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Abstract It has long been a dream to have available a single, centralized, semantic

thesaurus or terminology taxonomy to support research in a variety of fields. Much

human and computational effort has gone into constructing such resources,

including the original WordNet and subsequent wordnets in various languages. To

produce such resources one has to overcome well-known problems in achieving

both wide coverage and internal consistency within a single wordnet and across

many wordnets. In particular, one has to ensure that alternative valid taxonomiza-

tions covering the same basic terms are recognized and treated appropriately. In this

paper we describe a pipeline of new, powerful, minimally supervised, automated

algorithms that can be used to construct terminology taxonomies and wordnets, in

various languages, by harvesting large amounts of online domain-specific or general

text. We illustrate the effectiveness of the algorithms both to build localized,

domain-specific wordnets and to highlight and investigate certain deeper ontological

problems such as parallel generalization hierarchies. We show shortcomings and

gaps in the manually-constructed English WordNet in various domains.

Keywords Hyponym and hypernym learning � Text mining � Ontology induction �
Wordnet evaluation

1 Introduction

Even before the appearance of the original WordNet (Miller 1995; Fellbaum 1998),

but especially since then, there has been a great deal of effort in (semi-
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)automatically creating terminology taxonomies and wordnets of English and other

languages. The hope is that such resources will provide ontological and

lexicographical information useful for automated text processing. Several types of

alternatives have appeared, including large and elaborated Artificial Intelligence

ontologies such as CYC (Lenat and Guha 1990), terminology taxonomies such as

WordNet covering English in general (Fellbaum 1998) or other languages (Pease

et al. 2008; Vossen et al. 2008; Atserias et al. 2004; Robkop et al. 2010; Navigli

and Ponzetto 2012), large domain-oriented terminology banks covering medical and

other terminology (UMLS www.nlm.nih.gov/research/umls/, Velardi et al. 2008),

automatically harvested instance repositories such as YAGO (Suchanek et al. 2007)

and NELL (Mitchell et al. 2009), and numerous smaller domain-specialized ter-

minology taxonomies and ontologies.

However, despite considerable effort, no satisfactory wordnet exists today, even

for English. The reasons include:

• the difficulty to obtain adequate coverage over all words of the language/

domain,

• the complexity of ontological decisions about word senses and sense groupings,

• the difficulty to build consistent subsumption/generalization hierarchies using

hypernym/hyponym relations,

• the difficulty to obtain additional inter-term relations.

These problems are deep and not trivially resolved via algorithms alone. For

example, the ontological decision—which superconcept/hypernym to select for a

given term?—may have several correct parallel answers, as we describe in Sect. 5.2

Specialized algorithms that go beyond traditional superclass categorization via

patterns or glossary definitions may need to be developed. In general, these

problems require careful thought, and most of them (at this point) also require

considerable human effort, to collect, sort, and link terms.

All ontology and wordnet construction efforts run into the problem of internal

consistency once a certain degree of coverage and internal richness is achieved. It

seems impossible to create a single semantic knowledge repository/thesaurus that is

simultaneously rich in detail, very large (say, over 100,000 different concepts), and

internally consistent. While to an initial repository one can relatively easily add

more instances of existing concepts (say, more individual humans under the concept

Singer), it seems very difficult to continue to add additional concepts and organize

them all relative to one another in ways that support uniform inference across the

whole repository. Usually, concepts are organized into taxonomies of increasing

specificity; the Animal Kingdom provides a good example. But there are many

conceptualizations of animals that do not fit neatly into a single taxonomy. The kind

of organization that would support, for example, the types Dog, Cat, Mammal, Pet,
Carnivore, Domesticated Animal, Endoskeleton, Animal, and so on, is probably a set

of parallel and interlinked taxonomies. But this strategy does not really work for the

set of Emotion concepts, or for most of the Events.

The problem is exacerbated when one attempts to develop a single semantic

model that supports multiple languages. Even closely related languages such as

Dutch and English or Spanish and Italian exhibit relative incompatibilities—not just
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lexical (and perhaps conceptual gaps), but actually different partitioning of the same

semantic field into apparently different conceptualizations.

What can be done about this?

Ideally, one would solve the conceptual problems and then develop automated

methods to (help) construct the desired results. But sometimes the conceptual

problems are most apparent only when one has available a large number of terms to

work with. Therefore, automated algorithms that perform some of these tasks, such

as collecting many terms and organizing them, and that can be interleaved with

human analysis and correction, are highly desirable.

Unfortunately, to date, automated ontology construction work has not fully

resolved these problems. This may be due to the ambitious nature of previous

attempts to try to solve too many of the problems all at once (see for example Snow

et al. 2006). Rather, we believe it is more effective to break the problem into a

series of smaller steps, and to develop algorithms for each step, and also to try to

localize some of the harder conceptual/ontological problems within individual steps

rather than across the whole process.

The most straightforward step-wise procedure is to first collect the terms that will

constitute the wordnet, then to create a single central backbone structure, e.g., a

generalization taxonomy or DAG, of core conceptualizations using hypernym/

hyponym relations, and then to interlink the terms using other relations. These steps

can be performed manually, automatically, or in mixed mode. Addressing multiple

languages, one can try to create a single multilingual wordnet, a set of parallel and

interlinked wordnets, or simply a set of independent unlinked wordnets. An early

attempt to create the first option, using a hybridized multilingual Upper Model

(Bateman et al. 1989) to help fuse the terms from various languages, (Hovy and

Nirenburg 1992) failed. A much more substantive attempt to create the second was

the EuroWordNet project (Vossen et al. 1998), in which the cross-linking was

achieved using the so-called Inter-Linking Index ILI. Even though EuroWordNet

focused on just a handful of relatively closely related languages (English Dutch,

Italian, Spanish, and later German), the ILI approach still posed problems. As a

result, this approach is not used today to interlink the various language-based

WordNets being built around the world in the Global WordNet endeavor (Pease

et al. 2008; Vossen et al. 2008).

The third alternative is to first create independent domain-specific wordnets in

one or more languages and then fuse them to the degree possible. For this option,

algorithms that can rapidly, with minimal supervision, create a new localized

terminology taxonomy around one or more starting terms, given any new corpus in

any language, would be most helpful. One can then attempt to fuse them with due

consideration to and exploitation of the differences encountered across neighboring

wordnets and/or across languages.

In this paper, we describe a series of simple term harvesting, taxonomization, and

interlinking algorithms that require very little supervision yet deliver high precision

and wide coverage, given online texts in any language. The rest of the paper is

organized as follows. Section 2 outlines basic terminology and the general

approach. Section 3 reviews related work. Section 4 describes the employed lexico-

syntactic pattern. Section 5 describes the core methods for knowledge extraction,
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which are followed in Sect. 6 by the taxonomization algorithm. Section 7 provides a

detailed human based evaluation of the harvested hyponym, hypernym terms and is-

a relations for four different domains of interests. We conduct a comparative study

against WordNet and existing knowledge harvesting methods, and discuss the

results in Sect. 8 Finally, we conclude in Sect. 9.

2 Terminology

2.1 Basic terminology

Prior to introducing our work, we define some basic terminology that is used in the

paper, since these terms can be interpreted differently by different scientific

communities.

• term: A single English word (or possibly a two-word fixed phrase, such as

‘‘opera singer’’) that denotes a single concept.

• seed term: A term that is employed at the outset of the harvesting process.

Usually, the seed term is selected by a human.

• concept: An item in the classification taxonomy we are building.1

• root concept: A concept at a fairly general (high) level in the taxonomy, to

which many others are eventually learned to be subtypes/instances of. Example:

animal, plant, people.

• low-level concept: A concept at a fairly low level in the taxonomy, to which

many others are eventually learned to be supertype. Typically the concept can be

visualized (i.e., one can visualize a dog, but not a mammal) (Rosch 1978).

Example: dog, mountain, Madonna.

• intermediate-level concept: A concept located between the root and the low-

level concept. Example: mammal, shrub, teacher.

• classification link: A link that expresses the subsumption (is-a) relation between

two concepts. The word from more-specific ‘upward’ to more general term is

called hypernym and the opposite, hyponym.

