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André Mansikkaniemi1 • Tanel Alumäe2
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Abstract One particular problem in large vocabulary continuous speech recog-

nition for low-resourced languages is finding relevant training data for the statistical

language models. Large amount of data is required, because models should estimate

the probability for all possible word sequences. For Finnish, Estonian and the other

fenno-ugric languages a special problem with the data is the huge amount of dif-

ferent word forms that are common in normal speech. The same problem exists also

in other language technology applications such as machine translation, information

retrieval, and in some extent also in other morphologically rich languages. In this

paper we present methods and evaluations in four recent language modeling topics:

selecting conversational data from the Internet, adapting models for foreign words,

multi-domain and adapted neural network language modeling, and decoding with

subword units. Our evaluations show that the same methods work in more than one

language and that they scale down to smaller data resources.
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1 Introduction

In agglutinative languages, for example Finnish and Estonian, the number of

different word forms is huge, because of derivation, inflection and compounding.

This is problematic for statistical language modeling that tries to build probabilistic

models of word sequences. While modeling the morphology in these languages is

complex, modeling the pronunciation of words is rule-based with few exceptions.

Thus, splitting words into subwords, such as morphemes or statistical morphs, is a

viable and useful tool in applications like automatic speech recognition. However,

statistical modeling of morphology, lexicon and word sequences still requires a

considerable amount of relevant training data. For under-resourced agglutinative

languages, such as variations of Sami and other small fenno-ugric languages, the

collection of relevant training data is a significant challenge for language

technology development. In this paper we study this resource problem by

performing simulations in Finnish and Estonian which include similar morpholog-

ical properties, but have sufficient resources for carrying out evaluations.

The technical focus of this paper is in large-vocabulary continuous speech

recognition (LVCSR) that is essential for automatic processing of dictations,

interviews, broadcasts, and all audio-visual recordings. In LVCSR we target on four

language modeling topics where we have recently been able to show significant

progress: selecting conversational language modeling data from the Internet,

adapting pronunciation and language models (LMs) for foreign words, multi-

domain and adapted neural network language modeling for improving performance

in target topic and style, and decoding with subword lexical units.

For many languages today, large amounts of textual material can be extracted from

theWorldWideWeb. These texts, however, generally provide rather poor match to the

targeted style of the language. On the other hand, producing enough accurately

transcribed matching training data is expensive. We have faced this problem when

developing speech recognition systems for conversational Finnish and Estonian. Huge

amounts of Finnish and Estonian data can be crawled from the Internet, but careful

filtering is required to obtain a model that matches spontaneous conversations. Several

methods have been proposed for selecting segments from an inconsistent collection of

texts, so that the selected segments are in some sense similar to in-domain development

data (Klakow 2000; Moore and Lewis 2010; Sethy et al. 2006). However, these

methods rely on proper development data, but for our Finnish and Estonian tasks there

are little carefully transcribed spontaneous conversations available.

A particular problem in lexical modeling is the frequent use of foreign words,

which do not follow the same morphological and pronunciation rules as the native

words. This becomes a major problem for speech recognition, because a single

misrecognized word can severely degrade the modeling of the whole sentence, and

the proper names, in particular, are often the most important key words of the
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content. In many automatic speech recognition (ASR) applications the correct

recognition of foreign words relies on hand-made pronunciation rules that are added

to the native lexicon. This is a time-consuming solution. An alternative is to

automatically generate pronunciation rules for foreign words. Data-driven grapheme-

to-phoneme (G2P) converters are often used for this purpose (Bisani and Ney 2008).

Focused pronunciation adaptation for foreign words has been previously imple-

mented by automatically detecting the most likely foreign words with letter n-gram

models and then generating pronunciation rules for them with language-specific G2P

converters (Maison et al. 2003; Lehecka and Svec 2013). Discriminative pruning of

G2P pronunciation variants for foreign proper names has also been applied, to reduce

the effect of lexical confusion (Adde and Svendsen 2011).

The state-of-the-art in statistical language modeling has been pushed forward by the

application of neural networks (Bengio et al. 2003). Neural networkmodels, projecting

word sequences into a continuous space, are capable of modeling more complex

dependencies, and improvegeneralization and discrimination.Neural network language

models (NNLMs) have also been shown to be useful when training data is very limited

(Gandhe et al. 2014). Recently, the methods to improve performance in targeted

speaking styles and topics have improved—starting with weighted sampling (Schwenk

and Gauvain 2005) to more recent work in adaptation (Park et al. 2010), multi-domain

models (Alumäe 2013; Tilk and Alumäe 2014) and curriculum learning (Shi et al.

2014). We put our focus on multi-domain models and adaptation in this article.

Subword LMs have many advantages in agglutinative languages with limited data

resources. A relatively small lexicon can sufficiently cover an almost unlimited

number of words, while still producing models that are capable of accurately

predicting words. However, in some cases, the system can also produce words that are

very rare or even nonsense. To avoid this we have proposed a new decoder

(Varjokallio and Kurimo 2014a), that can efficiently build and use a search network of

millions of acceptable words. Thus, new words can be easily added whenever there is

a need to recognize some important words that do not exist in the training data.

In our work we mainly present LVCSR evaluations in Finnish and Estonian.

Although these two are significantly smaller and less resourced than the main

languages of the world, we have fairly good benchmarking tasks to evaluate. For the

smaller agglutinative languages, such as Northern Sami, we can not provide such

evaluations. However, by artificially reducing Finnish and Estonian training data, we

can make simulations that may reveal useful properties of the language modeling

methods we propose. The evaluation material in both languages can be divided into

broadcast news that suffer from large vocabulary and foreign proper names, and

conversations that suffer from the small amount of relevant training data.

2 Methods

2.1 Methods for segmenting words into subwords

Most of the methods described below rely on segmenting the vocabulary into

subword units, to address the problems originating from the huge number of
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different words in Finnish and Estonian. Unless otherwise stated, we have used

Morfessor (Creutz and Lagus 2002) for deriving these segmentations.

The selection algorithms presented in Sects. 2.2.2 and 2.2.3 need to estimate

models from development data, which is less than 100,000 words. We found a

Morfessor model to be problematic for the selection algorithms, because with so

little training data Morfessor commonly segments unseen words into single letters

that are missing from the LM, which has a significant effect when scoring unseen

sentences.

Therefore, in Sects. 2.2.2 and 2.2.3, we created the subwords using the multigram

training algorithms from the freely available software package (Varjokallio and

Kurimo 2014b), which avoids setting for any fixed segmentation altogether. By

training a multigram model (Deligne and Bimbot 1997) using the forward–

backward estimation procedure, the segmentation of words into subwords is

probabilistic and all segmentation paths are considered in the model. The multigram

formulation is also closely related to Markov models. The model may be written as

a unigram model, where the probabilities correspond to fractional frequencies as

estimated by the forward–backward training. The model can be used for

segmentation of unseen words into subwords, and computation of the probability

of any sentence, eliminating the OOV issue.

It should be noted that Morfessor segmentations can still significantly benefit

automatic speech recognition of agglutinative languages, even when less than

50,000 words of training data is used (Leinonen 2015).

