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Abstract We present an extensive empirical evaluation of collocation extraction

methods based on lexical association measures and their combination. The exper-

iments are performed on three sets of collocation candidates extracted from the

Prague Dependency Treebank with manual morphosyntactic annotation and from

the Czech National Corpus with automatically assigned lemmas and part-of-speech

tags. The collocation candidates were manually labeled as collocational or non-
collocational. The evaluation is based on measuring the quality of ranking the

candidates according to their chance to form collocations. Performance of the

methods is compared by precision-recall curves and mean average precision scores.

The work is focused on two-word (bigram) collocations only. We experiment with

bigrams extracted from sentence dependency structure as well as from surface word

order. Further, we study the effect of corpus size on the performance of the indi-

vidual methods and their combination.

Keywords Lexical association measures � Collocations � Multiword expressions �
Evaluation

1 Introduction

The process of combining words into phrases and sentences of natural language is

governed by a complex system of rules and constraints. In general, basic rules are

given by syntax, however there are also other restrictions (semantic and pragmatic)

that must be adhered to in order to produce correct, meaningful, and fluent

utterances. These constrains form important linguistic and lexicographic phenomena

generally denoted by the term collocations. They range from lexically restricted
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expressions (strong tea, broad daylight), phrasal verbs (switch off, look after),

technical terms (car oil, stock owl), and proper names (New York, Old Town), to

idioms (kick the bucket, hear through the grapevine), etc. As opposed to free word

combinations, collocations are not entirely predictable only on the basis of syntactic

rules, they should be listed in a lexicon and learned in the same way as single words

are (Palmer 1938).

There is no precise and commonly accepted definition of collocations. Our notion

of this phenomenon is based on the definition by Choueka (1988) saying that ‘‘[A

collocation expression] has a characteristics of a syntactic and semantic unit whose

exact and unambiguous meaning or connotation cannot be derived directly from the

meaning or connotation of its components.’’ It is relatively wide and covers all

unpredictable expressions. This unpredictability is the reason why they should be

extensionally specified (listed) in the lexicon. Similar approach is also used by Evert

(2004) who defines collocation directly as ‘‘a word combination whose semantic

and/or syntactic properties cannot be fully predicted from those of its components,

and which therefore has to be listed in a lexicon’’ (Evert 2004, p. 9).

Automatic acquisition of collocations for such a lexicon is one of the traditional

tasks of corpus linguistics. The goal is to extract a list of collocations from a text

corpus. Generally, it is not required to identify particular occurrences (instances,

tokens) of collocations, but rather to produce a list of all collocations (types)

appearing anywhere in the corpus. The task is often restricted to a particular subtype

or subset of collocations (defined e.g. by grammatical constraints), but we will deal

with it in a general sense.

Most of the methods for collocation extraction are based on lexical association
measures – mathematical formulas determining the strength of association between

two or more words based on their occurrences and cooccurrences in a text corpus.

The higher the association between words, the better chance they form a

collocation. The first research attempts in this area are dated back to the era of

mechanized documentation (Stevens et al. 1965). The first work focused particularly

on collocation extraction was published by Berry-Rogghe (1973), and later followed

by studies by Choueka et al. (1983), Church and Hanks (1990), Smadja (1993), Kita

et al. (1994), Daille (1996), Shimohata et al. (1997), and many others, especially in

the last 10 years (Krenn 2000; Evert 2004; Bartsch 2004).

In the last decades, a number of various association measures have been

introduced. An overview of the most widely used techniques is given e.g. in

(Manning and Schütze 1999) or (Pearce 2002). Several researchers have also

attempted to compare existing methods and suggest different evaluation schemes,

e.g. Kita et al. (1994) and Evert and Krenn (2001). A comprehensive study of

statistical aspects of word cooccurrences can be found in Evert (2004) or Krenn

(2000).

In this work, we study collocation extraction methods based on individual

association measures and also on their combination proposed in our previous work

(Pecina and Schlesinger 2006). Our evaluation scheme is based on measuring the

quality of ranking the candidates according to their chance to form collocations.

Performance of the methods is compared by precision-recall curves and mean
average precision scores. Our experiments are performed on Czech data and our
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attention is restricted to two-word (bigram) collocations – primarily for the limited

scalability of some methods to higher-order n-grams and also for the reason that

experiments with longer word expressions would require processing of a much

larger corpus to obtain enough evidence of the observed events.