2.2 Problem formulation

Breaking down the problem of (semi-)automatically creating wordnets into a series

of steps, we define our task as knowledge harvesting and knowledge organization

procedures.

Figure 1 shows an illustrative example of our task. The algorithm is instantiated

with the root concept animal and the low-level concept lion. The algorithm learns

new low-level terms like tiger, puma, deer, donkey of class animal and then uses

these terms to acquire hypernyms like lion is-a vertebrate, chordate, feline and

mammal. To keep the harvesting process within the domain, all harvested terms are

validated for subordination with respect to the original root concept animal.

1 For the sake of simplicity in this paper, we will use term and concept interchangeably.
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Concepts that do not pass the subordination test are removed, while the rest of the

terms are used for taxonomy induction. For instance, animal ? chordate ?
vertebrate ? mammal ? feline ? lion.

Task Definition Given a root concept, a low-level concept and a lexico-syntactic

pattern: (1) harvest in bootstrapping fashion hyponym and hypernym terms; rerank

the terms and filter out all concepts that do not subordinate to the root concept; (2)

organize the terms into one or more taxonomies.

3 Related work

The first stage of automatic taxonomy induction, term and relation extraction, is

relatively well-understood. Early methods (Hearst 1992) have matured to the point

of achieving high accuracy (Girju et al. 2003; Pantel and Pennacchiotti 2006;

Kozareva et al. 2008). The produced output typically contains flat lists of terms and/

or ground instance facts (lion is-a mammal) and general relation types (mammal is-a

animal).
Most approaches use either clustering or patterns to mine knowledge from

structured and unstructured text. Clustering approaches (Lin 1998; Lin and Pantel

2002; Davidov and Rappoport 2006) are fully unsupervised and discover relations

that are not directly expressed in text. Their main drawback is that they may or may

not produce the term types and granularities useful to the user. In contrast, pattern-

based approaches harvest information with high accuracy, but they require a set of

seeds and surface patterns to initiate the learning process. These methods are

successfully used to collect semantic lexicons (Riloff and Shepherd 1997; Etzioni

et al. 2005; Pasca 2004; Kozareva et al. 2008), encyclopedic knowledge (Suchanek

et al. 2007; Ponzetto and Navigli 2010; Cuadros and Rigau 2008; Agirre et al.

2004), concept lists (Katz and Lin 2003), and relations between terms, such as

hypernyms (Ritter et al. 2009; Hovy et al. 2009) and part-of (Girju et al. 2003;

Pantel and Pennacchiotti 2006).

Fig. 1 Taxonomy induction from scratch
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However, simple term lists are not enough to solve many problems involving

natural language. Terms may be augmented with information that is required for

knowledge-intensive tasks such as textual entailment (Glickman et al. 2005;

Szpektor et al. 2008) and question answering (Moldovan et al. 1999). To support

inference, (Ritter et al. 2010) learn the selectional restrictions of semantic relations,

and (Pennacchiotti and Pantel 2006) ontologize the learned terms using WordNet.

Taxonomizing the terms is a very powerful method to leverage added

information. Subordinated terms (hyponyms) inherit information from their

superordinates (hypernyms), making it unnecessary to learn all relevant information

over and over for every term in the language. But despite many attempts, no

‘correct’ taxonomization has ever been constructed for the terms of, say, English.

Typically, people build term taxonomies (and/or richer structures like ontologies)

for particular purposes, using specific taxonomization criteria. Different tasks and

criteria produce different taxonomies, even when using the same low-level

concepts. This is because most low-level concepts admit to multiple perspectives,

while each task focuses on one, or at most two, perspectives at a time. For example,

a dolphin is a Mammal (and not a Fish) to a biologist, but is a Fish (and hence not a

Mammal) to a fisherman or anyone building or visiting an aquarium. More

confusingly, a tiger and a puppy are both Mammals and hence belong close together

in a typical taxonomy, but a tiger is a WildAnimal (in the perspective of

AnimalFunction) and a JungleDweller (in the perspective of Habitat), while a puppy

is a Pet (as function) and a HouseAnimal (as habitat), which would place them

relatively far from one another. Attempts at producing a single multi-perspective

taxonomy fail due to the complexity of interaction among perspectives, and people

are notoriously bad at constructing taxonomies adherent to a single perspective

when given terms from multiple perspectives. This issue and the major alternative

principles for taxonomization are discussed in (Hovy 2002).

It is therefore not surprising that the second stage of automated taxonomy

induction is harder to achieve. Early attempts on acquiring taxonomies from

machine reading dictionaries include (Amsler 1981; Wilks et al. 1988; Ide and

Veronis 1994; Richardson et al. 1998; Rigau et al. 1998). The most common

taxonomy learning approaches start with a reasonably complete taxonomy and then

insert the newly learned terms into it, one term at a time (Widdows 2003; Pasca

2004; Snow et al. 2006; Yang and Callan 2009; Hovy 1998). Others (Snow et al.

2006) guide the incremental approach by maximizing the conditional probability

over a set of relations, while (Yang and Callan 2009) introduce a taxonomy

induction framework which combines the power of surface patterns and clustering

through combining numerous heterogeneous features. A third approach mines

helpful taxonomization information from glossary definitions and pattern-based

extraction, using an approach of graph weighting and pruning (Navigli et al. 2004).

Later approaches mix several methods, as in (Navigli et al. 2004).

Our basic approach is to address the ontologizing problem directly by

recognizing that, even within a single domain, many terms participate in more

than one parallel taxonomies simultaneously. Delivering a complete term taxon-

omization result for a given subdomain requires determining the possible alternative

parallel taxonomies that obtain in that subdomain and then augmenting the basic
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term taxonomization procedure to localize each harvested term into the appropriate

parallel option(s). While we have no automated solution for the first step, we

describe in Sect. 5.2 the second. This approach differs fundamentally from earlier

approaches in recognizing the need for more than one parallel taxonomy, which

complicates the whole process but provides, we hope, answers to some of the

pressing unresolved problems surrounding task-specific taxonomizations and

perspectives.

Our procedure to organize the harvested terms into a taxonomic structure starting

fresh (i.e., without using an initial taxonomic structure) bridges the gap between the

term extraction algorithms that focus mainly on harvesting but do not taxonomize,

and those that accept a new term and seek to enrich an already existing taxonomy.

Our aim is to perform both stages: to extract the terms of a given domain and to

induce their taxonomic organization without any initial taxonomic structure and

information. This task is challenging because it is not trivial to discover both the

hierarchically related and the parallel (perspectival) organizations of concepts.

Achieving this goal can provide the research community with the ability to produce

taxonomies for domains for which currently there are no existing or manually

created ontologies.

In the next section we describe the basic harvesting algorithm, and then show

how it is adapted and used to perform the sequence of harvesting and

taxonomization steps.

4 Doubly-anchored patterns

Our work on knowledge acquisition and taxonomization is inspired by Hearst’s

observations that sentences contain clues as to their meanings and these can be

captured using lexico-syntactic patterns (Hearst 1992).

The most common pattern is the so called singly-anchored pattern (SAP) of the

form ‘‘hseedi such as *’’, which has one example of the seed term (the anchor) and

one open position * for the terms to be learned. Most researchers (Pasca 2004;

Etzioni et al. 2005) rely on SAP patterns to harvest hyponyms and hypernyms from

the Web, but they report that the patterns run out of steam very quickly.

To surmount this obstacle, (Pasca 2004; Pantel and Pennacchiotti 2006)

instantiate the knowledge harvesting algorithm with a handful of seed examples,

while (Riloff and Jones 1999; Snow et al. 2005; Etzioni et al. 2005) use multiple

variations of the initial lexico-syntactic pattern. Although seed selection seems like

a trivial step, (Pantel et al. 2009) show that one must ask human experts to achieve

high yield. (Banko 2009) reports that human-based seed selection is quite unrealistic

when dealing with an unbounded set of relations.

Interestingly, recent work reports a class of patterns that use only one seed

example to learn as much information as the previous approaches. (Kozareva et al.