In the decoding experiments in Sect. 3.5, Morfessor was used for the language

models trained on the smaller subset. On the larger subset, the subword vocabulary

was selected to code the training corpus with high unigram likelihood (Varjokallio

et al. 2013). This segmentation approach is suitable for reasonably large text

corpora.

2.2 Methods for selecting conversational data from the Internet

When modeling under-resourced languages, Internet is often the first place to look

for training data. However, the noisy web data requires careful filtering. Several

methods exist for selecting LM training data that matches the targeted style of the

language, but their computational cost can be high, and the sparsity of development

data may pose difficulties especially with agglutinative languages. Furthermore,

conversational Finnish is written down phonetically, meaning that also phonetic

variation increases vocabulary size and data sparsity (Enarvi and Kurimo 2013a).

We have developed tools for effectively applying suitable criteria to select useful

segments for language modeling from large data sets, when working with only a

handful of development data and a morphologically rich language. The source code

is available in GitHub.1 The selection criteria that we have implemented are

summarized below. The first two define a score for a text segment, based on which

the segments are filtered independently of each other. The third one defines a

1 https://github.com/senarvi/senarvi-speech/tree/master/filter-text.
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criterion for adding a text segment to current selection set: The data is scanned

sequentially and each segment is selected if it improves the selection set.

• devel-lp A model is estimated from the unfiltered training data, and with a

segment removed. The decrease in development data log probability when a

segment is removed, is the score of the segment. This is the selection criterion

used by Klakow (2000).

• xe-diff A model is estimated from the development data, and from the same

amount of unfiltered training data. The score of a segment is the difference in

cross-entropy given by these two models. This is the selection criterion used by

Moore and Lewis (2010).

• devel-re A text segment is added to the selection set, if including it reduces

relative entropy with respect to the development data. This is the criterion used

by Sethy et al. (2006).

The implementation of each filtering criterion is explained below. In practice,

when the language is agglutinative, the only way is to build the LMs from subword

units, or the high number of out-of-vocabulary (OOV) words makes reliable

estimation of the probabilities impossible (Enarvi and Kurimo 2013a). To make the

implementations as fast as possible, unigram subword models are used. Limiting to

unigrams does not seem to be harmful, since higher-order LMs tend to overlearn

small development sets (Klakow 2000).

2.2.1 Implementation of devel-lp filtering

The filtering method presented by Klakow (2000) optimizes the perplexity (or

equally log probability) of a model computed from the filtered data, on development

data. A naive implementation scores each text segment by removing the text

segment from the training data, training a language model, and computing the log

probability of the development data. This is compared to the log probability given

by an LM trained on all training data, and the difference is the score of the text

segment. Models are estimated only from the training data, which makes this

approach especially suitable for the situation when we have very limited amount of

development data. OOV words or subwords are less of a problem when all the

models are estimated from a large data set. Consequently, this was the only one of

these filtering methods that we applied in Enarvi and Kurimo (2013a).

The naive implementation requires training as many LMs as there are text

segments. Even though the computation can be done in parallel, a number of

optimizations were needed to make the algorithm scale to tens of millions of text

segments. First we note that the log probability given by the LM trained on all

training data is constant, so we can equivalently define the score of a text segment as

the log probability when a text segment is removed from the training data. The only

statistics needed for the computation of unigram probabilities are subword counts.

As we only compute probabilities on the development data, we only need the counts

of the subwords that exist in the development data, fcT1 . . .cTNg;CT , which are
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collected only once. For each text segment, the counts, fcS1. . .cSNg;CS are collected

and the score of the segment is computed as

XN

i¼1

log
cTi � cSi
CT � CS

� �
cDi ; ð1Þ

where cDi is the number of times the subword appears in the development data. Thus

the running time of the algorithm is proportional to the number of text segments

times the number of unique subwords in the development data.

2.2.2 Implementation of xe-diff filtering

In the method proposed by Moore and Lewis (2010), two language models are

estimated, one from the development data and another from the same amount of

unfiltered training data. The score of a text segment is the difference in cross-

entropy given by these two models. The method requires only computation of the

two LM probabilities for each text segment. Thus, the running time is proportional

to the number of words in the unfiltered training data.

2.2.3 Implementation of devel-re filtering

The idea behind the filtering method proposed by Sethy et al. (2006) is to match the

distribution of the filtered data with the distribution of the development data in

terms of relative entropy. First a language model is estimated from the development

data, and the same amount of unfiltered training data is used to initialize a model of

the selection set. Then the text segments are processed sequentially. It is computed

how much relative entropy would change, with respect to the development data

model, if a segment was included in the selection set. If the change is negative, the

text segment is included and the selection set model is updated.

We used the revised version of the algorithm that uses skew divergence in place

of Kullback–Leibler (KL) divergence (Sethy et al. 2009). Skew divergence contains

parameter a, whose value 1 corresponds to KL divergence, and smaller values

smooth the maximum-likelihood model of the selection set. We first select the same

amount of text as there is in the initial model and then recompute the model from

only the selected data.

Sethy et al. present an optimization that runs proportional to the number of words

in the unfiltered training data. However, the sequential algorithm itself cannot be

parallelized. The authors note that the algorithm is greedy and running it several

times with random permutations of the text segments improves the result. They also

suggest skipping sentences that have already been included in more than two passes,

in order to gain new data faster. We did not enforce that requirement, enabling us to

run multiple passes simultaneously. It should be noted that also the generation of a

random permutation can be time consuming and I/O intensive, especially when the

data set is too large to be loaded into memory, and multiple parallel processes access

the same data.
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2.3 Methods for adapting models for foreign words

In ASR applications the correct recognition of foreign proper names (FPNs) is a

difficult challenge. The problem of recognizing foreign words is especially a

problem for smaller languages where influence from other languages is bigger and

FPN occurrence more frequent. For Finnish subword-based ASR, foreign names

constitute one of the largest error sources (Hirsimäki and Kurimo 2009).

The challenge in recognizing foreign names stems from a combination of many

factors. The most obvious is pronunciation modeling. Pronunciation rules that cover

native words usually give unreliable results for foreign words. Foreign names are

often rare and topic-specific. Background LMs usually give unreliable estimates for

FPNs. A third factor that is quite specific to subword LMs is oversegmentation (base

form of the word is split into many different parts). Oversegmentation of foreign

words complicates the mapping of non-standard pronunciation rules to separate

subword units.

Previously, FPN recognition for Finnish subword-based speech recognition has

been improved using a two-pass adaptation framework, as illustrated in Fig. 1

(Mansikkaniemi and Kurimo 2013). Based on first-pass ASR output the language

model and lexicon are both adapted in an unsupervised manner. In-domain articles

which best match the first-pass output are selected based on latent semantic indexing

(LSI). From the selected articles an in-domain LM (PI) is trained and adapted with

the background LM (PB). In this work linear interpolation is used with a fixed

interpolation weight (Eq. 2, k ¼ 0:1).

