulates the flow of information in a graph. Initially, every node in the graph starts

as a member of its own class; then, at each iteration every node assumes the

prevalent class among those of its neighbours, measured by the weights on the edges

incident to it. This algorithm is not deterministic and may not stabilise, as nodes are

accessed in random order. However, it is extremely fast and quite successful at
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distinguishing denser subgraphs. The resulting clustering is generally relatively

coarse. Besides its use for Word Sense Induction, in Biemann (2006) CW was also

tested on the tasks of language separation and word class induction.

MaxMax (MM) is described in Hope and Keller (2013) and applied to the task of

WSI on weighted word co-occurrence graphs. It is a soft-clustering algorithm that

rewrites the word graph G as an unweighted, directed graph, where edges are

oriented by the principle of maximal affinity: the node u dominates v if the weight of

(u, v) is maximal among all edges departing from v. Clusters are then defined as all

the maximal quasi-strongly connected subgraphs of G (Ruohonen 2013), each of

which is represented by its root. Clusters can overlap because a node could be the

descendant of two roots at the same time. The algorithm’s complexity is linear in the

number of the edges and its results are uniquely determined.

Gangplank clustering algorithm The gangplank clustering algorithm (GP) is

introduced in Cecchini and Fersini (2015), where its use for the task of WSI on co-

occurrence graphs is shown. There, the concept of gangplank edges is defined: these
are edges that can be seen as weak links between nodes belonging to different,

highly intra-connected subgraphs of a graph, and thus help induce a cluster

partitioning of the node set. In its proposed implementation, the computation of

gangplank edges and the subsequent clustering of G is actually performed on a

second-order graph of G, a distance graph DG which represents the distances

between nodes of G according to a weighted version of Jaccard distance adapted to

node neighbourhoods. Further, a recompacting step to avoid singleton clusters is

also implemented.

Aggregative clustering algorithm An aggregative clustering algorithm (AGG) is

proposed in Cecchini et al. (2015). It consists of a k-medoid algorithm (Lloyd 1982)

with the addition of a medoid seeding step. The same weighted Jaccard distance

used on word graphs for the gangplank clustering algorithm allows us to consider a

word graph as a metric space: there, starting from an initial seed word, new cluster

seeds are determined according to a radius parameter r, which influences the sizes

of the clusters and thus the coarseness of the clustering. Successively, the k-medoid

algorithm is iterated until convergence. We note that the number of clusters is never

pre-determined. Our implementation will use two types of radii: a fixed one of

r ¼ 0:97, and a variable one set as the 75th percentile of the distance values in the

word graph. Like for GP, a recompacting step is performed.

Curvature-based clustering algorithm The curvature-based clustering algorithm
(CURV) also originates from the notion of Jaccard distance on a graph found in

Cecchini and Fersini (2015); Cecchini et al. (2015) and is further detailed in

Cecchini (2017). The observation is that the weighted and the unweighted Jaccard

distances introduced there behave differently, and the curvature on a weighted,

undirected graph is defined as the difference between the two. A positive difference

is interpreted as implying a significative semantic similarity between two nodes.

Clusters are obtained as the connected components of the graph induced by positive

curvatures (seen as edges of a ‘‘curvature graph’’). Like for GP and AGG, a

recompacting step is performed.

HyperLex The clustering algorithm HyperLex (HL) is explicitly devised for WSI

and first appears in Véronis (2004). Its implementation is split into two phases: the
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graph-building step and the actual clustering step. In the first step, a co-occurrence-

based word graph for a target word is built out of a corpus of web pages containing

it. After a paragraph-based text pre-processing, the weights, interpreted as distances,

between node couples in the resulting graph G are computed according to the

estimated likelihood of their co-occurrence in a paragraph. The algorithm then

proceeds to identify roots, i.e., nodes of G with high degree and whose mean weight

on the edges towards its neighbours does not exceed a given threshold r (0.8 both in

the original and in the present paper). This process roughly produces an independent

dominating set of G.11 These roots define sense clusters, taken as all their successors

in the directed minimum spanning tree of G. HyperLex boasts a nearly linear time

complexity with respect to nodes and edges. Despite its straightforward nature, we

argue that its inclusion in our evaluation framework is unfortunately unsatisfactory,

as discussed in Sect. 6.1.1.

Besides the six main selected clustering algorithms (all but HyperLex), we also

introduce for all of them a secondary level of clustering that we call hyperclustering,
detailed in the next section. We note here that HyperLex is not considered for

hyperclustering, since it is normally meant for larger graphs than the hypergraphs

we obtain on our data sets, on which its parameters do not interact well. We will

discuss this issue more in detail in Sect. 6.1.1.

5.1.4 Hyperclustering

All possible clusterings of a set v are represented by its partition lattice, with the

partial ordering given by partition refinement (Grätzer 2011). We denote this lattice

with CðVÞ and notice that it behaves quite differently from the power set PðVÞ of all
subsets of v. We can see CðVÞ as a hierarchy, with its supremum fVg (only one, big

cluster) at its top and the infimum fv1g; fv2g; . . .; fvjV jg
� �

(each element forming

its own cluster) at its bottom.

The aim of hyperclustering is to define a process by which the same algorithm

that produces a clustering C can reuse it to build a sequence of coarser clusterings.

Starting from C, if � represents the ordering by refinement in the partition lattice,

we want to define an operator Hyp such that

C�HypðCÞ:

The iterated application of Hyp will move the clustering ‘‘upwards’’ in the hierarchy

of CðVÞ, up to a maximal element that may or may not be the supremum. We want

Hyp to recompact C, preserving its clusters as building blocks that are combined to

form new, bigger clusters. This way, we can exploit the natural higher precision of

smaller clusters to improve the overall recall of C without losing information about

the already found associations. With what may sound like a pun, the operator Hyp

‘‘clusters the clusters of a clustering’’.

To perform a clustering on C ¼ fC1;C2; . . .;Cng we first have to represent the

clusters Ci as nodes of a graph and to define edges connecting them. We will call the

11 On this graph-theoretical topic, see e.g., Haynes et al. (1998).
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resulting graph the hypergraph12 H ¼ ðW ;FÞ of C. For the node set we simply

define W ¼ C. The edges and their weights depend on the structure of the graph

G ¼ ðV;EÞ of which C is a clustering. We set

ðCi;CjÞ 2 F , 9ðv;wÞ 2 E s:t:v 2 Ci; w 2 Cj:

In other words, two nodes of H are linked if there exists an edge in G linking the two

corresponding subgraphs induced by the two clusters. This condition is by itself

quite weak: a word graph over a large corpus will have many connections, so that H
will be most probably very dense too. Therefore, we want to give a weighted

structure to H. To do this, we consider all edges connecting Ci to Cj (we could see it

as taking the bipartite subgraph of G induced by Ci and Cj) and take their mean

weight. Formally, we define the interconnecting edge set

IðCi;CjÞ ¼ fðv;wÞ 2 E j v 2 Ci; w 2 Cjg; ð7Þ

and subsequently the weight mapping

lðCi;CjÞ ¼
1

IðCi;CjÞ
�� ��

X
ðv;wÞ2IðCi;CjÞ

pðv;wÞ;

where p : E � E �! Rþ is the weight mapping associated to G.