2008; Hovy et al. 2009) introduce the so-called doubly-anchored pattern (DAP) that

has two anchor seed positions ‘‘hsemantic classi such as hseedi and *’’, plus one

open position for the terms to be learned. DAP is very reliable because it is

instantiated with examples at both ends of the space to be filled (the higher-level

Tailoring the automated construction of large-scale 865

123



concept type and an instance (low-level) term seed), which mutually disambiguate

each other. For example, presidents for semantic class can refer to the leader of a

country, corporation, or university, and Ford for seed can refer to a car company, an

automobile pioneer, or a U.S. president. But when the two terms co-occur in a text

that matches the pattern Presidents such as Ford and *, the text will almost certainly

refer to country presidents. The power of DAP also lies in its recursive nature which

allows for the newly learned terms on the * position to be automatically replaced

into the seed position. In this way the recursion eliminates the need for humans to

provide seeds and leads to higher term extraction in comparison to the singly

anchored patterns (Kozareva et al. 2008).

We are particularly interested in using the DAPs to learn hyponyms and

hypernyms for a given domain of interest. Our main motivation is based on the fact

that DAP: (1) has shown to learn terms with higher precision compared to the

singly-anchored patterns (Kozareva et al. 2008), (2) uses only one seed instance to

discover new and previously unknown terms, (3) acquires knowledge with minimal

supervision and (4) can be used as a knowledge extraction and concept positioning

mechanism.

5 Knowledge harvesting using double-anchored patterns

The first stage of our algorithm concerns knowledge acquisition. We propose a

minimally supervised bootstrapping algorithm which uses DAPs in two alternating

phrases to learn hyponyms and hypernyms associated with a given domain of

interest. The extracted terms are filtered out and reranked using a concept

positioning test (CPT). The general framework of the knowledge harvesting

algorithm is shown in Table 1. The final output of this phase is a ranked list of terms

and is-a relations.

5.1 Hyponym harvesting

The hyponym harvesting phrase (i.e. extraction of concepts located at the low-level

of the taxonomy) also incorporates a bootstrapping mechanism on its own, which is

instantiated with a semantic class, one seed term from the semantic class and a DAP

pattern of the form ‘‘hsemantic classi such as hseedi and *’’, where the * is a

placeholder for the terms to be learned. In the first iteration, the semantic class is the

so called root concept, which is a term located higher up in the taxonomy. Root

concepts are given by the user and they represent terms like animal, people, plant
among others. The pattern is submitted to Yahoo! as a web query and all unique

snippets matching the query are retrieved. The snippets are part-of-speech tagged

with TreeTagger (Schmid 1994) and only the nouns and proper names located on

the * position are extracted. From these terms, only the newly learned and

previously unexplored ones are used as seeds in the subsequent iteration. The

bootstrapping process is implemented as an exhaustive breadth-first algorithm,

which terminates when all terms are explored.
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Although the DAP lexico-syntactic pattern has a very specific structure, we

noticed that erroneous information can still be acquired due to part-of-speech

tagging errors or flawed facts on the Web. Therefore, we need to filter out the

erroneous terms from the true ones. For the purpose, we incorporate the harvested

terms in a directed graph G = (V, E), where each vertex v [ V is a candidate term

for the semantic class and each edge (u, v) [ E indicates that the term v is extracted

from the term u. A term u is ranked by outDegreeðuÞ ¼
P

8ðu;vÞ2E
ðu;vÞ

jV j�1
, which

represents all outgoing edges from u normalized by the total number of nodes in the

graph. In a very large corpus, like the Web, we assume that a correct term is the one

that frequently discovers many different terms in the DAP pattern. In our illustrative

example from Fig. 1, terms with high outDegree are tiger, puma among others.

5.2 Hypernym harvesting

In the hypernym extraction phase (i.e. extraction of concepts located above the low-

level concepts of the taxonomy), we take all hX, Yi term pairs collected during the

hyponym harvesting stage and instantiate them in the inverse DAP-1 pattern ‘‘*
such as hXi and hYi’’. The pattern is sent to Yahoo! as a web query and all snippets

matching the pattern are retrieved. For each hX, Yi pair, the terms discovered on the

(*) position are extracted and considered as candidate hypernyms. For example, if

the term ‘‘cats’’ was learned from the DAP pattern ‘‘animals such as dogs and hYi’’,
then the pair <dogs,cats> is used to form the new DAP-1 query ‘‘* such as dogs and
cats’’, which extracts hypernyms such as pets, mammals, others.

Table 1 Hyponym-hypernym

knowledge harvesting

framework

1. Given:

a DAP hyponym pattern Pi = {concept such as seed and *}

a DAP-1 hyponym pattern Pc = {* such as term1 and term2}

a root concept root

a term called seed for Pi

2. build a query using Pi

3. submit Pi to Yahoo! or other search engine

4. extract terms occupying the * position

5. take terms from step 4. and go to step 2

6. repeat steps 2–5 until no new terms are found

7. rank terms by outDegree

8. all terms with outDegree > 0, build a query using Pc

9. submit Pc to Yahoo! or other search engine

10. extract concepts (hypernyms) occupying the * position

11. rank concepts by inDegree

12. for V terms with inDegree > 1, check subordination to the root
with CPT

13. use concepts passing CPT from step 12. as temporary root and go

to step 2

14. repeat steps 2–13 until the user desires
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To avoid the inclusion of erroneous hypernyms like others, we build a bipartite

graph G0 = (V0, E0). The set of vertices Vsup represents the hypernyms, while the set

of vertices Vp corresponds to the hX, Yi term pair that produced the hypernym. An

edge e0(u0, v0) [ E0, where u0 [ Vp and v0 [ Vsup shows that the pair hX, Yi denoted

as u0 harvested the hypernym represented by v0. Following the previous example, the

bipartite graph would have three vertices v01, v02 and v03 for the hypernyms ‘‘pets’’,
‘‘mammals’’, ‘‘others’’, one vertex u01 for the instance pair hdogs, catsi, and three

edges e01(u01, v01), e02(u01, v02) and e03(u01,v03). A vertex v0 [ Vsup is ranked by

inDegreeðv0Þ ¼
P

8ðu0 ;v0 Þ2E0 ðu
0;v0Þ

jV 0j�1
, which represents the sum of all incoming edges to the

hypernym node v0 from the term pairs u0. Intuitively, our confidence in a correct

hypernym increases when it is discovered multiple times by different hyponym

pairs.

5.3 Domain filtering

Although the aforementioned graph ranking functions can eliminate erroneous

concepts, they cannot actually determine whether a concept is more or less general

than the initial root concept. For example, when harvesting the categories

(hypernyms) related to animals, the system may learn the word species, which is

a very common term associated with animals, but also it applies to non-animal terms

such as plants. To constrain the harvesting process to learn terms in a specific

domain say Animals, we apply the Concept Positioning Test (CPT) that keeps only

those terms that are located ‘below’ the initial root term. The CPT mechanism

consists of two queries:

(a) RootConcept such as Concept
(b) Concept such as RootConcept

where Concept is the extracted hypernym and RootConcept is the starting root term.

If the system returns more Web hits for (a) than (b), this indicates that the Concept
passes the CPT test and it is located below the root. If the system returns more Web

hits for (b) than (a) this means that the concept is more general than the root and it

fails the CPT test and must be excluded from the domain.

To further augment the hyponym-hypernym term extractions of our knowledge

harvesting algorithm, we use the concepts that pass the CPT test to build new DAP

queries and then we re-instantiate the knowledge harvesting procedure from the

very beginning. In this way we create a bootstrapping loop between the hyponym

and hypernym phases. Note that this bootstrapping is separate from the local

bootstrapping which is incorporated in the hyponym extraction phase. To instantiate

the next hyponym-hypernym bootstrapping iteration, we replace the original root

concept with the newly ranked hypernym and use all terms that lead to its discovery

as seeds. Following our example, the hypernym others fails the CPT test because the

term is more general than the root animals, while pets and mammals pass the criteria

successfully. Next, we re-instantiate the original DAP pattern with two new

patterns: ‘‘pets such as dogs and *’’ and ‘‘mammals such as dogs and *’’, where pets
and mammals are the new semantic class concepts and dogs is the seed term as it
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discovered the hypernyms as shown in Sect. 5.2 The replacement of the initial root

concept animals with the subordinated terms pets and mammals leads to the

automated creation of new lexico-syntactic patterns that can extract terms which

might have not been found with the initial DAP pattern ‘‘animals such as * and *’’.