PadapI ðwjhÞ ¼ kPIðwjhÞ þ ð1� kÞPBðwjhÞ ð2Þ

Lexicon adaptation is performed by first screening for foreign word candidates in

the in-domain texts. All words starting with an uppercase letter are selected as

foreign word candidates. From the candidate list, the most likely foreign words are

chosen using the product of two factors, letter n-gram perplexity ppl(word) and

topic similarity sim(word), as a score (Eq. 3). ppl(word) is the perplexity given by

letter n-gram model estimated from a native word list collected beforehand, on word

word in the in-domain article. sim(word) is defined as the cosine similarity between

the first-pass output and the article where word occurs.

scoreðwordÞ ¼ pplðwordÞ � simðwordÞ ð3Þ

The most likely foreign names (with the highest score) are selected and added to

the vocabulary. Adapted pronunciation rules for each FPN are generated using a

data-driven G2P model (Bisani and Ney 2008). Optionally subword restoration is

applied for oversegmented FPN candidate words.

In this work we study how well this adaptation framework can be transferred

from Finnish to a related language, Estonian. The phoneme sets of the two

languages are quite similar. This gives the option of sharing the foreign word G2P

model. The original G2P model was trained on 2000 foreign names retrieved from a

Finnish text corpus. The hand-crafted pronunciation rules were made with a Finnish
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phoneme set and Finnish speakers in mind. The pronunciation rules generated from

the G2P model can with some minor modifications be converted to an Estonian

phoneme set.

A problem with G2P generated pronunciation variants when trying to improve

FPN recognition is that many of the variants actually degrade the recognition of

native words. In combination with the adaptation framework, we will also evaluate a

lattice-based discriminative pronunciation pruning method (Enarvi and Kurimo

2013b). The pruning tools are available in GitHub.2 The algorithm removes those

FPN pronunciation variants from the final adapted dictionary that have a negative

effect on the total word error rate. Pronunciation variants that have a positive effect

on recognition are used to retrain the G2P model by appending them to the foreign

word lexicon. This discriminative training procedure is iterated a number of times

on the development set before a final G2P model and a list of harmful

pronunciations is obtained. The updated G2P model and the list of harmful

pronunciations are then used on the evaluation set.

To the authors’ knowledge no previous work has used this type of lattice-based

discriminative pronunciation pruning for both excluding harmful pronunciation

variants and re-training the G2P model with beneficial pronunciation variants.

Speech

Decoder IR engine

Web
corpus

Matching
documents

LM adap-
tation

Adapted
LM

FPN de-
tection

Subword
adaptation

Pronunciation
adaptation

Adapted
vocab-
ulary

Decoder

Final output

First-pass output

Fig. 1 Adaptation framework for foreign proper name adaptation. Adapted LM and vocabulary are used
in second-pass recognition

2 https://github.com/senarvi/senarvi-speech/tree/master/filter-dictionary.
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2.4 Methods for multi-domain and adapted neural network language
modeling

When developing a LM for a specific domain it is often the case that the amount of

available in-domain data (the data belonging to the target domain) is not sufficient

for a good model. This is even more of a problem when dealing with under-

resourced languages. The scarcity of in-domain data makes it necessary to include

out-of-domain sources in the training of the LM. Usually the amount of available

out-of-domain data is much bigger than in-domain data. Therefore the LM needs to

favour the in-domain data somehow to perform well in the target domain.

NNLMs (Bengio et al. 2003) can achieve this goal in several ways:

• Weighted sampling During training the in-domain data is sampled with higher

probability than out-of-domain data [e.g. use all in-domain data and only a

random subset of out-of-domain data in each epoch (Schwenk and Gauvain

2005)].

• Curriculum learning The order in which the training data is presented to the

network is planned in such a way that more general samples are seen in the

beginning of the training while domain-specific samples are kept towards the

end of the training so they have more influence on the final model (Shi et al.

2014).

• Adaptation After training the model on out-of-domain data it is adapted for the

in-domain data. The adaptation can be done, for example, by adding an

adaptation layer and training it on in-domain data while keeping the other

parameters fixed (Park et al. 2010).

• Multi-domain models Most parameters are shared between domains to allow

exploiting the inter-domain similarities. A tiny fraction of parameters is reserved

to be domain-specific and is switched according to the active domain to take into

account the domain-specific differences (Alumäe 2013; Tilk and Alumäe 2014).

Unlike with adaptation, the domain-specific and general parameters are trained

jointly and the same model can be used in all domains.

In this article we use the adaptation and multi-domain approaches.

For multi-domain approach we use a simplified version of the multi-domain

NNLM from Alumäe (2013). The architecture of our model is shown in Fig. 2. It

Fig. 2 Description of the NNLM architecture. Dotted lines stress the parts of the network that are
characteristic only to the multi-domain and adapted models. The inputs (context word indices wt�1, wt�2,
wt�3 and the domain index dt) are one-of-N encoded vectors
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differs from the architecture described in Alumäe (2013) by omitting the extra linear

adaptation layer and applying the multiplicative adaptation factors directly to the

pre-activation signal of the hidden layer rectified linear units (ReLU). The hidden

layer activations are computed as shown in Eq. 4 where y0 and y1 are projection and

hidden layer activations respectively, W1a and b1a are hidden layer and W1b and b1b
are domain adaptation weights and biases respectively. W1b consists of domain-

specific row-vectors (domain vectors) while b1b is shared across domains. To

prevent the adaptation factors from shrinking the inputs to ReLU from the start of

training, the weights W1b or bias b1b can be initialized to ones (we used the latter in

our experiments).

y1 ¼ ReLU y0W1a � ðdtW1b þ b1bÞ þ b1að Þ ð4Þ

This kind of hidden layer enables each domain to influence the structure of

sparsity in the output layer inputs (i.e. which hidden layer units are more or less

likely to be exactly zero for each domain) in addition to modulating the nonzero

outputs. One can consider the NNLM as a log-linear model on top of an

automatically learned feature vector obtained by transforming the input through

nonlinear transformations in lower layers as in Seide et al. (2011). In this

perspective the multi-domain model can influence the relevance of the log-linear

model input features in the context of different domains. Our experience shows that

the simplified model performs just as well or even marginally better than the

original one with an additional layer.

The multi-domain model requires the availability of in-domain data in the

training set. With limited-resource domains it is possible that there is not enough

target domain data for separate training, validation and test set. This means that

there might be no in-domain data left for the training phase. We propose an

adaptation approach which uses exactly the same model architecture as the multi-

domain model to overcome this problem. The advantage of using the multi-domain

architecture for adaptation is its resistance to overfitting due to the very small

amount of domain specific parameters that need to be trained on the target domain

data. The amount of domain-specific parameters is limited to a single vector with a

number of elements equal to the hidden layer size (usually several hundred or

thousand), which is tiny compared to the total amount of parameters in the network

(usually in millions). Thus, the training error on validation data gives a good

estimate of the performance on unseen data and all the available in-domain data

(except the test data) can be used for adaptation.