We express the clustering C of G ¼ ðV;EÞ (more precisely of its node set v)
obtained by algorithm A equivalently as AðGÞ. We also denote the hypergraph

relative to C as HðCÞ. Then, we define the hyperclustering of C as

HypðCÞ ¼ AðHðCÞÞ: ð8Þ

The operator Hypð�Þ ¼ AðHð�ÞÞ defines the hyperclustering HypðCÞ ¼ fQ1; . . .;
Qmg, which directly induces a new clustering of G. Namely, the sets defined as

Ki ¼
[
C2Qi

C 8Qi 2 HypðCÞ

form a new partition K ¼ fK1; . . .;Kmg of v, which is by definition a coarsening of

C. To ease notation, we identify K with HypðCÞ, and can therefore write C�HypðCÞ,
as desired.

5.1.5 Evaluation metrics and TOP2

We will compare the output of a clustering algorithm to the ground truth clustering

of a pseudoword ego graph (cf. Sect. 4.1) by means of three evaluation metrics.

Two of them, normalised mutual information (NMI) (Cover and Thomas 2012; Strehl

and Ghosh 2002) and BCubed F-measure (Bagga and Baldwin 1998), are commonly

12 Despite some similarities, our definition of hypergraph is different than the common graph-theoretical

concept that goes by the same name, namely that of a graph G ¼ ðV ;EÞ whose edges can be generic

subsets of v. See Berge and Minieka (1973) for more details about the subject.
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used in the field. The third one is TOP2, a new evaluation measure loosely inspired by

NMI and developed specifically for the task at hand, taking into account the nature of

our disemous pseudoword ego graphs. Basically, we exploit the fact that we know

what the ground truth looks like and that it always consists of exactly two clusters.

Our intention is to penalise clusterings that stray too far from this bipartition,

rewarding however an algorithm which manages to concentrate the most significant

information in two clusters, even if its clustering is otherwise rather dispersive. We

define TOP2 as the average of the harmonic means of homogeneity and completeness

of the two clusters that better represent the two original components of the

pseudoword.

Let C denote a clustering of pseudoword v w’s ego graph. Recalling the relations

(1) and (2) of Sect. 4.1, we define

Cv ¼ argmaxC2C C \ aj j and Cw ¼ argmaxC2C C \ bj j; ð9Þ

the two clusters of C that have the greatest overlap with v’s and w’s distributional
thesaurus respectively; Cv and Cw are the best approximations of a and b. In a sense,
we are reducing the clustering C to its subset fCv;Cwg. A priori, argmax defines a

set of maximizing arguments; since we want to consider just one of them, if it has

more than one we will choose randomly.

We define the precision or purity pvðCÞ of a cluster C with respect to component

v, and analogously pwðCÞ with respect to w, as

pvðCÞ ¼
C \ aj j
Cj j and pwðCÞ ¼

C \ bj j
Cj j ð10Þ

and the recall or completeness cvðCÞ or cwðCÞ as

cvðCÞ ¼
C \ aj j
aj j and cwðCÞ ¼

C \ bj j
bj j : ð11Þ

We notice that the definitions in (11) are always well defined, since we choose to

discard collapsed pseudowords (see Definition 1) and therefore we will always have

aj j; bj j 6¼ 0. Additionally, by definition (9) and the general definition of clustering,13

the values p and c in (10) for Cv and Cw will be always strictly greater than 0.

For both clusters Cv and Cw, we compute the harmonic mean of purity and

completeness with respect to the component they are representing. We write the

harmonic mean of two positive real numbers x; y 2 Rþ as h(x, y) and remember that

hðx; yÞ ¼ 2
1
x
þ 1

y

:

So, given h pvðCvÞ; cvðCvÞð Þ and h pwðCwÞ; cwðCwÞð Þ we define the TOP2 score as their

macroaverage

13 We define the clustering of a set S as a finite collection of non-empty subsets of S whose union is the

whole S. In this paper, we often assume a clustering to also be a partition, i.e., that the subsets are all

disjoint, but for some algorithms like MaxMax this is not always the case.
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top2ðCv;CwÞ ¼
h pvðCvÞ; cvðCvÞð Þ þ h pwðCwÞ; cwðCwÞð Þ

2
: ð12Þ

Notice that in (12) the first cluster is always valued with respect to v, and the second

one with respect to w.
We observe that following the definition of representative clusters of (9) might

lead to the unfortunate case Cv ¼ Cw, where the algorithm concentrates and

confuses all the information about the two distinct senses of the pseudoword into a

single cluster, that we denote as Cvw. We want to penalise this behaviour. To this

end we also consider the second best matches for (9), which we denote respectively

as C0
v and C0

w. The final TOP2 score is then defined as the best one, i.e., yielding the

greatest value, of the two cases fC0
v;Cvwg or fCvw;C

0
wg.

The other case to take into account is when the algorithm produces only one

cluster, i.e., when C ¼ fCg. As we can not resort to second best representative

clusters, we look at the virtual clusterings fC; ;g and f;;Cg (the order makes a

difference as with respect to which component purity and completeness are

computed). Putting the harmonic mean of purity and completeness relative to the

empty set equal to 0, we again take as the final TOP2 score the best one between the

two considered clusterings; we notice that in this case the TOP2 score will never be

greater than 0.5.

The TOP2 score can be immediately generalised to the case where we know that

the ground truth will consist of any fixed number n� 2 of clusters, but we will not

go into the details of it in this article.

5.2 Pseudoword analysis

In this section we will get more insight into the structure of the pseudoword ego

graphs. We will not consider collapsed pseudowords, defined in Sect. 4.1.1. We

distinguish two main parameters that characterise a pseudoword ego graph: balance
and relative overlap.

The first aspect is the balance, or conversely the skewness, of a pseudoword. We

represent it by means of the ratio

q ¼ max
bj j
aj j ;

aj j
bj j

� �
;

which is always greater than or equal to 1. In other words, we consider all the nodes

that specifically belong to just one of the two components of v w, i.e., the elements

contained in the sets a or b (see Sect. 4.1), and measure the ratio of the most

represented component to the least represented one (this ratio is well defined

because we exclude the case of collapsed pseudowords of Definition 1). If a

pseudoword’s ego graph is perfectly balanced,
bj j
aj j ¼

aj j
bj j ¼ 1. Otherwise, a value q

will tell us that, for every word of the smaller component, Gvw contains q of the

larger one. We take the mean of these ratios for each of the 15 different frequency

class combinations, and show the results in Fig. 2: once for semantic similarities

and once for co-occurrences, first ordered from less to more unbalanced frequency
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class combination (e.g., 14 is more unbalanced than 22) and then reordered from

smaller to greater values of the ratio.