2 Reference data

Krenn (2000) suggests that collocation extraction methods should be evaluated

against a reference set of collocations manually extracted from the full candidate

data from a corpus (e.g. all occurring bigrams). However, we limit ourselves only on

bigrams occurring in the corpus more than five times (frequency filter). The less

frequent bigrams do not meet the requirement of sufficient evidence of observations

needed by some methods used in this work (they assume normal distribution of

observations and become unreliable when dealing with rare events) and are not

included in the evaluation, even though we agree with Moore (2004) arguing that

these cases comprise majority of all the data (the well-known Zipf phenomenon)

and should not be excluded from real-world applications. Further, we filter out

all bigrams having such part-of-speech patterns that never form a collocation

(part-of-speech filter), such as conjunction–preposition, preposition–pronoun,

etc. While designing our experiments and creating the evaluation data sets we proceed

with the following three scenarios:

PDT-Dep. To avoid experimental bias from the underlying data preprocessing

(part-of-speech tagging, lemmatization, and parsing) necessary for morphologically

rich languages such as Czech, we attempt to extract collocations as dependency
bigrams (not-necessarily contiguous word pairs consisting of a head word and its

modifier) from morphologically and syntactically annotated Prague Dependency
Treebank 2.0 (PDT 2006) containing about 1.5 million words annotated on the

analytical layer. After applying the frequency and part-of-speech pattern filter, we

obtain a set of 12,232 collocation candidates (consisting of lemmas of the head word

and its modifier, their part-of-speech pattern, and dependency type) further referred

to as PDT-Dep.

PDT-Surf. Although collocations form syntactic units by definition, we also

attempt to extract collocations from the annotated PDT as surface bigrams (pairs of

adjacent words) without guarantee that they form such units but with the assumption

that majority of bigram collocations can not be modified by insertion of another

word and in text they occur as surface bigrams (Manning and Schütze 1999). This

approach does not require the source corpus to be parsed, which is usually a time-

consuming process, accurate only to a certain extent. After applying the filters, we

obtain a set of 10,021 collocation candidates (consisting of component lemmas and

their part-of-speech pattern) further referred to as PDT-Surf. 974 of these bigrams

do not appear in the PDT-Dep set (when ignoring syntactic information).

CNC-Surf. A corpus the size of PDT is certainly not sufficient for real-world

applications. A larger source corpus would provide not only a greater quantity of

collocation candidates (and collocations themselves) but also a better quality of

estimates of their frequency characteristics. In order to study the effect of using
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a much larger data set on the effectiveness of the extraction process, we create the

CNC-Surf reference data set consisting of instances of PDT-Surf appearing in the set

of 242 million words from Czech National Corpus (CNC 2005), the SYN 2000 and

SYN 2005 corpora. This data lacks manual annotation but are automatically

processed by a POS tagger (Hajič 2004). The collocation candidates are identified as

surface bigrams in the same fashion as in PDT-Surf. The reference data itself

contains 9,868 surface bigrams (from the total of 1,503,072 surface bigrams

obtained from CNC after applying the frequency and POS filters), the remaining

153 do not occur in it more than five times and were not included in the CNC-Surf
data set.

2.1 Manual annotation

The reference sets of collocation candidates were manually processed by three

trained linguists with the aim of identifying collocations according the notion

specified in Sect. 1. It requires collocations to be grammatical units (words in a

syntactic relation) that are not entirely predictable (semantically and syntactically).

Essentially, the annotators had to decide whether each candidate should be listed in

a lexicon or it is a free word combination (only grammatically constrained).

The dependency bigrams from PDT-Dep were assessed first. The annotation was

performed independently, in parallel, and without knowledge of context. To

minimize the cost of the process, each collocation candidate was presented to each

annotator only once – although it could appear in various different contexts, which

corresponds with the goal of extracting collocations as types not as tokens

(instances). The annotators were instructed to judge any bigram which could

eventually appear in a context where it has a character of collocation as true
collocation. For example, idiomatic expressions were judged as collocations

although they can also occur in contexts where they have a literal meaning. As a

result, the annotators were relatively liberal in their judgments, but their full

agreement was required to mark a candidate as true collocation in the reference data

set. During the assessment, the annotators also attempted to distinguish between

Table 1 Summary statistics of the three reference data sets and the source corpora they were extracted