The adaptation procedure is as follows:

1. Train a general model on out-of-domain training data using the in-domain

validation data for early stopping and hyperparameter selection;

2. After the general model is ready, add the domain-specific parameters W1b, b1b
and modify the hidden layer activation according to Eq. 4;

3. Train only the domain-specific parameters added in the previous step on the in-

domain validation data until convergence, while keeping the rest of the

parameters fixed.
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Initially, we believed that to effectively utilize the domain vectors, the network

should have a multi-domain architecture from the start and be trained as such on

non-target domains. However, the preliminary experiments revealed that this is not

true. The adapted model works just as well if all the multi-domain architecture

specific elements are added right before training the target domain parameters.

This procedure raised a question whether the multi-domain model can also be

improved by combining all the in-domain data from both training and validation set

and using it to fine-tune the target domain vector as a final step of training.

Unfortunately, our preliminary experiments showed that this does not significantly

improve the perplexity of the test set.

2.5 Methods for decoding with subword units

The normal approach to language modeling in ASR is to train n-gram LMs over

sequences of words. For morphologically rich languages this is often problematic,

because the number of OOV words may be high. This is especially the case for less-

resourced languages, as considered here. Thus, words are not necessarily the best

units for language modeling. By training the n-gram models over sequences of

subwords, it is possible to assign probabilities to previously unseen word forms. In

our final task we compare different combinations of lexical units and decoders.

A common approach to LVCSR decoding is the dynamic token-passing search

(Young et al. 1989), where tokens are propagated in a graph containing paths for the

allowed recognition output with the corresponding Hidden-Markov-Model (HMM)

state sequences. A token contains at least the accumulated likelihood scores,

information about the current n-gram state and the recognition history. Many

standard techniques (Ney and Ortmanns 2000) like hypothesis recombination, beam

pruning and LM lookahead are needed to make the search efficient. Cross-word

pronunciation modeling (Sixtus and Ney 2002) is also important for the speech

recognition accuracy in tasks dealing with continuous speech. In Fig. 3, the first

*

_Ta
tAl aLo

TALO

lOa

TALOKIN

lO_

*

TALOA

TALOAKIN

oA_

lOk oKi kIn iN_

oAk aKi kIn iN_

*

_Ta
tAl aLo TALO

lO_

lOa

lOk

*
A

oA_

oAk

oKi kIn KIN iN_

aKi kIn KIN iN_

Fig. 3 Example decoding graphs for word n-grams (above) and subword n-grams (below), for the same
4-word recognition vocabulary. Grey nodes depict the n-gram identifiers
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graph is a conceptual example of a standard word decoder utilizing triphone HMMs

and word n-grams. Silence and cross-word modeling is omitted from the image.

In the case of subword n-grams, the same search principles may be applied, but

the graph should be constructed differently. Here we consider subword decoders,

which are general in the sense, that arbitrary segmentations of words to subwords

are allowed. With subword n-grams, it is possible to allow all possible

concatenations of subwords (Pylkkönen 2005), which enables unlimited recognition

vocabulary, as all word forms may be created by concatenating the subwords. The

requirement for this construction is that the pronunciation of each subword is

defined. For the languages considered here, the pronunciation may be easily derived

from the grapheme form of the subword.

Another recently suggested possibility is to use subword n-grams, but still restrict

the recognition vocabulary to the desired set of words (Varjokallio and Kurimo

2014a). In Fig. 3, the second graph is a conceptual example of a decoding graph,

which is constructed in this way. As also in this case the n-gram model has

probabilities for all word forms, unseen words may be segmented with the n-gram

model, and the corresponding paths added to the graph. This opens up new

possibilities for augmenting and adapting the vocabulary, especially in cases, when

the training data does not cover enough word forms. For analysis purposes, the

recognition performance of the word n-gram and the subword n-gram estimates may

be compared for the same recognition vocabulary. This is useful in assessing,

whether the improvement in using subwords models is caused by the better n-gram

estimates or the reduced OOV rate.

Table 1 Finnish speech data

sets
Data set Words Hours

fi-std-train 131,005 31.4

fi-conv-train 200,415 15.2

fi-conv-eval 6268 0.73

fi-news-dev 35,439 5.38

fi-news-eval 37,196 5.58

Table 2 Estonian speech data

sets
Data set Words Hours

ee-conv-train 1,251,638 165

ee-conv-eval 25,942 2.90

ee-news-dev 15,961 2.13

ee-news-eval 15,335 2.03
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3 Experiments

3.1 Data

The speech data sets used in our experiments are listed in Tables 1 and 2. Finnish

acoustic models for all experiments (except the conversational speech experiment)

were trained on the Finnish Speecon database (Iskra et al. 2002), from which 31 h of

clean dictated wideband speech from 310 speakers (fi-std-train) was used for training.
Estonian acoustic models for the conversational speech and neural network language

modeling experiments were trained on the full ee-conv-train set. It consists of a small

amount of spontaneous Estonian conversations, but mostly less spontaneous radio

broadcasts and lecture recordings. Estonian acoustic models for the foreign proper

name adaptation and subword decoding experiments were trained on a 30 h subset of

the ee-conv-train set, consisting of only broadcast news recordings.

Finnish conversational speech experiments were carried out on data collected at

Aalto University by recording and transcribing pair-wise conversations between

students. Finnish acoustic models for web text filtering experiments were trained on

the fi-conv-train set. It consists of student conversations, transcribed radio shows,

FinDialogue part of the FinINTAS (Lennes 2009) corpus, and free spontaneous

speech from Finnish SPEECON (Iskra et al. 2002) corpus. The extent to which the

speech is spontaneous varies between the recordings, as well as the dialect and style.

The evaluation set fi-conv-eval consists of transcribed radio conversations and

student conversations from unseen speakers. ee-conv-eval consists of transcribed

conversations from the Phonetic Corpus of Estonian Spontaneous Speech.3

Text data sets are listed in Tables 3 and 4. Training data for conversational LMs

were crawled from four Estonian conversation sites (ee-web-1 to ee-web-4) and six

Finnish sites (fi-web-1 to fi-web-6). These sites contain active discussions in various

topics, such as technology, sports, relationships, and culture. The most important

tool we have used is the Python library Scrapy. The web data filtering experiments

required two development sets for each language. ee-conv-dev1 and ee-conv-dev2
consist of transcripts from the Phonetic Corpus of Estonian Spontaneous Speech. fi-
conv-dev1 and fi-conv-dev2 contain partly the same data that was used in acoustic

model training: student conversations, transcribed radio shows, and FinDialogue.

Foreign proper name adaptation experiments were conducted on broadcast news

data. The development and evaluation sets fi-news-dev and fi-news-eval were used in
the Finnish experiment and the sets ee-news-dev and ee-news-eval in the Estonian

experiment. The fi-general set from the Finnish Text Collection4 corpus was used

for Finnish baseline LM training. It contains texts from books, magazines and

newspapers. For Estonian baseline LM training, the full ee-newspapers and ee-
news-train sets were used, and a random 75 % subset of ee-webnews.

NNLM experiments for Finnish were carried out on the development and

evaluation sets fi-news-dev and fi-news-eval, which consist of Finnish broadcast

news recordings collected in 2011 and 2012. For training the LMs, three data

3 http://www.keel.ut.ee/et/foneetikakorpus.
4 https://research.csc.fi/-/finnish-text-collection.
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sources were used: a random subset of 23 million words from fi-general, a corpus of
texts from Finnish web news portals (fi-webnews), and a corpus of newswire texts

from a Finnish news agency STT (fi-newswire). The Estonian experiment was based

on the development and evaluation sets ee-news-dev and ee-news-eval that contain
broadcast news speech from 2005. For language modeling we used three data

sources: newspaper texts (ee-newspapers), texts from web news portals (ee-
webnews) and broadcast news transcripts (ee-news-train).