We evidence the general, expected trend to have more unbalanced words when

quite different frequency classes (FC) get mixed. Conversely, combinations of

components in the same FC are mostly very balanced. This is the same behaviour

that originates the prevalence of collapsed pseudowords (cf. Definition 1) among

unbalanced FC combinations, which is actually the limit case where q ! 1. The

dominance of some terms in FC 5 makes 55 stick out as the more unbalanced of the

most balanced combinations. We observe that more than half of our pseudowords

are quite unbalanced towards one of their pseudosenses. Our starting assumption is

that the greater q, the more biased towards the dominant term a clustering algorithm

will be: in practice, we expect it to find just a single cluster most of the time (or

equivalently a very big cluster together with other very small, unmeaningful

clusters). In Sect. 6.1.2 we will see that BCubed seems to be insensible to such

skewness.

(a) (b)

(c) (d)

Fig. 2 The mean ratio q of the most represented component to the least represented component (either
aj j= bj j or bj j= aj j; y-axis) in pseudoword ego graphs based on semantic similarities and co-occurrences, by
frequency class combination (x-axis) . a Ratio for semantic similarities, b ratio for co-occurrences, c ratio
for semantic similarities, ordered from lowest to highest , d ratio for co-occurrences, ordered from lowest
to highest.

752 F. M. Cecchini et al.

123



We note that co-occurrence-based ego graphs seem to be generally slightly more

balanced than the equivalent similarity-based ones. We explain this fact by

remarking that co-occurrences are sparser than syntactic relationships, and thus that

LMI scores (cf. Sect. 5.1.1) tend to be more evenly distributed, and components have

a lesser tendency to predominate one over the other.

Figure 3 shows the mean cardinality of the node set c per frequency class

combination and relative to the total size of the ego graph. More precisely, given a

graph G ¼ ðV ;EÞ, we consider the ratio

j ¼ cj j
Vj j :

The set c, in the notation of (1) (see Sect. 4.1), consists of the terms in Gvw that are

common to the distributional thesauri of v and w and its size measures the overlap of

v and w. The more similar the meanings of the two components, the larger we

expect the overlap to be. In the case of the pseudoword beer_tequila, for example,

(a) (b)

(c) (d)

Fig. 3 Mean relative overlap j given by the number cj j of nodes common to both components with
respect to the total number of nodes (y-axis), by frequency class combination (x-axis) . a Relative size of
c for semantic similarities, b relative size of c for co-occurrences, c relative size of c for semantic
similarities, ordered from lowest to highest, d Relative size of c for co-occurrences, ordered from lowest
to highest.
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305 nodes, more than half of the total 492 nodes in its semantic-similarity-based ego

graph, are found in the distributional thesauri of both beer and tequila, for a j score

of 0.62; the same number rises to 332 on 484 for co-occurrences (and the pseu-

doword collapses, so that the resulting score j ¼ 0:69 is not considered for the

statistics shown). In Fig. 3a, b a pattern is clearly visible: the higher the mean FC of a

combination and the greater its smaller member, the more terms the two compo-

nents will have in common. Figure 3c, d show a roughly linear increase.

The generic trend of higher-frequency combinations to have a relatively bigger

cj j is also directly related to the frequency of the single components. With a

simplistic reasoning, the more frequent a term, the richer its distributional thesaurus,

and the richer two distributional thesauri, the more probable that their elements will

overlap at a higher degree. Very unbalanced pseudowords are likely to have

relatively smaller cj j’s: the unrelatedness of the two components is the cause both of

the prevalence of the most frequent one and of a negligible overlap.

In the end, the analysis conducted here reveals that both our pseudoword data sets

represent a good variety of artificial words that simulate real homonymy, with many

different mixtures of balance and relative overlap values.

5.2.1 Examples of parameter computations

We will exemplify the computations of the pseudoword parameters seen in the

previous section and the analysis of Sect. 4.1 with the aid of two very different

pseudowords: beer_tequila and barque_pennywhistle. The word beer is of

frequency class 5, tequila of frequency class 4, and both barque and pennywhistle
belong to frequency class 1. For the first couple we expect a large overlap, while the

elements in the second couple look unrelated14. We will first examine their

parameters in the semantic-similarity-based data set.

The pseudoword beer_tequila is unbalanced in favour of beer: the set a contains

139 words like

{Heineken, tofu, sirloin, soft-drink, fajita,...},
mostly about beer brands, food and beverages, while b, for tequila, has only 15,

with a more restricted range:

{Beam, vermouth, Burgundy, Sauvignon,...}.
The balance parameter is then

q ¼ max
139

15
;
15

139

� �
ffi maxð0:11; 9:27Þ ¼ 9:27;

far from 1 and demonstrating the skewness of this pseudoword.

The set c is very large here, with cardinality 305, for a high relative overlap

j ¼ 305
492

ffi 0:62. The set c contains terms such as

{broth, tapa, syrup, roast, lobster, bourbon,...}.
The set d, which contains ‘‘new information’’, has 33 elements, including terms

not directly related to food or beverages, like

14 barque is another word for ship, while pennywhistle is a small, inexpensive flute.
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{detergent, petroleum, shampoo, julep,...}.
The behaviour of this pseudoword changes in the co-occurrence-based data set,

where the high frequency class of beer and the very similar senses of the two

components make it collapse. Out of 485 nodes, the common terms in c are 332,

more than for the semantic-similarity-based ego graph, for an overlap of j ¼ 0:68,
but bj j ¼ 0 and dj j ¼ 0, so that this ego graph is a near-replica of the first-order

distributional thesaurus of just beer. We notice that the terms in a and the common

terms in c approximately repeat the same themes as in the semantic-similarity-based

ego graph, as respectively in

{Oktoberfest, Schlitz, license, belgian-style,...}
and

{produce, gallon, drunk, distilled, go, lunch,...}.
The pseudoword barque_pennywhistle is more balanced than beer_tequila in the

semantic-similarity-based data set, a fact due to the same, low frequency class of

both components: we have 37 words for barque, among which

{ship, yacht, plane, Fock, sailboat, galleon,...},
and 96 for pennywhistle, among which

{kazoo, organ, horn, tuba, concertina, solo,...},
for a balance parameter q ¼ 2:60. There is no overlap: the set c of words

common to both distributional thesauri is empty, so that j ¼ 0, as could be expected

from words referring to two such dissimilar objects. Still, we have 11 terms in d.
Terms like bell or the imitative twang might be put in relation both with the nautical

sphere (the ship’s bell, the sound of a tight rope) and with sounds and musical

instruments. Other terms like poetry are more difficult to interpret.