The described harvesting procedures in Sects. 5.1 and 5.2 can be repeated for

unlimited number of iterations. For practical reasons we ran the algorithm for 10

iterations.

6 Taxonomy induction

The second stage of our algorithm concerns the hierarchical organization of the

harvested knowledge. Next, we propose a graph-based algorithm, which positions

the concepts with respect to each other and produces a taxonomy.

6.1 Positioning intermediate concepts

Once the knowledge acquisition and domain filtering phase terminates, we can

obtain the is-a relations between the root and the low-level terms, as well as the is-a

relations between the low-level and intermediate-level terms. However, the only

information that is missing is the is-a relatedness of the intermediate-level concepts

themselves.2 For example, the knowledge harvesting algorithm does not provide

information of the hierarchical organization of concepts like mammals, carnivores,
vertebrates, felines, chordates among others.

Since the CPT test is an extremely reliable mechanism for the positioning of

hypernyms with respect to the root, we decided to use the same procedure for the

positioning the intermediate-level concepts. To gain more evidence from the Web,

we use multiple surface patterns of the form: ‘‘X such as Y’’, ‘‘X are Y that’’, ‘‘X

including Y’’, ‘‘X like Y’’, ‘‘such X as Y’’, where the X and Y corresponds to

intermediate-level concepts. For instance, if we want to position the intermediate

concepts chordates and vertebrates with respect to each other, we issue the CPT

queries of the form: (a) chordates such as vertebrates and (b) vertebrates such as
chordates. We record the counts of each pattern and estimate whether (a) returns

more hits than (b). If this is the case, then chordates subsumes (or is broader than)

vertebrates, otherwise vertebrates subsumes chordates.

6.2 Graph-based taxonomization

The left side of Fig. 2 visualizes the organization of the root, low-level and

intermediate-level concepts according to the concept positioning mechanism. We

can see that CPT cannot always determine the direct taxonomic organization

between two concepts. For example, there is no is-a link between felines and

chordates or between felines and vertebrates. One of the reasons is that these

concepts are located on distant taxonomic levels and humans tend to exemplify

2 The intermediate-level terms are located between the low-level and the root terms.
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concepts using terms from proximate taxonomic levels. Therefore, CPT can find

evidence for some is-a relations like mammals ? felines, but not for others like

chordates ? felines.

After the concept positioning procedure has explored the positioning of all

intermediate concept pairs, we observed two phenomena: (1) direct links between

some concepts are missing and (2) multiple paths can be taken to reach from one

concept to another.

To surmount these problems, we build a directed graph G00 = (V00, E00) in which

for a given a set of concepts (root, low, intermediate level ones), the objective is to

find the longest path in the graph. In our case, the longest path would represent the

taxonomic organization of the concepts as shown on the right side of Fig. 2.

In the graph G00, the nodes V00 = {t1, t2, t3,…, tn, r} represent the harvested

terms (root, low, intermediate level), the edge (ti, tj) [ E00 indicates the is-a

relatedness of ti and tj, and the direction ti ? tj corresponds to the term

subordination according to the CPT test. If present, we eliminate all cycles in the

graph. For that we use the CPT values of the terms and we use those whose weight

is higher. If both terms have equal CPT values for (a) and (b), then we randomly

select whether (a) or (b) subordination should remain. For each low-level term, we

extract all hypernyms and is-a relations and use them to build a graph. On the top,

we position the node with no predecessors p (e.g. animal) and at the bottom, the

node with no successor s (e.g. terms like lion, tiger, puma). The directed graph is

represented as an adjacency matrix A = [ai,j], where ai,j is 1 if (ti, tj) is an edge of

G00, and 0. To find the longest path between p and s pair, we find all possible paths

between p with s, and select the longest one among them.3 We use this path to

represent the taxonomic organization of all concepts located between p and s. Once

the taxonomization of a given low-level concept and its hypernyms terminates, we

apply the same procedure to the next low-level term and its hypernyms.

Fig. 2 Concept positioning procedure and induced taxonomy

3 To compute the longest path we use a standard implementation.

870 Z. Kozareva, E. Hovy

123



7 Evaluation

7.1 Data collection and experimental set up

It is impossible to collect and report on results for all terms and domains. Therefore,

to evaluate the effectiveness of our knowledge harvesting and taxonomization

algorithm, we have selected the following four domains: Animals, People, Vehicles,

and Plants. We choose these domains based on their diverse nature and

characteristics, as well as the fact that they have taxonomic structures that are

well-represented in WordNet.

We have instantiated the knowledge harvesting procedure with the following

seed terms: lions for Animals, Madonna for People, cars for Vehicles, and

cucumbers for Plants. To collect the data, we have submitted the DAP patterns as

web queries to Yahoo!, retrieved the top 1,000 web snippets per query, and kept

only the unique ones. In total, we have collected 10 GB of text snippets. We ran the

hyponym extraction algorithm until complete exhaustion, while the hyponym-

hypernym replacement steps for 10 iterations. The harvested data and the gold

standard data used for our taxonomization evaluation can be downloaded here.4

At the end of the knowledge harvesting process, we found that the algorithm

learned a staggering variety of terms, in far greater diversity than we had

anticipated. In addition to many low-level terms, such as dog, fox, and platypus, and

many intermediate terms, such as predators, mammals, arachnids, the algorithm has

also harvested terms that are difficult to judge whether they are legitimate and

valuable subconcepts of Animals. For instance, bait, allergens, seafood, vectors,
protein, and pests. Another issue concerning the harvested concepts involves the

relative terms that are hard to define in an absolute sense, such as native animals and

large mammals.

Therefore, we believe that a complete evaluation of our task should answer the

following three questions:

1. Precision: What is the correctness of the harvested concepts? (How many of

them are simply wrong, given the root concept?)

2. Recall: What is the coverage of the harvested concepts? (How many are

missing, below a given root concept?)

3. How correct is the taxonomic structure learned?

Given the number and variety of terms obtained, we initially decided that an

automatic evaluation against existing resources (such as WordNet or something

similar) would be inadequate because they do not contain many of our harvested

terms, even though many of these terms are clearly sensible and potentially

valuable. Indeed, the whole point of our work is to learn concepts and taxonomies

that go above and beyond what is currently available. However, it is necessary to

compare with something, and it is important not to skirt the issue by conducting

evaluations that measure subsets of results, or that perhaps may mislead. We

therefore decided to compare our results against WordNet and to have human

4 http://www.isi.edu/*kozareva/data/kozareva_taxonomy_data.zip.
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annotators judge as many results as we could afford (to obtain a measure of

Precision and the legitimate extensions beyond WordNet).

In the next subsections we describe the obtained results for four different

experiments conducted on the Animals, People, Vehicles and Plants domains. In

Experiment 1, we evaluate the performance of DAP for hyponym learning,

in Experiment 2, we evaluate the performance of DAP-1 for hypernym learning, in

Experiment 3, we evaluate the generated is-a relations between the concepts and in

Experiment 4, we evaluate the induced taxonomic structures. For each experiment

we conducted only a human-based evaluation and a comparative study against

WordNet version 3.0. Initially, we also wanted to compare our results to knowledge

bases that have been extracted in a similar way (i.e., through pattern application

over unstructured text). However, it is not always possible to perform a complete

comparison, because either researchers have not fully explored the same domains

we have studied, or for those domains that overlap, the gold standard data was not

available.

7.2 Experiment 1: hyponyms harvesting

In this section we discuss the results of the hyponym harvesting. The bootstrapping

algorithm ranks the harvested terms by their outDegree score and considers as

correct only those with outDegree > 0. In ten iterations, the bootstrapping algorithm

produced 913 animal, 1,344 people, 1,262 plant and 1,425 vehicle terms that passed

the outDegree criterion.