Finnish LMs for subword decoding experiments were trained on two subsets

from fi-general. The larger subset contained 50M word tokens with 2.2M distinct

word types and the smaller 10M word tokens with 850k word types. Estonian LMs

were trained on the ee-webnews, ee-newspapers and ee-news-train data sets. A

larger model was trained on all the training data of around 80M words with 1.6M

distinct word types and a smaller model from a 10M word subset with 550k word

types.

Table 3 Sizes of finnish text

data sets after preprocessing
Data set Words

fi-web-1 766,918

fi-web-2 1,035,043

fi-web-3 561,489

fi-web-4 25,175,069

fi-web-5 46,207,390

fi-web-6 2,618,084,259

fi-conv-dev1 98,956

fi-conv-dev2 8,853

fi-general 153,535,459

fi-webnews 12,675,262

fi-newswire 31,809,529

Table 4 Sizes of Estonian text

data sets after preprocessing
Data set Words

ee-web-1 28,490,011

ee-web-2 4,189,681

ee-web-3 273,413,272

ee-web-4 30,599,060

ee-conv-dev1 187,436

ee-conv-dev2 21,202

ee-newspapers 20,423,775

ee-webnews 76,235,530

ee-news-train 133,171
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3.2 Experiments in selecting conversational data from the Internet

In this section we experiment how the most important filtering criteria perform

when filtering large amounts of Internet data, when there is only very little in-

domain development data available. Our motivation has been development of

automatic speech recognition for conversational Finnish and Estonian. We have a

small amount of transcribed Finnish and Estonian conversations that are enough for

development and evaluation. For LM training data we crawled large amounts of

multi-domain data from Internet conversation sites. The segments used as the unit of

filtering are conversation site messages.

For the baseline experiments, the sizes of the largest data sets were limited by

random selection. In total the number of words in Finnish training data was reduced

to 9.9 % and in Estonian data to 49 % of the original. devel-lp and xe-diff methods

define a score for each text segment. The filtering threshold is optimized to

minimize the perplexity of a bigram subword model on the second development set

(fi-conv-dev2 or ee-conv-dev2). devel-re does not define a score for each segment.

Instead, whether a segment is included depends on what has been included earlier.

We found running multiple passes with random permutations of the input text

segments to be crucial for collecting enough data. The number of passes is limited

by the high computational cost. We ran 100 passes, but also tried using data from

only so many passes that unigram subword model perplexity on the second

development set was minimized. We selected the value 0.975 for the smoothing

parameter a, based on observations of the original author (Sethy et al. 2009),

without trying to optimize the value.

Filtering was performed, and the filtering threshold and the number of passes was

optimized, on each data set (conversation site) separately. However, sets fi-web-1 to

fi-web-3 were pooled together during filtering, and the set fi-web-6 was split into 48

parts during devel-lp and xe-diff filtering.
The experiments were carried out using Aalto ASR system (Hirsimäki et al.

2009) and GMM-HMM-based acoustic models. Language models were 4-gram

word models interpolated from models of individual data sets. The vocabulary was

created after filtering by selecting 200,000 top words based on weighted word

counts in order to maximize the likelihood of the combined development data. The

number of n-grams in every LM was reduced by pruning all n-grams whose removal

caused less than 5� 10�10 increase in training data perplexity.

3.2.1 Results

Results for web text filtering are shown in Table 5. Large phonetic variation in

conversational Finnish creates challenges when measuring recognition accuracy. As

most of the words can be pronounced in several slightly different ways, and the

words are written out as they are pronounced, it would be harsh to compare

recognition against the verbatim phonetic transcription. Thus word forms that are

simply phonetic variation have been added as alternatives in the reference

transcriptions.
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devel-re selection resulted in the smallest data size. The amount of data that will

be selected depends on the size of the development set. The small development set

used in these experiments caused only a minimal amount of data to be selected

during the first devel-re pass, resulting in poor word error rate. Combining selected

data from 100 passes improved word error rate to 54.2 % with Finnish data. The

other methods gave very similar results in terms of WER, but more than double the

amount of data. However, running 100 passes was computationally very demanding.

Optimizing the number of passes of devel-re filtering, in terms of perplexity on

held-out development data, gave still a slight improvement. The resulting 54.1 %

WER is good, given that only web data was used to build the LM. In our previous

state-of-the-art of conversational Finnish ASR, we obtained 57.5 % WER using

only web data, and 55.6 % when combined with other corpora, while using only

other than web data WER was 59.8 % (Enarvi and Kurimo 2013a). One can

conclude that significant improvement can be gained by using web data, in the

absence of accurately transcribed conversational corpora. However, in this paper we

have also used better acoustic models.

Overall, filtering Estonian data did not improve speech recognition compared to

the baseline as much as with Finnish data. The best result, 52.7 % WER, was given

by devel-lp filtering. Compared to the Finnish language results, the advantage to the

other methods was surprisingly clear. devel-re method gained new data faster than

in the Finnish language experiments, probably due to the larger development set,

and as many passes were not needed. We are not aware of any earlier research on

recognition of spontaneous Estonian conversations.

3.3 Experiments in adapting models for foreign words

Foreign proper name adaptation experiments are conducted with the adaptation

framework described in the methods section (Fig. 1). The occurrence of foreign

names in the data sets is of importance since we are focusing adaptation efforts on

improving their recognition. For Finnish, FPN rate is 4.3 % for the development set

(fi-news-dev) and 3.5 % for the evaluation set (fi-news-eval). For Estonian, FPN rate

Table 5 Filtered data sizes and speech recognition results. The best results in terms of WER are in bold

type

Algorithm Finnish Estonian

Words WER (%) Words WER (%)

Baseline 266M 55.6 167M 53.4

devel-lp 192M 54.3 82.2M 52.7

xe-diff 169M 54.4 38.9M 53.2

devel-re [passes = 1] 5.08M 57.9 13.1M 54.4

devel-re [passes = 50] 53.9M 54.6 93.8M 53.1

devel-re [passes = 100] 79.5M 54.2 125M 53.1

devel-re [optimized] 75.9M 54.1 117M 53.1
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is 1.6 % for the development set (ee-news-dev) and 1.7 % for the evaluation set (ee-
news-eval).

Experiments are run on the Aalto ASR system (Hirsimäki et al. 2009) and GMM-

HMM-based acoustic models. For Finnish, a Kneser–Ney smoothed varigram LM

(n = 12) with a 45k subword lexicon was trained on the LM training data using

variKN language modeling toolkit (Siivola et al. 2007) and Morfessor (Creutz and

Lagus 2002). A letter bigram model was trained on the same LM training data for

the foreign name detection algorithm.