Passing to co-occurrences does not change the picture much. The ego graph is

even more balanced now: 109 nodes for barque against 108 for pennywhistle,
obtaining q ¼ 1:01. For barque we have e.g.,

{participate, 179-foot, brig, aircraft, Sodano,...},
and for pennywhistle
{musical, jazz, most, drum, pipe, balladeer,...}.
We note two things. First, the word most, normally considered a stop word,

testifies the more noisy nature of co-occurrence-based ego graphs (we also recall

from Sect. 5.1.1 that our co-occurrence ego graphs can be composed of any kinds of

word classes); second, the nature of co-occurrences is shown by the apparently out-

of-place Sodano, the name of a former Cardinal Secretary State of the Vatican,

which appears because of the barque of St. Peter, a metaphor for the Catholic

Church.

The remaining 6 nodes of the few total 223 nodes (due to the low frequency

classes of both components) of the network belong to c, for a vanishing relative

overlap of j ¼ 0:03, in line with j ¼ 0 for semantic-similarity-based ego graphs.

The common words are

{same, way, time, own, more, include},
which can be considered stop words (e.g., same) or very generic words (e.g.,

time). We observe that they will be ignored during our evaluation, since we do not

consider the sets c and d, as motivated in Sect. 4.1.
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6 Results

In this section we will present and compare the main results on the two pseudoword

ego graph data sets, obtained by the clustering algorithms detailed in Sect. 5.1.3

with the additional application of hyperclustering (cf. Sect.5.1.4), evaluated with the

measures mentioned and described in Sect. 5.1.5.

Throughout this section we will refer to a clustering obtained directly from an

ego graph as the basic clustering (consequently consisting of basic clusters),
opposed to its hyperclustering (consisting of hyperclusters), and will use the

following notation for algorithms and evaluation measures:

MCL2: Markov cluster algorithm, expansion 2, inflation 2

MCL14: Markov cluster algorithm, expansion 2, inflation 1.4

CW: Chinese Whispers

MM: MaxMax

GP: gangplank clustering algorithm

AGG97: aggregative clustering algorithm, r ¼ 0:97
AGG75P: aggregative clustering algorithm, r ¼ 75th percentile of all distance

values on the pseudoword graph

CURV: curvature-based clustering algorithm

BSL: one-cluster-per-word baseline

HL: HyperLex with mean distance threshold r ¼ 0:8
BC-F: BCubed F-score (harmonic mean of BCubed precision and recall)

NMI: normalised mutual information

TOP2: TOP2 score, valuing the two best clusters

NOR: basic clustering

HYP: hyperclustering

6.1 Overall mean scores and numbers of clusters

Firstly, we display the overall scores achieved by each clustering algorithm in both

cases of semantic-similarity- and co-occurrence-based ego graphs. The numbers in

Tables 1 and 2 represent the mean scores over all pseudowords together with their

respective 95% confidence intervals. The best mean scores for each evaluation

measure are highlighted. As we point out in Sect. 4.1.1, we do not consider

collapsed pseudowords in our evaluation. We write side by side the scores achieved

by a basic clustering and its corresponding hyperclustering.

Similarly, Table 3 shows how many clusters are found by each clustering

algorithm on average, and compares these numbers with the reduced size of the

respective hyperclusterings.

Despite the biases that we will put in evidence in Sect. 6.1.2, Chinese Whispers

emerges as the overall best system for semantic-similarity-based ego graphs. Its

high TOP2 score reflects the fact that, even if it often conflates all elements into one

single cluster, its average two clusters represent the two pseudosenses quite

faithfully. This is also mirrored in the drop of scores for its hyperclustering: once the
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peak has been reached, performances can only decline, and more so if we obtain just

one single hypercluster. The MCL and aggregative variants also perform analogously.

For co-occurrences, the picture is not as distinct, although the aggregative

clustering algorithm with variable radius based on the 75th percentile and the

gangplank clustering algorithm seem to perform slightly better than the others.

Table 1 Overall mean scores over all pseudowords in the semantic-similarity-based ego graph data set,

for all clustering algorithms, both for basic clusterings and their respective hyperclusterings

BC-F NMI TOP2

NOR HYP NOR HYP NOR HYP

MCL2 67:8	 1:2 76:5	 0:9 39:4	 1:6 27:5	 1:7 67:1	 1:5 56:2	 1:7

MCL14 93:0	 0:6 91:0	 0:7 53:0	 2:6 36:3	 2:8 72:4	 1:8 61:2	 1:9

CW 94:7	 0:5 85:1	 0:7 53:2	 2:7 0:5	 0:4 73:9	 1:6 40:5	 0:5

MM 18:8	 0:5 75:9	 0:8 27:3	 0:9 37:9	 1:8 39:7	 0:8 67:2	 1:5

AGG97 68:8	 1:1 85:1	 0:7 42:6	 1:8 0:2	 0:3 67:6	 1:3 41:2	 0:4

AGG75P 58:8	 1:2 81:6 	 0:7 39:9	 1:8 14:2	 1:7 66:1	 1:4 41:2	 1:6

CURV 70:2	 1:0 70:3	 1:0 4:9	 0:3 4:7	 0:3 34:6	 1:0 34:2	 1:0

GP 55:0	 1:2 78:4	 0:8 30:4	 1:4 35:9	 2:0 58:6	 1:2 64:5	 1:4

BSL 85:1	 0:7 – 0:0	 0 – 41:1	 0:4 –

HL 88:6	 0:5 87:3	 0:5 12:3	 1:2 0:0	 0:0 28:0	 0:6 24:4	 0:6

For each evaluation measure, the best score (respectively for normal clustering and hyperclustering)

achieved by an algorithm is boldfaced. Italic values show an improvement from the normal clustering to

the hyperclustering. The 95% confidence interval is also reported for each mean value

Table 2 Overall mean scores over all pseudowords in the co-occurrence-based ego graph data set, for all

clustering algorithms, both for basic clusterings and their respective hyperclusterings