7.2.1 Human evaluation

We employed two human judges to evaluate whether the harvested terms are correct

or incorrect with respect to the root concept. Since human based evaluation for all

harvested terms is time consuming and costly, we have evaluated all Animals and

People terms, while for the Vehicles and Plants domains we have randomly selected

90 terms located at the beginning, in the middle and in the end of the outDegree
ranking.

Figure 3 shows the Precision of the top N ranked terms. The overall performance

of the Animal terms is 71 % (649/913) Precision and of the People terms is 95 %

Precision (1,271/1,344). Figure 3 shows that higher-ranked Animal terms are more

accurate than the lower-ranked terms, which indicates that the scoring function did

its job. For People terms, precision was very high throughout the whole ranked list.

The obtained results show that the hyponym step of the bootstrapping algorithm

generates a large number of correct instances of high quality.

Table 2 summarizes the results for Plants and Vehicles.

Independently, we can say that the precision of the harvesting algorithm is

between 73 and 90 % depending on the domains tested. In the case of Vehicles, we

found that the learned terms in the middle ranking do not refer to the meaning of

vehicle as a transportation device, but to the meaning of vehicle as media. Such

extractions happen when both the class name and the term are ambiguous. For the
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same category, the algorithm learned many terms which are not present in WordNet

such as BMW, bakkies, two-wheeler, all-terrain-vehicle among others.

7.2.2 WordNet evaluation

Table 3 shows a comparison of the harvested terms against the terms present in

WordNet. Note that the Precision measured against WordNet (PrWN) for People is

dramatically different from the Precision based on human judgments (PrH).

This can be explained by looking at the NotInWN column, which shows that 48

correct Animal terms and 986 correct People terms are not present in WordNet
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Fig. 3 Ranked animals and people hyponyms

Table 2 Human evaluation of

plants and vehicles hyponyms
#CorrectByHand #inWN PrecByHand

Plants

Rank (1–30) 29 28 .97

Rank (420–450) 29 21 .97

Rank (1,232–1,262) 27 19 .90

Vehicles

Rank (1–30) 29 27 .97

Rank (193–223) 22 18 .73

Rank (551–581) 25 19 .83

Table 3 WordNet hyponym

evaluation
PrWN PrH NotInWN

Animal .79 .71 48

People .23 .95 986
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(primarily, for People, because WordNet contains relatively few proper names).

These results show that there is substantial room for improvement in WordNet’s

coverage for these semantic classes. For Animals, the precision measured against

WordNet is actually higher than the precision measured by human judges, which

indicates that the judges failed to recognize some correct terms.

7.2.3 Evaluation against prior work

As mentioned before, it is difficult to compare results with existing approaches,

because either the researchers have not explored the same domains or for those

domains that overlap the generated data is not available. Still to the extend to which

it is possible, we compare the performance of our algorithm to the semantic class

learning method of (Kozareva et al. 2008), which outperforms existing systems like

those of (Pasca 2004) and KnowItAll (Etzioni et al. 2005).

The approach of (Kozareva et al. 2008) corresponds to the first step of our

bootstrapping process. The difference between the current algorithm and those of

(Kozareva et al. 2008) is in the hyponym-hypernym bootstrapping stage, which

feeds on each iteration the newly learned intermediate-level concepts as roots for

the DAP pattern and instantiates the learning from the very beginning.

We directly compare our results to (Kozareva et al. 2008), because the first

iteration of our algorithm correspond to those of (Kozareva et al. 2008). Then, we

ran the algorithm introduced in this paper for 10 hyponym-hypernym bootstrapping

iterations and compared the obtained results. Figure 4 shows the number of

harvested terms for Animal and People for each one of the 10 bootstrapping

iterations.

Overall, the bootstrapping with intermediate concept substitution of the initial

root term produced nearly 5 times as many low-level terms (hyponyms) compared

to (Kozareva et al. 2008). It is important to note that not only the recall of the

extractions was improved, but also the high precision of the extractions was

maintained. Our observation is that the inclusion of the intermediate-level concepts

in the hyponym extraction phase steered the learning process into new (yet still
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correct) regions of the search space. For instance, the pattern ‘‘animals such as *
and *’’ covered parts of the Animals space, however the additionally generated

hypernym patterns like ‘‘herbivores such as * and *’’, ‘‘mammals such as * and *’’

found previously unexplored parts of the Animals concept space.

Table 4 shows examples of the 10 top-ranked low-level terms that were learned

for 3 randomly-selected intermediate-level Animals and People concepts (Interme-
diate Concepts) that were learned during bootstrapping.

7.3 Experiment 2: hypernym harvesting

In this section, we discuss the results of the harvested hypernyms (intermediate-

level concepts). Given the variety of the harvested results, manual judgment of

correctness required an in-depth human annotation study. We also compared our

harvested results against the concept terms in WordNet.

7.3.1 Human evaluation and annotation guidelines

We hired four annotators (undergraduates in linguistics from a different institution)

to judge the correctness of the intermediate concepts. Unlike previous work on

hypernym extraction (Ritter et al. 2009), where hypernyms were judged only as

correct, incorrect, we created detailed annotation guidelines and categories which

allow us to better understand the types and kinds of the harvested information. We

defined 14 annotation labels for each one of the Animals and People classes. In the

end, we cluster the fine-grained labels into four major types: Correct, Borderline,
BasicConcept, and NotConcept to make it a consistent evaluation with respect to the

rest of the hypernym approaches.

Table 4 Learned people and animals hyponym terms

People

Intermediate concept Instances

Dictators Adolf Hitler, Joseph Stalin, Benito Mussolini, Lenin, Fidel Castro,

Idi Amin, Slobodan Milosevic, Hugo Chavez, Mao Zedong, Saddam Hussein

Celebrities Madonna, Paris Hilton, Angelina Jolie, Britney Spears, Tom Cruise,

Cameron Diaz, Bono, Oprah Winfrey, Jennifer Aniston, Kate Moss

Writers William Shakespeare, James Joyce, Charles Dickens, Leo Tolstoy, Goethe,

Ralph Waldo Emerson, Daniel Defoe, Jane Austen,

Ernest Hemingway, Franz Kafka

Animal

Intermediate concept Basic-level terms

Crustacean Shrimp, crabs, prawns, lobsters, crayfish, mysids, decapods, marron,

ostracods, yabbies

Primates Baboons, monkeys, chimpanzees, apes, marmosets, chimps, orangutans,

gibbons, tamarins, bonobos

Mammal Mice, whales, seals, dolphins, rats, deer, rabbits, dogs, elephants, squirrels
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The annotation guidelines are as follows:

For our in-depth annotation, we have trained the undergraduate students in

linguistics and asked them to classify each term as one or more of the types

below. The annotators are instructed to: Try not to search for extreme and

unusual interpretations of the term, but focus on the normal everyday

meaning. Many terms have multiple senses. Here we are concerned only with

the Animal/Human sense: if any of the senses is animal-related, then classify it

based on that animal sense. Sometimes, a term might even refer to two

different classes like cat (the house animal and the class, which includes tigers

and lions). Thats fine; if you know of two senses that are not extreme or

unusual cases, please code both (and make a Memo). Do this even if the

snippets refer to only one of the classes. Please consider humans to be animals

as well. That is, do not code GeneralTerm for a word like Hunter just because

humans can be hunters too. Use GeneralTerm only if it includes things that are

not humans or animals. The terms are expressed using a snippet of text derived

from Google. These snippets dont necessarily correspond to complete

sentences, nor do they typically respect sentence boundaries. You may use

the snippet to understand whether the term refers to one of the codable

categories, but dont be too concerned if one or more of the snippets isnt fully

descriptive, representative, or even grammatical. When you dont know what a

word means, or know enough to know which category(ies) it belongs to, you

may use reference works to look up word meanings. If the snippets dont help,

but you can ascertain the meaning of the word, you can go ahead and code it.

If you really are stuck, but youre pretty sure the term refers to an animal, use

code A (for OtherAnimal).