A subword-based baseline LM for Estonian was trained, similarly to Finnish

using Morfessor and variKN toolkit. The resulting model was a Kneser–Ney

smoothed varigram LM (n = 8) with a 40k subword lexicon. A letter bigram model

for foreign name detection was trained on a word list extracted from the LM training

data.

First set of experiments are run with the baseline LMs to retrieve the first-pass

ASR output. After that unsupervised LM adaptation experiments are run. The

background LM is adapted with 6000 of the best matching articles compared to the

ASR output. The retrieval corpus is a collection of articles retrieved from the Web.

The Finnish retrieval corpus consists of 44,000 articles (fi-webnews). The Estonian

retrieval corpus consists of 80,000 articles (25 % subset of ee-webnews).
In the third adaptation layer we apply vocabulary adaptation. Foreign proper

name candidates are selected based on the letter-gram perplexity and cosine

similarity score. A threshold is set so that only 30 % of the best scoring FPN

candidates are selected for adaptation. Furthermore an additional constraint is set so

that the number of new words added can not exceed 4 % of the original vocabulary

size. Four new pronunciation rules are generated for each selected FPN candidate

and added to the lexicon. The pronunciation rules are generated with a data-driven

G2P model which has been trained on 2000 foreign names found in Finnish texts.

The same G2P model is used for both Finnish and Estonian. Subword restoration is

applied on oversegmented FPN candidate words to enable one-to-one mapping

between pronunciation rule and vocabulary unit.

In the final adaptation layer we implement discriminative pronunciation pruning

based on the ASR output lattices when using the adapted LM and lexicon. Harmful

FPN pronunciation variants that degrade overall recognition accuracy by five word

errors or more are excluded in the next run. Beneficial FPN pronunciation variants

that decrease word error by one word or more are added to the 2000 word foreign

name lexicon. A new G2P model is re-trained with the updated lexicon. This

procedure is iterated a couple of times on the development set before get a final list

of harmful pronunciation variants and an updated G2P model which are then used

on the evaluation set.

3.3.1 Results

Results of the FPN adaptation experiments are presented in Table 6. Performance is

measured in average word error rate (WER) and foreign proper name error rate

(FER).
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First set of experiments were run on the Finnish development set (fi-news-dev).
Compared to the baseline model, unsupervised LM adaptation reduces average

WER with 3 % and FER with 10 %. Vocabulary adaptation (pronunciation and

subword adaptation) reduces FER with another 7 % but average WER remains

unchanged, compared to only using unsupervised LM adaptation. After three

iterations discriminative pronunciation pruning is able to further reduce WER with

1 % and FER with 2 %. It does seem that pronunciation pruning, in excluding some

of the most harmful pronunciation variants, is able to correct the misrecognition of

some native words.

For the Finnish evaluation set (fi-news-eval) results are similar compared to the

development set, when applying unsupervised LM and vocabulary adaptation.

Average WER is reduced with around 3 % compared to the baseline LM.

Vocabulary adaptation reduces FER with 7 % compared to only using unsupervised

LM adaptation. Discriminative pronunciation pruning was tested with the list of

harmful pronunciation variants and re-trained G2P model obtained after three

iterations on the development set. In terms of average WER, which remains

unchanged, results are not as good as on the development set. There is probably not

enough overlap between harmful pronunciation variants introduced in the devel-

opment set that are also relevant for the evaluation set. We might see a more

significant impact over larger data sets. The re-trained G2P model reduces FER with

around 2 %. The change is small but it does indicate that it is possible to improve

G2P modeling through discriminative pronunciation pruning on development data.

For the Estonian broadcast news development set, unsupervised LM adaptation

reduced average WER with nearly 2 % and FER with under 1 %. Vocabulary

Table 6 FPN adaptation results for Finnish and Estonian. Baseline results are followed by results for

unsupervised LM adaptation (Adapted LM), combination of unsupervised LM and vocabulary adaptation

(Adapted LM ? VOC), and iterations of discriminative pronunciation pruning (Adapted LM ? VOC

[pruned, iter = x]). On the evaluation sets discriminative pronunciation pruning is tested with the pruning

data and models obtained after the third iteration on the development set (Adapted LM ? VOC [pruned,

dev. iter = 3])

Adaptation fi-news-dev ee-news-dev

WER (%) FER (%) WER (%) FER (%)

Baseline 29.6 73.5 19.2 51.8

Adapted LM 28.6 66.4 18.9 51.4

Adapted LM ? VOC 28.6 61.8 19.5 50.7

Adapted LM ? VOC [pruned, iter = 1] 28.5 60.6 19.4 50.0

Adapted LM ? VOC [pruned, iter = 2] 28.4 60.6 19.4 49.3

Adapted LM ? VOC [pruned, iter = 3] 28.4 60.5 19.4 49.3

Baseline 30.5 71.6 19.6 49.3

Adapted LM 29.7 64.8 19.2 47.1

Adapted LM ? VOC 29.6 60.0 19.5 46.0

Adapted LM ? VOC [pruned, dev. iter = 3] 29.6 59.0 19.4 46.0
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adaptation increases average WER, but reduces FER with over 1 %, compared to

using only unsupervised LM adaptation. Discriminative pronunciation pruning does

manage to improve recognition of foreign names with almost 3 % but average WER

is still higher than compared to only using unsupervised LM adaptation.

Results for the Estonian evaluation set are quite similar to the development set.

Unsupervised LM adaptation reduces WER with 2 % and FER with 4 %. Again,

vocabulary adaptation degrades recognition of native words. Average WER

increases but FER is reduced with 2 %. Discriminative pronunciation pruning

(data and models obtained from the development set’s third iteration) does lower

average WER slightly but FER is not further improved.

There seems to be more acoustic confusion added to Estonian ASR when

augmenting the lexicon with G2P generated pronunciation variants. It is not clear

whether this is because of the low FPN rate in Estonian speech data or if the Finnish

G2P model has negative effects on the recognition of some native Estonian words.

Discriminative pronunciation pruning is not able to significantly lessen the effect of

lexical confusion.

3.4 Experiments in multi-domain and adapted neural network language
modeling

In multi-domain and adapted NNLM experiments we evaluate the models in terms

of perplexity (PPL) and WER. The models are evaluated on two broadcast news

data sets: a Finnish data set consisting of subwords (morphs) and an Estonian data

set consisting of compound-split words. The PPL scores are calculated on their

respective lexical units, WER scores are computed on words.

Our baseline LM is a back-off 4-gram model with modified Kneser–Ney

discounting constructed over all available training data. Surprisingly, interpolating

domain-specific models results in an inferior model.

It has been recently verified that NNLMs perform better than back-off n-gram

models on under-resourced languages (Gandhe et al. 2014). One of our goals is to

check whether the multi-domain and adapted NNLMs bring additional improve-

ments and what is the relationship between their relative improvement and training

set size.