from

Reference data set PDT-Dep PDT-Surf CNC-Surf

Sentences 87,980 87,980 15,934,590

Tokens 1,504,847 1,504,847 242,272,798

All bigram types 635,952 638,030 30,608,916

After frequency filtering 26,450 29,035 2,941,414

After part-of-speech filtering 12,232 10,021 1,503,072

Collocation candidates 12,232 10,021 9,868

Sample size (%) 100 100 0.66

True collocations 2,557 2,293 2,263

Baseline precision (%) 21.02 22.88 22.66
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subtypes of collocations and classified each collocation into one of the categories

listed below. This classification, however, was not intended as a result of the

annotation process (our primary goal is binary classification) but rather as a way to

clarify and simplify the annotation. Any bigram that can be assigned to these

categories is considered a true collocation.

1. Stock phrases

zásadnı́ problém (major problem), konec roku (end of the year)
2. Names of persons, organizations, geographical locations, and other entities

Pražský hrad (Prague Castle), Červený křı́ž (Red Cross)
3. Support verb constructions

mı́t pravdu (to be right), činit rozhodnutı́ (make decision)
4. Technical terms

předseda vlády (prime minister), očitý svědek (eye witness)
5. Idiomatic expressions

studená válka (cold war), visı́ otaznı́k (hanging question mark * open question)

The surface bigrams from PDT-Surf were annotated in the same fashion – but

only those collocation candidates that do not appear in PDT-Dep were actually

judged (974 items). Technically, we removed the syntactic information from the

PDT-Dep candidates and transfered the annotation to those in PDT-Surf. If a surface

bigram from PDT-Surf appears also in PDT-Dep (syntactic relation ignored), it is

assigned the same annotation. Similarly, the annotation of CNC-Surf was transfered

from PDT-Surf (the CNC-Surf candidates is a subset of the PDT-Surf candidates).

The inter-annotator agreement was evaluated on all the candidates from

PDT-Dep and all the categories of collocations (plus a 0 category for non-

collocations) using the Fleiss’ j statistics.1 Its exact value among all the three

annotators was relatively low 0.49. This demonstrates that the notion of collocation

is very subjective, domain-specific, and also somewhat vague. In our experiments,

(a) (b)

Fig. 1 a Part-of-speech pattern distribution in the reference data sets; b distribution of collocation
categories in the reference data sets assigned by one of the annotators

1 An agreement measure for any numbers of annotators (Fleiss 1971): j ¼ Po �Pe

1�Pe
; where Po is the relative

observed agreement among annotators and Pe is the theoretical probability of chance agreement (each

annotator randomly choosing each category). The factor 1 - Pe then corresponds to the level of

agreement achievable above chance and Po - Pe is the level of agreement actually achieved above

chance. For two annotators the exact Fleiss’ j reduces to the well known Cohen’s j (Conger 1980).
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we do not distinguish between different collocation categories – ignoring them

(considering only two categories: true collocations and false collocations) increased

Fleiss’ j among all three annotators to 0.56. The multiple annotation was performed

in order to get a more precise and objective idea about what can be considered a

collocation by combining independent outcomes of the annotators. Only those

candidates that all three annotators recognized as collocations (of any type) were

considered true collocations (full agreement required). The PDT-Dep reference data

set contains 2,557 such bigrams (21.02% of all the candidates), PDT-Surf data set

2,293 (22.88%), and CNC-Surf data set 2,263 (22.66%). See Table 1 and Fig. 1 for

details.

For all experiments, the data were split into seven stratified subsets each

containing the same ratio of collocations. Six folds are intended to be used for

six-fold cross validation and average performance estimation. The remaining fold is

put aside to be used as held-out data in further experiments.

3 Association measures

In the context of collocation extraction, lexical association measures are formulas

determining the degree of association between collocation components. They

compute an association score for each collocation candidate extracted from a

corpus. The scores are supposed to indicate the potential for a candidate to be a

collocation. They can be used either for ranking (candidates with high scores at the

top) or for classification (by setting a threshold and discarding all bigrams below

this threshold).

If some words occur together more often than expected by chance, then this may

be evidence that they have a special function that is not simply explained as a result

of their combination (Manning and Schütze 1999). This property is known in

linguistics as non-compositionality. We think of a corpus as a randomly generated

sequence of words that is viewed as a sequence of word pairs (dependency or

surface bigrams). Joint and marginal occurrence frequencies are used in several

association measures that reflect how much the word cooccurrence is accidental.