1. BasicAnimal The basic individual animal. Can be visualized mentally.

Examples: Dog, Snake, Hummingbird.

2. GeneticAnimalClass A group of basic animals, defined by genetic similarity.

Cannot be visualized as a specific type. Examples: Reptile, Mammal. Note that

sometimes a genetic class is also characterized by distinctive behavior, and so

should be coded twice, as in Sea-mammal being both GeneticAnimalClass and

BehavioralByHabitat. (Since genetic identity is so often expressed as body

structureits a rare case that two genetically distant things look the same

structurallyit will be easy to confuse this class with MorphologicalTypeAnimal.

If the term refers to just a portion of the animal, its probably a Morpholog-

icalTypeAnimal. If you really see the meaning of the term as both genetic and

structural, please code both.)

3. NonRealAnimal Imaginary animals. Examples: Dragon, Unicorn. (Does not

include normal animals in literature or films.)

4. BehavioralByFeeding A type of animal whose essential defining characteristic

relates to a feeding pattern (either feeding itself, as for Predator or Grazer, or of

another feeding on it, as for Prey). Cannot be visualized as an individual animal.

Note that since a term like Hunter can refer to a human as well as an animal, it

should not be classified as GeneralTerm.

876 Z. Kozareva, E. Hovy

123



5. BehavioralByHabitat A type of animal whose essential defining characteristic

relates to its habitual or otherwise noteworthy spatial location. Cannot be

visualized as an individual animal. (When a basic type also is characterized by

its spatial home, as in South African gazelle, treat it just as a type of gazelle,

i.e., a BasicAnimal. But a class, like South African mammals, belongs here.)

Examples: Saltwater mammal, Desert animal. And since a creatures structure is

sometimes determined by its habitat, animals can appear as both; for example,

South African ruminant is both a BehavioralByHabitat and a

MorphologicalTypeAnimal.

6. BehavioralBySocializationIndividual A type of animal whose essential

defining characteristic relates to its patterns of interaction with other animals,

of the same or a different kind. Excludes patterns of feeding. May be visualized

as an individual animal. Examples: Herding animal, Lone wolf. (Note that most

animals have some characteristic behavior pattern. So use this category only if

the term explicitly focuses on behavior.)

7. BehavioralBySocializationGroup A natural group of basic animals, defined

by interaction with other animals. Cannot be visualized as an individual animal.

Examples: Herd, Pack.

8. MorphologicalTypeAnimal A type of animal whose essential defining

characteristic relates to its internal or external physical structure or appearance.

Cannot be visualized as an individual animal. (When a basic type also is

characterized by its structure, as in Duck-billed platypus, treat it just as a type of

platypus, i.e., a BasicAnimal. But a class, like Armored dinosaurs, belongs

here.) Examples: Cloven-hoofed animal, Short-hair breed. And since a

creatures structure is sometimes determined by its habitat, animals can appear

as both; for example, South African ruminant is both a MorphologicalType-

Animal and a BehavioralByHabitat. Finally, since genetic identity is so often

expressed as structureits a rare case that two genetically distant things look the

same structurallyit will be easy to confuse this class with MorphologicalType-

Animal. If the term refers to just a portion of the animal, its probably a

MorphologicalTypeAnimal. But if you really see both meanings, genetic and

structural, please code both.

9. RoleOrFunctionOfAnimal A type of animal whose essential defining

characteristic relates to the role or function it plays with respect to others,

typically humans. Cannot be visualized as an individual animal. Examples: Zoo

animal, Pet, Parasite, Host.

G. GeneralTerm A term that includes animals (or humans) but refers also to

things that are neither animal nor human. Typically either a very general word

such as Individual or Living being, or a general role or function such as Model

or Catalyst. Note that in rare cases a term that refers mostly to animals also

includes something else, such as the Venus Fly Trap plant, which is a

carnivore. Please ignore such exceptional cases. But when a large proportion of

the instances of a class are non-animal, then code it as GeneralTerm.

E. EvaluativeTerm A term for an animal that carries an opinion judgment, such

as varmint. Sometimes a term has two senses, one of which is just the animal,
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and the other is a human plus a connotation. For example, snake or weasel is

either the animal proper or a human who is sneaky; lamb the animal proper or a

person who is gentle, etc. Since the term can potentially carry a judgment

connotation, please code it here as well as wherever else the animal sense of it

belongs.

A. OtherAnimal Almost certainly an animal or human, but none of the above

applies, or: I simply dont know enough about the animal to know where to

classify it.

0. NotAnimal Not an animal or human. But a real English term nonetheless.

B. GarbageTerm Not a real English word.

For People we have defined the following categories.

1. BasicPerson The basic individual person or persons. Can be visualized

mentally. Examples: Child, Woman.

2. GeneticPersonClass A person or persons defined by genetic charactertics/

similarity. Can be visualized as a specific type. Examples: Asian, Saxon. Note

that sometimes a genetic class is also characterized by nationality or tribal

affiliation, and so should be coded twice, as in Eskimo.

3. ImaginaryPeople Imaginary individuals or groups. Examples: Superman, the

Hobbits. human-like creatures such as elves and dwarves, as well as normal

people in literature or films, such as Tom Sawyer.

4. RealPeople Specific real individuals or groups, by name or description.

Example: Madonna, Mother Theresa, the Beatles, the first man on the moon,

Marco Polo, the person who invented the wheel.

5. NonTransientEventParticipant The role a person plays consistently over

time, by taking part in one or more specific well-defined events. Sometimes, a

word may be ambiguous between an ongoing/repeated event and a transient

one; please code both (examples: donor, as someone who tends to give, or

who only gives once; well-wisher; mentor). Distinguishing this class from

PersonState, there is always an associated characteristic action or activity that

either persists or recurs, without a specific endpoint being defined. This group

includes several types, including: Occupations (priest, doctor), Hobbies (skier,

collector), Habits (stutterer, peacemaker, gourmand).

6. TransientEventParticipant The role a person plays for a limited time,

through taking part in one or more specific well-defined events. There is

always an associated characteristic action or activity, with a defined (though

possibly unknown) endpoint. The duration of the event is typically from hours

to days, perhaps up to a year, but certainly less than a decade. Examples:

speaker, passenger, visitor. If the role lasts longer (say, a rivalry over years),

then use PersonState. Sometimes, a word may be ambiguous between a

transient event and an ongoing/repeated one; please code both (examples:

donor, as someone who tends to give, or who only gives once; well-wisher;

mentor).

7. PersonState A person with a certain physical or mental characteristic that

persists over time. Distinguishing this class from NonTransientEventPartici-

pant, there is no typical associated defining action or activity that one can
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think of. Examples: midget, schizophrenic, AIDS patient, blind person. (One

could distinguish subtypes of PersonState—say PersonStateMental and

PersonStatePhysical—which would neatly place Schizophrenic and Liberal

(! together) in the former, and BlindPerson and Midget in the latter.) Note that

PersonState is neither a social role nor a NationOrTribal one, so it does not

include socialite, being a mother, or being Japanese.

8. FamilyRelation A family relation. Examples: aunt, mother. This is a

specialized subcategory of SocialRole, so dont code family relations twice.

9. SocialRole The role a person plays in society. Unlike NonTransientEvent-

Participant, there is no single associated defining event or activity, but rather a

collection of possible ones together. (Even professions that may involve many

different activities, such as president and secretary, and family relations, such

as mother, do not belong here.) Always, however, the role relates to other

people in some clear social setting. Examples: role model, fugitive, alumnus,

hero, star, guest. The intention is that SocialRole captures notions like Leader

(in its general sense), since it’s not associated with any single clearly defined

action. NonTransientEventParticipants like President, Boss, or Leader (in its

narrow sense, as Patrol Leader), all have several specific duties to fulfill, many

of which make them be leaders (in the general sense).

N. NationOrTribe A nationality or tribal affiliation. Examples: Bulgarian,

American, Swiss, Zulu. Note that aboriginal is a GeneticPersonClass, not a

NationOrTribe.