Four experiments are performed on both languages. We start by training all the

models on all available text data and continue by halving the training data for each

consecutive experiment by taking every second line of the previous data set. NNLM

hidden and projection layer size is divided by
ffiffiffi
2

p
every time the training data is

halved. The initial hidden layer size is 500 for Finnish and 1400 for Estonian

NNLM; initial projection layer size is 3� 100 for Finnish and fixed to 3� 128 for

Estonian. Both Finnish and Estonian models use a shortlist (Schwenk and Gauvain

2004) of 1024 most frequent units (compound-split words or subwords respectively)

plus an additional end of sentence token. The input vocabulary consists of 199,861

most frequent compound-split words and 50,410 most frequent subwords for

Finnish and Estonian data set respectively. Both input vocabularies contain an

additional token for the beginning of sentence and unknown units. When

interpolating the n-gram and NNLM model outputs we use an equal weight of
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0.5 for both models. Out-of-shortlist units are evaluated only by the n-gram model.

All NNLMs are trained with backpropagation and mini-batch stochastic gradient

descent using batch size of 200 samples and learning rate of 0.1 until the best model

according to validation perplexity is not within the last 5 epochs. We use our NNLM

adaptation method on Finnish data set, because there we have no in-domain training

data. Estonian data set has in-domain training data, so we use the multi-domain

NNLM there.

In speech recognition experiments recognition lattices were generated using

systems based on the Kaldi toolkit (Povey et al. 2011), and the lattices were

rescored using the NNLMs. Finnish acoustic models are triphones, built using

fMLLR-based speaker-adaptive training (SAT) and optimized using the boosted

MMI criterion (Povey et al. 2008). Lattices are obtained after two decoding passes:

first pass uses speaker-independent models, and the second pass fMLLR-

transformed features with SAT-based models. Estonian acoustic models are hybrid

deep neural networks based hidden Markov models (DNN-HMMs) that use speaker

identity vectors (i-vectors) as additional input features to the DNNs in parallel with

the regular acoustic features, thus performing unsupervised transcript-free speaker

adaptation (Saon et al. 2013). The output hypotheses of the speech recognition

systems consist of subword units for Finnish and compounds-split words for

Estonian. These were converted to word hypotheses using a hidden event LM that

treats a word break (for Finnish) or an inter-compound unit (for Estonian) as a

hidden word that needs to be recovered. More details about the Estonian system are

available in Alumäe (2014).

3.4.1 Results

The results of PPL and WER evaluations on the test set can be seen in Table 7. All

NNLMs consistently outperform back-off n-gram models in PPL and WER.

Utilizing NNLMs in addition to n-gram models gives a similar effect as using about

twice as much training data: the PPL improves 7.1–17.5 % relative, statistically

significant WER improvement is about 2.1–4.9 % relative. The type of lexical units

used in vocabulary and baseline WER (largely determined by the acoustic model

quality) don’t seem to affect the relative WER improvement brought by NNLMs.

Both, the multi-domain and adapted, NNLMs consistently beat the simple NNLM in

PPL evaluation (0.6–7.1 % relative). Unfortunately this makes no significant

difference in WER for neither case. This holds true for all languages and training set

sizes we tested.

The small PPL gap and no significant WER improvement between the simple and

multi-domain NNLM architecture seems to indicate that the single static domain

vector has too little capacity to alter the model sufficiently to reflect all the domain

differences. This problem can be solved by either reducing the domain sizes—by

clustering them into subdomains for example—or by using adaptation with more

capacity and influence over the model.
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3.5 Experiments in decoding with subword units

In this section we experiment with different combinations of lexical units and

decoders. N-gram LMs used modified Kneser–Ney smoothing and were trained

using the VariKN package (Siivola et al. 2007). Maximum order of the n-grams was

3 for word n-grams and 6 for subword n-grams. Relatively large n-gram models

with respect to the corpus sizes were used in all the experiments. Word error rates

for the models trained on the larger training corpora may be found in Table 8 and for

the smaller training corpora in Table 9.

The first observation from the results is that effectively very large vocabularies

are needed to obtain good ASR performance on the broadcast news task for both

languages, irrespective of the way of modeling. If more was known about the topics

to be recognized, more limited vocabularies could be utilized. Accurate topic

modelling, however, would likely require more resources than assumed to be

available here. The results also show, that the standard dynamic token-passing

decoding can effectively operate with very large vocabularies, if care is taken in the

implementation (Soltau and Saon 2009; Varjokallio and Kurimo 2014a).

In terms of error rates, including all the word forms from the LM training data to

the vocabulary seems to give reasonable initial results. In the Finnish experiments,

word n-grams and subword n-grams performed equally well with these very large

vocabularies in both the settings. The OOV-rates were still 3.2 and 5.3 %, indicating

some mismatch between the training corpus and the recognition task. In the

Estonian experiments, the subword n-grams outperformed the word n-grams with

Table 7 LM test set PPL and WER with different sized training sets. Comparison with the n-gram

baseline in parentheses. a-nnlm is the adapted and md-nnlm is the multi-domain NNLM

1 1/2 1/4 1/8

Finnish

PPL n-gram 197 222 256 298

nnlm ? n-gram 183 (�7.1%) 205 (�7.7%) 236 (�7.8%) 274 (�8.1%)

a-nnlm ? n-gram 177 (�10.2%) 200 (�9.9%) 230 (�10.2%) 268 (�10.1%)

WER n-gram 33.3 34.0 34.9 35.7

nnlm ? n-gram 32.3 (�3.0%) 32.9 (�3.2%) 33.4 (�4.3%) 34.3 (�3.9%)

a-nnlm ? n-gram 32.4 (�2.7%) 32.8 (�3.5%) 33.4 (�4.3%) 34.3 (�3.9%)

Estonian

PPL n-gram 223 252 301 366

nnlm ? n-gram 198 (�11.2%) 216 (�14.3%) 257 (�14.6%) 315 (�13.9%)

md-nnlm ? n-gram 184 (�17.5%) 208 (�17.5%) 250 (�16.9%) 313 (�14.5%)

WER n-gram 9.2 9.6 10.3 10.8

nnlm ? n-gram 9.0 (�2.2%) 9.4 (�2.1%) 9.8 (�4.9%) 10.3 (�4.6%)

md-nnlm ? n-gram 9.0 (�2.2%) 9.4 (�2.1%) 9.9 (�3.9%) 10.3 (�4.6%)
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the same vocabulary in both the settings. It thus seems, that subword n-grams

provide better probability estimates in some cases. The OOV-rates in the Estonian

experiments were 1.2 and 2.5 %.

We also experimented with a subword decoder, which enables an unlimited

recognition vocabulary and did simulated experiments, where the recognition

vocabulary was augmented by the remaining OOV words and in the smaller corpus

setting using the vocabulary from the larger corpus instead. The words were

segmented using the n-gram model and added to the decoding graph. The subword

n-gram model was not modified.

In the large corpus setting, the relative error rate reductions for the unlimited

recognition vocabulary were 2.8 and 3.2 %, compared to the best restricted

vocabulary recognizer. The corresponding numbers for the closed vocabulary

experiment were 3.4 and 4.5 %. The results show, that the OOV words were still

causing many recognition errors. In this case opting for unlimited vocabulary

recognition was quite effective in bridging the gap between the initial and the closed

vocabulary.