BC-F NMI TOP2

NOR HYP NOR HYP NOR HYP

MCL2 35:3	 0:7 45:7 	 1:0 9:4	 0:3 8:5	 0:3 33:4	 0:5 34:6 	 0:7

MCL14 69:1	 0:9 77:2	 0:7 5:4	 0:3 4:0	 0:2 39:3	 0:7 35:6	 0:9

CW 88:7	 0:5 90:3	 0:4 4:1	 0:4 0:1	 0:0 25:6	 1:1 34:9	 0:7

MM 35:2	 0:7 51:0	 0:7 11:1	 0:4 5:8	 0:3 34:2	 0:6 36:7 	 0:7

AGG97 50:3	 0:8 81:5	 0:7 11:1	 0:5 3:9	 0:4 41:7	 0:6 39:9	 0:8

AGG75P 55:9	 0:7 82:6 	 0:6 10:1	 0:5 3:8	 0:4 42:8	 0:7 38:0	 0:9

CURV 77:5	 0:9 77:5	 0:9 4:8	 0:3 4:5	 0:3 35:8	 1:0 35:3	 1:0

GP 58:2	 2:0 76:9	 1:0 4:2	 0:4 2:1	 0:3 35:4	 0:5 40:6	 0:5

BSL 90:5	 0:4 – 0:0	 0 – 38:8	 0:5 –

HL 89:7	 0:3 90:5	 0:3 0:7	 0:1 0:0	 0:0 33:2	 0:6 38:8	 0:3

For each evaluation measure, the best score (respectively for normal clustering and hyperclustering)

achieved by an algorithm is boldfaced. Italic values show an improvement from the normal clustering to

the hyperclustering
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Aided by the more dispersive nature of co-occurrence word graphs, already

observed in the analyses of Sects. 4.1, 4.1.1 and 5.2, and by the bias that will be

discussed in Sect. 6.1.2, our trivial baseline outclasses all other algorithms in terms

of BCubed measure, and has an average TOP2 score. For the same reason, scores for

co-occurrences are generally lower than for semantic similarities. Further, in the

case of co-occurrences we see that hyperclustering can indeed help a basic

clustering find a better focus, independently from the fine-grainedness of an

algorithm. This principally backs up the impression that co-occurrence clustering is

a harder task to tackle, a fact that might be tied to the small-world nature of word

graphs (mentioned in Sect. 5.1.1).

We want to focus on two interesting phenomena that arise from our pseudoword-

based comparisons. The first one is the pronounced decrease in performance of

Chinese Whispers on the co-occurrence-based data set with respect to semantic

similarities. There, among basic clusterings, Chinese Whispers regularly obtains the

best scores for most frequency class combinations of the pseudoword components,

and is followed closely by the MCL variants, especially the one with inflation

parameter 1.4. A drop in TOP2 performances is already seen in CW’s hyperclustering,

because of its tendency to coincide with the trivial baseline. This behaviour

intensifies on co-occurrence-based ego graphs: its clusterings very often consist of

one big cluster, possibly accompanied by unmeaningful micro clusters, and, while

BCubed measures do not penalise this fact, TOP2 makes it apparent with a sharp

drop, especially for the most unbalanced frequency class combinations (such as 14

or 25). We will further analyse this point in Sect. 7.

The second phenomenon is the surprising behaviour of MaxMax. Its basic

clustering is by far the worst system together with CURV: it tends to score quite low,

confronted with the other algorithms, for all three evaluation measures. This is

surely connected to its extreme fragmentation, as it very often induces more than 40

clusters. Even if their precision is high, their recall is very low, and TOP2 can not find

two clusters that are representative enough. The scenario is totally changed by the

intervention of hyperclustering: then, the number of clusters becomes sensible and

Table 3 Overall mean numbers

of clusters over all pseudowords

for all clustering algorithms,

comparing basic clusterings and

their respective hyperclusterings

The 95% confidence interval is

also shown for each mean value

Similarities Co-occurrences

NOR HYP NOR HYP

MCL2 18:7	 0:8 7:8	 0:3 50:2	 0:9 38:8	 0:6

MCL14 2:9	 0:1 1:6	 0:0 14:1	 0:3 9:0	 0:3

CW 2:0	 0:1 1:1	 0:0 4:0	 0:1 1:1	 0:0

MM 43:8	 0:8 5:0	 0:1 42:9	 0:6 8:3	 0:2

AGG97 5:4	 0:2 1:0	 0:0 7:9	 0:2 1:9	 0:0

AGG75P 6:8	 0:2 1:0	 0:0 6:5	 0:2 1:8	 0:0

CURV 10:4	 0:3 9:7	 0:3 8:7	 0:2 8:1	 0:2

GP 7:5	 0:2 2:5	 0:0 6:3	 0:3 2:0	 0:1

BSL 1 1 1 1

HL 1:2	 0:0 1 1:3	 0:0 1
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MaxMax often achieves the best scores among hyperclusterings, especially for NMI

and TOP2. This means that MM adapts particularly well to hyperclustering and that the

highly precise smaller building blocks are effectively combined in meaningful

bigger entities. Still, this does not seem to hold for every dispersive clustering

algorithm: on the co-occurrence-based data set, MCL2 even surpasses MaxMax as the

most fine-grained algorithm, but its hyperclusterings remain very splintered. We

want to see a sort of paradigmatic difference in their clustering approaches: whereas

MCL isolates denser combinations, MaxMax congregates the nodes in certain types

of subgraphs. Such difference is accentuated by the hyperclustering: MaxMax goes

on condensing its clustering, while MCL retains its divisive nature. We formalise this

concept in Sect. 7.

6.1.1 HyperLex and possible limits of our evaluation framework

In Sect. 5.1.3 we give a very short description of HyperLex, a clustering algorithm

explicitly devised for graph-based Word Sense Induction. However, its inclusion in

our pseudoword evaluation framework is problematic. This is the reason why we

show the results obtained by HyperLex in Table 1 and onwards, albeit without

further discussion. Since HyperLex is a well-known algorithm in the field, we think

that this issue nonetheless deserves some additional explanations; in fact, a brief

discussion of the encountered problems might be helpful in singling out some

possible limits of our evaluation framework.

We want first to highlight the relevant points which might represent difficulties

for our approach:

1. HyperLex uses paragraphs, and not sentences, as the text units for detecting

word co-occurrences;

2. edge weights in the resulting word graph G are expressed as distances based on

estimated probabilities, and not as similarities. Edges are then pruned according

to a given threshold before clustering;

3. clustering occurs by means of the clustering coefficient15 of a node, estimated

through a mean edge weight;

4. in the end, clusters are defined by the structure of a minimum spanning tree of G
starting from some selected root nodes.

In all these points, the concept of distance is crucial and is exploited to obtain the

final result. We also remark that HyperLex is explicitly geared towards co-

occurrence-based word graphs (even if we might argue that choosing paragraphs

instead of sentences as text units steers the graph-building process towards a more

topical, rather than merely syntactical, flavour). For these reasons, our main concern

is that we are not able to guarantee a fair evaluation of HyperLex (or of similarly

designed clustering methods) in our framework while staying true to its working

15 A clustering coefficient of a node or a graph can be defined in different ways. The first definition of a

local clustering coefficient is found in Watts and Strogatz (1998); a global one based on triangles is in

Feld (1981); Karlberg (1997).
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principles. In particular, we express this more formally by retracing the previous

points.