R. ReligiousAffiliation A religious affiliation. Examples: Catholic, atheist. Some

religious affiliations, notably being Jewish, have strong NationOrTribe

connotations as well; please code both.

H. OtherHuman Clearly a human and not an animal or other being, but does not

fit into any other class.

G. GeneralTerm Can be a human, but also includes other non-human entities.

Examples: image, example, figure.

0. NotPerson Simply not a person.

More information on the detailed annotation guidelines and the annotation study

can be found in (Hovy et al. 2009).

Table 5 summarizes the labels we have defined as well as examples of some

terms corresponding to each category. We measured the pairwise inter-annotator

agreement across the fourteen labels using the Fleiss kappa (Fleiss 1971). The j
scores ranged from 0.61–0.71 for Animals (average j = 0.66) and from 0.51–0.70

for People (average j = 0.60). These agreement scores seemed good enough to

warrant the usage of these human judgments to estimate the precision of the

algorithm, however they also showed that the task is not trivial.

In ten iterations, the bootstrapping algorithm harvested 3,549 Animal and 4,094

People intermediate-level concepts. After the inDegree ranking was applied, we

selected a random sample of intermediate-level concepts and gave them for

annotation to the four human judges. Table 6 shows the labels assigned by the four

annotators (A1 – A4).
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The top portion of Table 6 shows the results for all intermediate concepts (437

animal terms and 296 people terms), and the bottom portion shows the results only

for those that passed the CPT (187 Animal terms and 139 People terms).

We compute the precision of the extracted terms in two ways: Acc1 is the percent

of intermediate concepts labeled as Correct; Acc2 is the percent of intermediate

concepts labeled as either Correct or Borderline. Without the CPT ranking the

precision ranges from 53 to 66 % for Animals and 75–85 % for People. After

applying the CPT ranking the precision increased to 71–84 % for Animals and

82–94 % for People. These results confirm that the CPT is effective at removing

undesirable general terms. Overall, the results demonstrate that our algorithm

produced many high-quality intermediate concepts, with good precision.

Table 5 Intermediate concept

annotation labels
Type Label Examples

Animal

Correct GeneticAnimal reptile, mammal

BehavioralByFeeding predator, grazer

BehaviorByHabitat saltwater mammal

BehaviorSocialIndiv herding animal

BehaviorSocialGroup herd, pack

MorphologicalType cloven-hoofed animal

RoleOrFunction pet, parasite

Borderline NonRealAnimal dragons

EvaluativeTerm varmint, fox

OtherAnimal critter, fossil

BasicConcept BasicAnimal dog, hummingbird

NotConcept GeneralTerm model, catalyst

NotAnimal topic, favorite

GarbageTerm brates, mals

People

Correct GeneticPerson Caucasian, Saxon

NonTransientEventRole stutterer, gourmand

TransientEventRole passenger, visitor

PersonState dwarf, schizophrenic

FamilyRelation aunt, mother

SocialRole fugitive, hero

NationOrTribe Bulgarian, Zulu

ReligiousAffiliation Catholic, atheist

Borderline NonRealPerson biblical figures

OtherPerson colleagues, couples

BasicConcept BasicPerson child, woman

RealPerson Barack Obama

NotConcept GeneralTerm image, figure

NotPerson books, events
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Next, we show in Fig. 5 the precision curves of the inDegree rankings of the

intermediate concepts tagged as correct (c) or correct and borderline (cb) with the

CPT (withCPT) and without the CPT (noCPT) test. Clearly, CPT improves the

precision even among the most highly ranked concepts. For example, the Acc1
curves for Animals show that nearly 90 % of the top 100 intermediate concepts were

Table 6 Human intermediate concept evaluation

Animals People

A1 A2 A3 A4 A1 A2 A3 A4

Correct 246 243 251 230 239 231 225 221

Borderline 42 26 22 29 12 10 6 4

BasicConcept 2 8 9 2 6 2 9 10

NotConcept 147 160 155 176 39 53 56 61

Acc1 .56 .56 .57 .53 .81 .78 .76 .75

Acc2 .66 .62 .62 .59 .85 .81 .78 .76

Animals after CPT People after CPT

A1 A2 A3 A4 A1 A2 A3 A4

Correct 146 133 144 141 126 126 114 116

Borderline 11 15 9 13 6 2 2 0

BasicConcept 2 8 9 2 0 1 7 7

NotConcept 28 31 25 31 7 10 16 16

Acc1 .78 .71 .77 .75 .91 .91 .82 .83

Acc2 .84 .79 .82 .82 .95 .92 .83 .83
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Tailoring the automated construction of large-scale 881

123



correct after applying the CPT, whereas only 70 % of the top 100 intermediate

concepts were correct before. In addition, CPT also eliminated many general terms.

For People a much larger set of intermediate concepts was learned. Precision

remained relatively high even without the CPT test.

7.3.2 WordNet evaluation

We also compared the precision and the presence of the automatically learned

intermediate concepts against those found in WordNet. The obtained results are

shown in Table 7.

Of the learned intermediate-level concepts, WordNet contains 20 % of the

Animals and 51 % of the People terms. This confirms that many of the concepts

were also considered to be valuable taxonomic terms by the WordNet developers.

However, our human annotators found 66 % of the Animals and 85 % of the People
concepts to be correct, which suggests that the algorithm generated a substantial

amount of additional concepts that could be used to further enrich the taxonomic

structure in WordNet.

7.4 Experiment 3: taxonomic links

In this section, we evaluate the learned is-a links between the harvested concepts.

That is, when our algorithm claims that isa(X,Y), how often is X truly a subconcept

of Y? For example, isa(goat, herbivore) would be correct, but isa(goat, bird) would

not. Again, since WordNet does not contain all the harvested concepts, we conduct

both a manual evaluation and a comparison against WordNet.

7.4.1 Human and WordNet evaluations

Table 8 shows the results for the is-a relations between all terms (intermediate and low-

level ones). For each pair, we extracted the harvested links and determined whether the

same links appear in WordNet. We also gave the same links to human judges.

The results show that the DAP patterns can accurately extract is-a relations. It is

important to note that a substantial portion of these relations is not present in

WordNet. For example, from the manually evaluated relations, there are 804 Animal
and 539 People links that are missing from WordNet.

Table 7 WordNet intermediate

concept evaluation
PrWN PrH NotInWN

Animal .20 (88/437) .66 (288/437) 204

People .51 (152/296) .85 (251/296) 108

Table 8 WordNet taxonomic

evaluation
ISA PrWN PrH NotInWN

Animal .47 (912/1940) .88 (1716/1940) 804

People .23 (318/908) .94 (857/908) 539
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7.5 Experiment 4: reconstructing WordNet’s taxonomy

In the final experiment, we evaluate the performance of our algorithm to induce a

taxonomic structure for the concepts learned in a given domain. Since the manual

construction and the evaluation of the harvested taxonomies is extremely

challenging and difficult even for human experts, we decided to evaluate the

performance of our algorithm only by reconstructing WordNet’s Animals, Plants
and Vehicles taxonomies. We did not evaluate the taxonomy for People, because

most of the learned instances and hypernyms are missing from WordNet.

For each domain we selected the terms which were harvested by our algorithm

and also present in WordNet. For each term and root concept (Animal, Plant or

Vehicle) we retrieved all concepts located on the path between the two terms and

used this information to evaluate our approach. Practically being able to reconstruct

WordNet’s taxonomy for these concepts is equivalent to evaluating the performance

of our taxonomy induction approach.

Table 9 summarizes the characteristics of the taxonomies for the regions tested.

For each domain, we show the total number of terms that must be organized, and the

total number of is-a relations that must be induced.

Among the three domains we have used for our evaluation, the Animals one is the

most complex and has the richest taxonomic structure. The maximum number of

levels that must be inferred is 11, the minimum is 1 and the average taxonomic

depth is 6.2. In total there are three low-level concepts (longhorns, gaur and

bullock) with maximum depth, twenty terms (low-level and intermediate concepts)

with minimum depth and ninety-eight low-level terms (wombat, viper, rat, limpkin)

with depth 6. Plants is also a very challenging domain, because it contains a mixture

of scientific and general terms such as magnoliopsida and flowering plant.