In the small corpus setting, the relative improvements for unlimited vocabulary

recognition were 4.5 % for Finnish and 5.3 % for Estonian. By using the vocabulary

from the large corpus, the corresponding results were 3.5 % for Finnish and 4.8 %

for Estonian. Adding the remaining OOV-words further improved WER by 3.5 and

3.9 %. In this setting, it may be seen that the OOV-rate had quite a big impact on the

recognition rates. Also, the difference between the unlimited and the closed

vocabulary results increased, indicating that the quality of the n-gram estimates

started to suffer.

Table 9 Word error rates for the models trained on the smaller training corpora

Units Finnish Estonian

Vocabulary size WER (%) Vocabulary size WER (%)

Words 850k 35.2 550k 19.6

Subwords 850k 35.2 550k 18.7

Subwords – 33.6 – 17.7

Subwords 2.2M 34.0 1.6M 17.8

Subwords 2.2M ? OOV 32.8 1.6M ? OOV 17.1

Table 8 Word error rates for the models trained on the larger training corpora

Units Finnish Estonian

Vocabulary size WER (%) Vocabulary size WER (%)

Words 2.2M 32.1 1.6M 16.2

Subwords 2.2M 32.1 1.6M 15.6

Subwords – 31.2 – 15.1

Subwords 2.2M ? OOV 31.0 1.6M ? OOV 14.9
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In unlimited vocabulary recognition, also some non-words will be recognized.

This may be an annoyance in some ASR use cases. The rate of the non-words will

depend much on the task at hand. The results further show, that a restricted

vocabulary which is closed or nearly closed, should give the best recognition results.

In this case also non-words will be avoided. The question then becomes, in which

cases is this a realistic goal? The subword n-gram decoder with a restricted

vocabulary opens some new possibilities towards this end, as the vocabulary may be

augmented without having all the word forms in the training text corpus. Other data

sources, like dictionaries and morphological analyzers (generators), can be used to

enrich the vocabulary. This could be especially helpful for less-resourced languages,

for which sufficiently large text corpora are mostly not available. It has been

estimated, that with entry generators (Linden 2009), a native linguist may annotate

300–400 new words in an hour to a morphological analyzer lexicon. For the initial

lexicon, around 5000 annotated words may suffice. Also in use cases, where the

ASR system will be used repeatedly, it may be possible to cover the most important

missing words over time.

4 Conclusion

In this work several recently developed language modeling methods were evaluated

in LVCSR. The evaluations were performed in two agglutinative languages, Finnish

and Estonian. Although language technology in these two languages have not been

very widely developed, most of the benchmarking tasks we used are almost directly

comparable to previous work. For the smaller agglutinative languages that are

extremely under-resourced, such as Northern Sami, proper evaluations are still

impossible. However, by verifying the same evaluations in parallel for both Finnish

and Estonian, and by artificially reducing the training data, we managed to make

simulations that are realistic for less resourced languages. This allows us to

conclude how to collect new data and what methods are suitable for languages with

a limited amount of language model training data.

The first task we evaluated was LM training data collection. Although training

data for planned speech is relatively easy to collect e.g. from news wire,

conversational speech pose a more difficult problem. The best training data would

be real conversations, but they are expensive to transcribe. However, we managed to

demonstrate a reasonable performance by clever filtering of Internet discussion

forums. Reducing data size is essential, not only from the perspective of improving

LM accuracy, but also because it makes modeling easier. The most compact training

set can be obtained by relative entropy minimization based filtering. The vast

reduction in data size may enable new approaches to language modeling, such as

NNLMs.

The second evaluation was dealing with the pronunciation and language

modeling of foreign words. It is very typical for small languages to borrow new

words from English and other large languages. However, the pronunciation of these

words do not usually follow the same pronunciation rules as native words and the

pronunciation used in practice is often unpredictable. Furthermore foreign words are
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often topic-specific and poorly estimated by the baseline LM. Our results indicate

the we can successfully improve recognition of foreign words with unsupervised

LM and vocabulary adaptation. However, generating multiple pronunciation

variants for foreign names negatively affects the recognition of some native words.

Discriminative pronunciation pruning did improve recognition slightly over the

development sets but the pruned models didn’t have as much effect on unseen data

in the form of the evaluation sets. It is possible that discriminative pronunciation

pruning is more effective over larger data sets. We evaluated a shared resource by

using a G2P model originally trained for Finnish on Estonian. Results indicate that

the model does improve recognition of foreign words in Estonian as well but the

added lexical confusion which impacts the recognition of native words seems to be

worse than in Finnish. Improving pruning methods and testing over larger data sets

need to be done in the future to better understand the feasibility of G2P model

sharing between languages.

The results of the third evaluation show that the proposed multi-domain and

adapted NNLMs consistently outperform the n-gram baseline and simple NNLMs in

terms of PPL. The proposed model provides statistically significant WER

improvements compared to the n-gram baseline, but fails to improve upon simple

NNLMs. The results appear to be similar in both multi-domain and adaptation

modes. Finding better and more clever methods, rather than just more data, to

improve the target-domain performance is important for under-resourced languages,

because it is not expected that sufficient amount of in-domain data can be collected

for any particular topic or style alone. In our future work we plan to address the lack

of WER improvements of multi-domain and adapted models over simple NNLMs

by exploring sub-domain level multi-domain models and more powerful adaptation

methods.

The last evaluation concerned the different combinations of lexical units and

decoding approaches. For agglutinative languages, such as Finnish, Estonian and

Sami, subword LMs have many advantages. In the broadcast news experiments, n-

gram models trained over subwords performed equally well or better than word n-

grams with the same recognition vocabulary. Further advantage is that the subword

n-grams are able to assign probabilities to unseen word forms. Decoding with

unlimited vocabulary improved recognition accuracy for both languages. Using

subword n-grams but still opting for a restricted vocabulary is also a viable

alternative, which avoids the recognition of non-sense words. We expect that the

ability of quickly adding new words for the search network may become useful if

there are important OOV words that the system should recognize better. Also, the

results indicated, that in the cases where the recognition vocabulary is closed or

nearly closed, better results will be reached with a restricted vocabulary. Much

depends on the recognition task and the available resources, if this is a realistic goal.

The next step in our project is to gather and build the resources for constructing

and evaluating LVCSR in Northern Sami, where all the results of this paper should

become useful. The word error rates from conversational Finnish and Estonian

speech recognition experiments are still above 50 %. One area where we still clearly

need to improve is acoustic modeling. Accurately transcribed spontaneous

conversations are hard to find, so we have had to combine data from many small
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corpora of varying quality. More intelligent combination of these data sources by

model adaptation or neural network models would certainly help, and will be done

in the future.

Acknowledgments This work was partially funded by the Estonian Ministry of Education and Research
target-financed research theme no. 0140007s12, by the Tallinn University of Technology project Estonian
Speech Recognition System for Medical Applications, by the Academy of Finland under the Grant
Number 251170 [Finnish Centre of Excellence Program (2012–2017)], and by Finnish Cultural
Foundation. We acknowledge the computational resources provided by Aalto Science-IT project.

References

Adde, L., & Svendsen, T. (2011). Pronunciation variation modeling of non-native proper names by

discriminative tree search. In Proceedings of the 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 4928–4931). Prague, Czech Republic.
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