Point 1: Our corpus consists only of sentences and is not organised in

paragraphs (cf. Sect. 5.1.1). This means that, even on our co-

occurrence-based data set, we are dealing with different types of co-

occurrences.

Points 2, 3: LMI is a similarity measure and not a distance (see again Sect. 5.1.1).

HyperLex works on the assumption that no edge in G has a weight

greater than a given threshold (0.9) after the pruning phase. In our

evaluation framework, we want the word graphs to be the same for

each algorithm at the start of the process, so that we can compare

them on the same structures and ground truths. Therefore we can not

perform an a posteriori pruning. We are aware of the possibility of

‘‘reversing’’ the algorithm to make it work with similarities instead of

distances (we find e.g., a similar readaptation in Marco and Navigli

(2013)), but recomputing weights on our edges would also change the

structure of the underlying word graph.

Point 3: Further, the previous point becomes even more apparent in the case of

our semantic-similarity-based data set. There, edges represent second-

order similar contexts, without necessarily corresponding to sentence

or paragraph-level co-occurrences. As a consequence, on these word

graphs we would not be able to compute all co-occurrence-based

distances needed by HyperLex, and we have to resort to a substitute

value, like e.g., 1. However, this way we are again radically altering

the structure of the word graphs.

Points 3, 4: HyperLex is designed to deal with quite large graphs, and as such it is

badly suited for hyperclustering (see Sect. 5.1.4) on our data sets.

Since our hypergraphs are too small in size, quite often, even when

tuning the algorithm’s parameters, no hypercluster is found.

All in all, HyperLex is not as modular as the other clustering algorithms we

consider in this work, and instead requires a specific graph-building step that we can

not well enough replicate in our current setting. Also, the optimal tuning of the

various parameters of HyperLex is beyond the scope of this work.

We think that the strength of our framework is that we can highlight the

behaviour of different algorithms when they are confronted on the base of word

graphs with identical structures, all the while gaining more insight into their single

dynamics. We do this by keeping the graph-building and the clustering processing

steps separate; unfortunately, the line between them is extremely blurred with

HyperLex (and with other similarly principled systems too), and that is why we

deem to include it only collaterally in this work.
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6.1.2 Measure biases

In the process of our pseudoword evaluation, we claim to have gathered further

evidence of the biases of BCubed measures and NMI.

BCubed measures (Bagga and Baldwin 1998; Amigó et al. 2009), due to their

nature as averages over all single clustered elements, stress the similarity between

the internal structures, i.e., the distribution of elements inside each cluster, of two

clusterings and disregard their external structures, i.e., their respective sizes and the

distribution of cardinalities among clusters. The fact that many pseudowords in both

our data sets are very unbalanced (in the sense explored in Sect. 5.2) and that e.g.,

CW tends to produce coarse clusterings originates extremely high BCubed scores for

this algorithm, as this measure does not give enough relevance to the smaller of the

two ground truth clusters of (3). In fact, if the algorithm manages to find only one

cluster, the BCubed score is the same as for the one-cluster-per-word trivial baseline

BSL, which itself corresponds to the value
max aj j; bj jð Þ

aj jþ bj j , in the notation of identity (1):

the more unbalanced the pseudoword, the higher this value. The same consider-

ations are valid for MCL with parameters (2, 1.4) and less pronouncedly for the

aggregative clustering algorithm with radius r ¼ 0:97. We might argue that if a

pseudoword is nearly collapsed onto one single component, a high BCubed score

effectively recognises this and rewards the algorithm for not being too fragmentary.

Still, we want an algorithm to isolate both components, and we deem that TOP2 is

better suited to evaluate this in the case of clear-cut homonymy.

On the other hand, NMI tendentially penalises a small number of clusters too

heavily, and it seems sometimes quite difficult to interpret, as its variations are too

brisk; in general, though, NMI seems more adherent to the desired kind of evaluation

(as discussed in Sect. 5.1.5 for TOP2) than BCubed. Still, this briskness does not take

account of the skewness of a pseudoword at all. We see this by the example of two

pseudowords, in the case of similarity-based ego graphs, with very different balance

parameters: paycheck_reptile, fairly balanced with q ¼ 2:0 (160 terms for

paycheck, 322 for reptile), and artistry_bufflehead, with a very high q ¼ 35:62
(413 terms for artistry and only 13 for bufflehead). We will consider the algorithm

AGG75P and its hyperclustering. For paycheck_reptile, 2 good clusters are found, for

an excellent NMI score of 0.96; for artistry_bufflehead, the clustering is quite

fragmented and yields 9 clusters that score an NMI of 0.28. Now, both

hyperclusterings are greatly condensed to one single hypercluster. Then, for both

the NMI score is exactly 0, as is always the case when one single cluster is found.

However, the TOP2 score behaves differently: in the first case we obtain 0.39, while

in the second one 0.48. Despite being both under the threshold of 1
2
(see again

Sect. 5.1.5), the higher, second one mirrors the intuition that it is still ‘‘less wrong’’

to assign a single cluster to a very unbalanced sense distribution (like for

artistry_bufflehead) than to a more uniform one (like for paycheck_reptile). In the

end, normalised mutual information is too much influenced by small differences in

size between the compared clusterings and too susceptible to outliers.
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6.2 Examples of clusterings

We briefly want to show the differences between the basic clusterings of our main

six systems (MCL, CW, MM, AGG, GP, CURV) and their variants on the ego graph of a

same pseudoword, in order to give a small direct insight into their nature. We will

also briefly look at the effects of hyperclustering. As our example, we chose the

similarity-based ego graph of euonymus_carryall, a combination of two words

belonging to the lowest frequency class 1. Its graph is connected and consists of

only 336 nodes out of a possible maximum of 500; this is due to the rarity of such

words. The graph is balanced, with a ratio q (cf. Sect. 5.2) between euonymus and

carryall of 1.09. The baseline has here a BCubed F-score of 0.67, a TOP2 score of

0.31 and of course a NMI of exactly 0.

Chinese Whispers finds two clusters, which seem to correspond on one hand to

the sense of plant, as in
{nandina, hemlock, reed, iris,...},
and on the other hand to the sense of transportable container, as in
{can, receptacle, scarf, compartment,...}.
As a consequence, all scores rate very high, respectively 0.97 for BCubed F-

score, 0.90 for NMI and 0.99 for TOP2.

The gangplank algorithm gives us 8 clusters. Their precision is quite high and it

is possible to distinguish carryall-type clusters like

{apartment, package, sheeting, canopy},
and euonymus-type ones, although the distinction made between two clusters of

the same type is not always clear, like for the plant-related terms of

{clethra, tree, spiraea} and

{loosestrife, gilt, multiflora, bugger, leucothoe,...}.
The gangplank scores are: BCubed F-score 0.70, NMI 0.61, TOP2 0.78.