7.5.1 Taxonomy evaluation

To evaluate the performance of our taxonomy induction approach, we use the

following measures:

Precision ¼ # is� a found in WordNet and by system

# is� a found by system

Recall ¼ # is� a found in WordNet and by system

#is� a found in WordNet

Table 9 Data for WordNet

reconstruction
Animals Plants Vehicles

#Terms 684 554 140

#Is-a 4,327 2,294 412

Average depth 6.23 4.12 3.91

Max depth 12 8 7

Min depth 1 1 1
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Table 10 shows results for the taxonomy induction of the Vehicles domain using

different concept positioning patterns. The most productive patterns are: ‘‘X are Y

that’’ and ‘‘X including Y’’, however the highest yield is obtained when we combine

the evidence from all patterns (i.e. when we sum the retrieved Web counts from all

patterns).

Table 11 shows results for the taxonomization of the Animals, Plants, and

Vehicles domains.

Figure 6 shows an example of our taxonomy induction algorithm for some low-

level terms like vipers, rats, wombats, ducks, emus, moths, and penguins and their

hypernyms.

The obtained results are very encouraging given the fact that we started the

taxonomy construction entirely from scratch (i.e. without the usage of a skeleton

structure of any existing taxonomy). The precision of the taxonomization approach

is very robust. However, recall must be further improved since not all concepts were

found with the lexico-syntactic patterns.

Still the biggest challenge for any taxonomization approach is the merging of the

independent taxonomic perspectives (a deer is a grazer in BehaviorByFeeding, a

wildlife in BehaviorByHabitat, a herd in BehaviorSocialGroup and an even-toed
ungulate in MorphologicalType) into a single hierarchy.

7.5.2 Comparative study on taxonomy evaluation

Finally, we compare the performance of our pattern-based taxonomy induction

algorithm with another contemporary graph-based taxonomization algorithm

developed by (Navigli et al. 2011). Since they have used all of our harvested

terms, is-a relations and gold standard data to evaluate the performance of their

taxonomization algorithm, this is making it easy for us to conduct comparative

studies and hopefully it would also encourage other researchers working on

Table 10 Evaluation of the

induced vehicle taxonomy
Vehicles Precision Recall

X such as Y .99 (174/175) .42 (174/410)

X are Y that .99 (206/208) .50 (206/410)

X including Y .96 (165/171) .40 (165/410)

X like Y .96 (137/142) .33 (137/410)

Such X as Y .98 (44/45) .11 (44/410)

All patterns .99 (246/249) .60 (246/410)

Table 11 Evaluation of the

induced taxonomies
Precision Recall

Animals .98 (1,643/1,688) .38 (1,643/4,327)

Plants .97 (905/931) .39 (905/2294)

Vehicles .99 (246/249) .60 (246/ 410)
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taxonomy induction to use our knowledge harvested data as a reference point for

comparison.

To briefly summarize, our algorithm used CPT to find term relatedness, while

(Navigli et al. 2011) used graph trimming and edge weighting procedure. In our

case, we induce the taxonomy using the longest path in the graph, while (Navigli

et al. 2011) used a Chu-Liu/Edmonds algorithm to find the optimal branching and

then they applied pruning recovery to induce the final taxonomy.

Table 12 shows the obtained results of the two algorithms for the same number of

terms, is-a relations and taxonomies. Our pattern-based taxonomy induction

outperforms (Navigli et al. 2011) for two out of the three domains. We obtained

lower recall only for the Animals domain. If we had the output of Navigli’s system,

we could analyze the obtained results to better understand what type information

was missed by our algorithm, but unfortunately such information is not present.

In conclusion, we can say that the beauty of our work lies not only in the

simplicity of our knowledge harvesting and taxonomization algorithm, which is

Fig. 6 An example of the induced taxonomy of our algorithm for some animal terms

Table 12 Comparative evaluation of our taxonomy induction algorithm and the graph-based taxonomy

induction algorithm of Navigli et al. (2011)

Our approach Navigli et al. (2011)

Precision Recall Precision Recall

Animals .98 (1,643/1,688) .38 (1,643/4,327) .97 (1,638/1,688) .44 (1,890/4,327)

Plants .97 (905/931) .39 (905/2,294) .97 (905/931) .38 (879/2,294)

Vehicles .99 (246/249) .60 (246/410) .91 (226/249) .49 (200/410)
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making it easy to implement and use by anyone, but also in our effort to create and

freely distribute a taxonomization data set, which can be used as an evaluation

benchmark by other unsupervised taxonomy induction algorithms.

8 Discussion

It is clear that text harvesting can significantly assist with the creation of wordnets

and ontologies. Finding all the terms in a given domain automatically greatly

reduces the manual dictionary and wordlist search. But such harvesting also poses

challenges: It is unlikely, for example, that a human wordnet builder would come up

with the term even-toed ungulate. The hypernyms harvested as per Sect. 5.2

illustrate clearly that simple term taxonomies such as found in current wordnets and

most ontologies are completely inadequate, and that some sort of multiple parallel

taxonomization, such as discussed above, is required. Which kinds of parallel

hierarchies are needed for which root concepts, however, is unclear. We believe that

a start can be made with the observation that, for Entities, there appears to be three

families of characteristics:

• Structure: This dimension of description includes material properties such as

the materials that the entity is made of, morphological properties such as the

parts of entities, and articulatory properties such as the ways in which the parts

are assembled and connected.

• Function: This dimension includes the purposes of entities (why they were

constructed, if they are artifacts), and the applications of entities, such as the

manner in which people employ them to achieve the purposes.

• Provenance: This dimension includes various kinds of sources of the entities,

including who built them and where they are made, grown, or found, as well as

the history of the entity.

However, the equivalent conceptual breakdown for Events and States is much

less apparent. These distinctions also map with findings on qualia structures by

(Pustejovsky 1995) and (Moravcsik 1981) interpretation of Aristotle’s modes of

explanations.

The CPT taxonomization procedure described in Sect. 6 is a start, but works far

better for some concepts than others. Events, states, and relations, and even complex

AbstractEntities such as Emotions or InformationObjects such as stories, sympho-
nies, news, etc., are very difficult even for humans to taxonomize. It may be the case

that one can extend the CPT to obtain suggested folk taxonomizations directly from

the harvested corpus; then whatever the ‘truth’ might be, one at least can fall back

onto how the majority of authors in the corpus view the matter. A good example is

the popular treatment of a dolphin as a Fish, even though it is biologically a

Mammal.5 Recent interest in folksonomies (Peters 2009) reflects the potential of this

approach.

5 The various approaches to such ontological decisions are discussed in Hovy (2002).
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Evaluation remains a difficult matter. The terms harvested by DAP, even for such

relatively well-researched concept families as the Animal Kingdom, sometimes far

exceed the terms included in wordnets, making both Precision and Recall very

expensive to measure. We need other methods to validate terms harvested by DAP

and similar algorithms, for example using their distributional semantic properties.

Finally, we have not in this article discussed the use of DAP-like algorithms to

harvest the properties of concepts (for example, that bees are small and

pomegranates are red). But it is a direct extension of the basic DAP pattern to do

so. Automatically constructing rich entity descriptions using this approach is an

interesting challenge for the future.

9 Conclusion

In this article we demonstrate the effectiveness of a very simple class of text

harvesting patterns, the recursive family we call DAP, to collect and partially

taxonomize sets of terms conceptually subordinate to a given starting concept. We

illustrate the power of DAP on a variety of starting concepts, and show how English

WordNet, one of the largest and most complete online term taxonomies ever

created, is still far from complete, when compared to language on the web. We show

the need for more carefully considered taxonomization than has heretofore been the

case in most taxonomies.

The construction of online wordnets in various languages is an important

endeavor. We believe that by employing such algorithms as DAP and its subsidiary

CPT, which individually assist with steps in the overall process rather than trying to

achieve the whole ontology learning procedure at once, the work can be facilitated.

There is still a long way to go, and a lot of fascinating research to be done.
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