After hyperclustering, we get 3 more clear-cut clusters, similar to those obtained

by CW. One is just a micro cluster of three terms with no relevance. Scores improve

consequently: BC-F 0.94, NMI 0.80, TOP2 0.90.

The Markov cluster algorithm with parameters (2, 2) returns a more fragmented

result, with 11 clusters. Some of them appear to be very specific, like

{bike, humvee, skateboard, car, Cruiser},
together with a pair of singletons like

{wheel} or

{look}.
We can still separate euonymus from carryall, but recall penalises the scores and

we have a BCubed F-score of 0.73, a NMI of 0.63 and a TOP2 of 0.84: in this case

higher than GP, but worse than GP’s hyperclustering.

When using 1.4 as the inflation parameter, though, MCL nearly acts as the

hyperclustering of its version with inflation parameter 2. We retrieve just 2 clusters

where the two pseudosenses are clearly distinct, and we obtain extremely high

scores: BCubed F-score 0.97, NMI 0.9, TOP2 0.92. Its hyperclustering stays unvaried.

MaxMax takes the tendency of the more fragmented MCL version even further and

produces 21 clusters, some of them consisting only of two or three terms, like

{pack, equip} and
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{style, lash, look},
and overall with very restricted meaning areas. The biggest cluster comprises 56

elements. Despite the very high precision, its scores are the lowest ones between

basic clusterings, with a BCubed F-score of 0.34, a NMI of 0.48 and a TOP2 of 0.47.

However, the hyperclustering causes here a major improvement. The clustering

becomes condensed in 3 clusters, with the carryall sense split among one bigger and

one smaller cluster:

{humvee, bike, car, cart, Cruiser, skateboard,...},
{lawn, eraser, moss, brush, reed, grass, wedge,...} and

{eyeglass, overalls, cap, parka, sweater,...}.
This new clustering reaches a BCubed F-score of 0.62, a NMI of 0.37 and a TOP2 of

0.66. It is remarkable how normalised mutual information unpredictably decreases,

despite the evident overall better look. MaxMax’s hyperclustering is capable of

achieving even better improvements than for euonymus_carryall.
Between the two aggregative clustering variants, one with variable radius

(AGG75P) and the other with a fixed radius of 0.97 (AGG97), the latter has a more

dispersed clustering, with 6 clusters against the 3 found by the former. This is

explained by the fact that the ego graph of euonymus_carryall is very balanced, so

that distances are more homogenously distributed, producing a very high 75th

percentile. The clusters of AGG97 are quite balanced and the TOP2 score is still quite

good: 0.72, compared to a BCubed F-score of 0.63 and a NMI of 0.67. Precision is

good, but the pseudosenses are split among the clusters. AGG75P is more focused,

with only one smaller spurious cluster pertaining to carryall:
{humvee, bike, car, cart, Cruiser, skateboard,...},
{lawn, eraser, moss, brush, reed, grass, wedge,...} and

{eyeglass, overalls, cap, parka, sweater,...}.
This variant thus obtains much better results indeed: BCubed F-score 0.93, NMI

0.82, TOP2 0.90.

The two respective hyperclusterings also behave differently: AGG97 merges

everything into one big cluster, because of its high fixed radius, while AGG75P, by its

own definition, will always find at least two different clusters in a hypergraph with

at least three nodes and different weights on its edges.

The curvature-based clustering algorithm identifies 9 clusters. Their distribution

is very skewed: there are two bigger clusters with respectively 283 and 29 terms:

{equip, apple, twig, style, lunchbox, toothpick,
pachysandra,...},

{nandina, brake, wheel, rosebush, poppy,...}.
The rest is subdivided among the remaining micro clusters. The clusters appear

quite confused, and scores are consequently low: BCubed F-score 0.61, NMI 0.06,

TOP2 0.42. The scores stay substantially unvaried for the hyperclustering, since the

only change is that two minor clusters are merged, namely:

{cultivar, gizmo, daylily, weed, boxwood, hibiscus} to

{rucksack, restraint, leaf, brooch, tree, bulb, button-
downs}.
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7 Discussion of results and conclusions

In this final Section, we link the performances of the algorithms to the nature of the

word graphs they are run on, and introduce some quantities that describe the

clustering tendencies of the algorithms, explaining how they interact with different

word graphs and pseudoword properties.

7.1 Discussion of Results

The analysis of the algorithms’ behaviours on both the semantic-similarity and on

the co-occurrence-based ego graph data sets in Sect. 6, together with the more

detailed insight into the nature of their clusterings of Sect. 6.2, allow us to make

some final considerations about the functioning and the desired properties of a

clustering algorithm for the specific task we have chosen to study.

First, we observe that coarse-grainedness is an advantage in our evaluation

framework: in fact, in the ideal case we want an algorithm to produce exactly two

clusters, and the TOP2 score penalises outputs which deviate too much from this

ideal number. Chinese Whispers is on average the most coarse-grained among our

systems, and it is true that it manages to achieve very good TOP2 scores. However,

this happens at the expense of stability: very often the more coarse-grained

algorithms ignore smaller or not well-represented differences and conflate all

elements into just one cluster. Their good average scores arise from the means of

both extremely high and very low values.

On the other hand, more fine-grained clustering algorithms might be more

sensitive to minor, coherent subregions in a word graph and be stabler in terms of

score variance, but their lack of focus and more dispersed clusterings give them

inferior average scores; the best example for this is MaxMax. Considering semantic-

similarity-based ego graphs, the curvature-based clustering algorithm is also stably

floating around low scores. Still, we recognise somewhat different splitting

behaviours that we want to summarise using the mean absolute deviation (MAD), a

Table 4 Average values of the

mean absolute deviations for

each clustering algorithm over

both ego graph data sets

Similarities Co-occurrences

MCL2 51.8 13.0

MCL14 92.0 54.6

CW 66.6 160.5

MM 10.6 12.4

AGG97 66.3 59.4

AGG75P 50.7 69.6

CURV 80.8 90.8

GP 40.6 12.2

BSL 0 0

HL 16.2 69.6

764 F. M. Cecchini et al.

123



measure of dispersion,16 together with the mean number of clusters in a clustering

(Table 3). We apply the MAD to the cardinalities of the clusters in a given clustering,

and for each algorithm we take the mean of the MAD scores of all its clusterings on

either data set.17 The mean absolute deviation tells us how unbalanced the

distribution of elements in a clustering is with respect to a hypothetical uniform

clustering where all clusters are of equal size. The higher the MAD, the more skewed

the clustering: this means that there will be few very big clusters counterposed to

many smaller clusters. In Table 4 we show the MAD values for our algorithms on

both data sets. The mean number of clusters, instead, tells us how fragmented a

clustering is. Figure 4 graphically shows the position of our algorithms with respect

to these two statistics, which we will comment comparing them to their respective

TOP2 scores.

We observe for example that CURV, though only relatively fine-grained, has quite

high mean absolute deviation values, much higher than MaxMax, which however

suffers from an extremely high fragmentation. On the contrary, GP is more balanced,

because, although having a higher MAD, it is less fine-grained, which lends to its

clustering more compactness than the two other aforementioned systems. However,

at the same time, it is exactly this same compactness that is detrimental to its TOP2

scores, since the recall of its representative clusters will be relatively low: we know

that in most cases of homonymy one term is prevalent over the other, as mentioned

in Sect. 4.1.1.

We claim that the best clustering shape that can be obtained by an algorithm for

the task of homonymy detection, and more generally of Word Sense Induction, is

one that admits a pronounced, even if not exasperated, degree of skewness without

being too much fragmented, i.e., with too many clusters. In the charts of Fig. 4, this

would correspond to a rather undefined region towards their bottom center-right

quarter, where the best systems tend to concentrate (cf. Tables 1 and 2), especially

in Fig. 4b (AGG75P, AGG97, MCL14 and CURV). As a matter of fact, CW’s performances

suffer on the co-occurrence-based ego graph data set (Fig. 4b) because its good

shape seen on the semantic-similarity-based data set is lost, or, in other terms,

because, while its mean clustering size remains stably low, its MAD value gets too

high.

An interesting factor emerges from hyperclustering: we might call it the

scalability, or conversely rigidity, of a clustering algorithm. Namely, we already

noticed how MaxMax’s hyperclustering markedly improves with respect to its basic

clustering. At the same time, we observe that MaxMax’s hyperclustering greatly

rescales the size of the basic clustering. On the contrary, the basic clusterings of

MCL2 and especially of the curvature-based algorithm are largely unaffected by

hyperclustering. This hints to different properties of the algorithms, particularly

when noting that MCL2 is as fragmented as MM on the co-occurrence-based data set

(cf. Table 3). In the notation of Sect. 5.1.4, we express this ratio as

16 The mean absolute deviation of a data set of observations is the average of the absolute values of the

differences between the mean data set value and the observations (Dixon and Massey 1957).
17 We could normalise the MAD score with respect to the number of total clustered elements. However,

since the order of our ego graphs is nearly constant, we just take the absolute mean deviations. The same

goes for the mean number of clusters.
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(a)

(b)

Fig. 4 Distribution of the clustering algorithms with respect to mean absolute deviation (MAD, x-axis) on
the cluster size distribution in their clusterings and mean number of produced clusters (y-axis). a
Semantic-similarity-based data set, b Co-occurrence-based data set.
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f ¼ Cj j
HypðCÞj j � 1 ð13Þ

and summarise its values for each algorithm in Table 5.

We can say that the closer f to 1, the greater the invariance of an algorithm with

respect to hyperclustering. This invariance is surely tied to coarseness, albeit it does

not directly depend on it. We might claim that clustering algorithms with low

invariance and a relatively great fragmentation, like MM or GP, benefit the most from

hyperclustering. This is due to the fact that the algorithm is capable of rescaling
itself and efficiently use its relatively small and limited basic clusters as building

blocks for more significant clusters.

Conversely, we recognise a generic turning point in terms of coarseness beyond

which hyperclustering ceases to be useful: when a clustering is already coarse

enough, i.e., close to the supremum of the partition lattice (cf. Sect. 5.1.4), the

hyperclustering exasperates this coarseness, lowering its quality and the associated

scores. Chinese Whispers is a clear example thereof: on the semantic-similarity-

based ego graph data set its hyperclustering very often, if not always coincides with

the trivial baseline, and indeed its scores drastically reduce, especially for the more

balanced pseudowords.

7.2 Final conclusions

The first main contribution of this article is to present a self-sufficient pseudo-word-

based evaluation framework for WSI graph-based clustering algorithms, thereby

defining a new evaluation measure (TOP2, cf. Sect. 5.1.5) and a secondary clustering

process (hyperclustering, cf. Sect. 5.1.4).

The second main contribution is a thorough comparison of well and less known

WSI graph-based clustering algorithms, each with a different approach to the task, on

the presented evaluation framework. Even if we observe some clustering algorithms

excelling at some evaluation measure more than others, in the end we are effectively

not able to proclaim one of them as the ‘‘overall best WSI clustering algorithm’’. Here

we are also refraining from any conclusion about HyperLex, as motivated in Sect.

6.1.1.

Table 5 Mean ratios of the

number of clusters in a basic

clustering to the same number in

its hyperclustering (rigidity), for

each algorithm, over both ego

graph data sets

Similarities Co-occurrences

MCL2 2.5 1.3

MCL14 1.9 1.7

CW 1.8 3.5

MM 9.3 5.6

AGG97 5.3 4.3

AGG75P 3.8 3.9

CURV 1.1 1.1

GP 3.1 2.6

HL 1.2 1.3
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The type of an ego graph, either based on (second-order) semantic similarities or

on (first-order) co-occurrences, influences the values of the mean absolute deviation

and to a much lesser extent the invariance ratio f defined by (13) in Sect. 7.1:

different clustering algorithms react differently to first-order or second-order

relations. As we have stressed many times throughout the analysis of the previous

sections, co-occurrence-based word graphs represent more unpredictable, generally

less significant connections between words than similarity-based word graphs. They

are also more subject to noise in the form of words with little relevance to WSI or

even punctuation, depending on the pre-processing that was performed on the

original raw text. Co-occurrence word graphs in our data set are sensibly denser

than their similarity-based counterparts and their small-world nature (cf. Sect. 5.1.1)

is more pronounced, and this is a cause of generally more fragmented and more

blurred clusters, corresponding to overall lower scores. In such a setting, we can

distinguish a disadvantage for clustering algorithms that rely on the abstract concept

of information flow, like the MCL variants or CW, compared to others that are based

on distance, like the AGG variants, or that just check some local properties, like MM or

CURV, especially for the more balanced pseudowords. We see a reason for this in the

fact that co-occurrences have a local essence, and that we can not as easily associate

them semantic reasonings as with similarities, like an information flow implies; we

rather observe that the emerging syntactic relations possess a different nature and

are in a complementary syntagmatic vs. paradigmatic relation (the work De Saus-

sure (1916) sets the grounds of this distinction), mirrored by the complementary

relation between Word Sense Discrimination and Word Sense Induction. Even if

they are often used as synonyms, this study seems to put in evidence the need to

approach these tasks with different instruments.

As a final remark, we want to highlight the paramount importance of text pre-

processing in the outcome of WSI clustering algorithms. This determinant step is

often not given enough relevance, even if it greatly influences text modellisations, a

fact that indirectly emerges from our work. In the light of this, besides believing that

these connections need further investigation, we think that it might be useful for WSI

evaluation campaigns or frameworks to be performed not only on a shared data set,

but also on the same given type of structure.
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