Such measures include: estimation of joint and conditional bigram probabilities (see

Table 3 in Appendix, rows 1–3), mutual information and derived measures (4–9),

statistical tests of independence (10–14), likelihood measures (15–16), and various

other heuristic association measures and coefficients (17–55) originating in different

research fields.

By determining the entropy of the immediate context of a word sequence (words

immediately preceding or following the bigram, see the example in Fig. 2), the

association measures 56–60 rank collocations according to the assumption that they

occur as (syntactic) units in a (information-theoretically) noisy environment

(Shimohata et al. 1997).

By comparing empirical contexts of a word sequence and of its components

(open-class words occurring within a specified context window, see the example in

Fig. 2), the association measures rank collocations according to the assumption that

semantically non-compositional expressions typically occur as (semantic) units in
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different contexts than their components (Zhai 1997). Measures 61–74 have

information theory background and measures 75–82 are adopted from the field of

information retrieval.

3.1 Evaluation

The task of collocation extraction can be viewed as binary classification. By setting

a threshold, any association measure becomes a binary classifier: bigrams with

higher association scores fall into one class (collocations), the rest into the other

class (non-collocations). Performance of such classifiers is usually measured e.g. by

accuracy – proportion of correct predictions. However, the proportion of the two

classes in our case (collocations and non-collocations) is far from equal and we want

to distinguish classifier performance between them. In this case, several authors, e.g.

Evert and Krenn (2001), suggest using precision – proportion of positive predictions

correct and recall – proportion of positives correctly predicted. The higher the

scores the better the classification is.

3.2 Precision-recall curves

Since choosing the classification threshold depends primarily on the intended

application and there is no principled way of finding it (Inkpen and Hirst 2002), we

can measure performance of association measures by precision-recall scores within

the entire interval of possible threshold values. In this manner, individual

association measures can be thoroughly compared by their two-dimensional

precision-recall (PR) curves visualizing the quality of ranking without committing

to a classification threshold. The closer the curve stays to the top and right, the better

the ranking procedure is.

From the statistical point of view, the precision-recall curves must be viewed as

estimates of their true (unknown) shapes from a (random) data sample. As such,

they have a certain statistical variance and are sensitive to data. For illustration, see

Fig. 3a showing PR curves obtained on each of the six crossvalidation folds of

PDT-Dep (each of the thin curves corresponds to one data fold). In order to obtain a

good estimation of their true shape we must apply some kind of curve averaging

Fig. 2 Example of a left immediate context (top) and empirical context (bottom) of the expression černý
trh (black market). The contexts consist of non-underlined words in bold
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where all crossvalidation folds with precision-recall scores are combined and a single

curve is drawn. Such averaging can be done in three ways (Fawcett 2003): vertically
– fixing recall, averaging precision, horizontally – fixing precision, averaging recall,

and combined – fixing threshold, averaging both precision and recall (Fawcett 2003).

Vertical averaging, as illustrated in Fig. 3a, works reasonably well in our case and is

used in our experiments. Thin curves are produced by one association measure on six

separate data folds; the thick one is obtained by vertical averaging.

3.3 Mean average precision

Visual comparison of precision-recall curves is a powerful evaluation tool in many

research fields (e.g. information retrieval). However, it has a serious weakness. One

can easily compare two curves that never cross one another. The curve that

predominates another one within the entire interval of recall is evidently better

(although it might not be significantly better) – when this is not the case, the

judgment is not so obvious. Also significance tests on the curves are problematic.

Only well-defined one-dimensional quality measures can rank evaluated methods by

their performance. We adopt such a measure from information retrieval (Hull 1993).

For each cross-validation data fold we define average precision (AP) as the expected

value of precision for all possible values of recall (assuming uniform distribution of

recall) and mean average precision (MAP) as a mean of this measure computed for

each data fold. Significance testing in this case can be realized by paired t-test or by

the more appropriate nonparametric paired Wilcoxon signed-ranked test.
Due to the unreliable precision scores for low recall and their fast changes for

high recall (for illustration see Fig. 3a), we suggest the estimation of AP to be

limited only to some narrower interval of recall, e.g. h0.1,0.9i

3.4 Experiments

Following the scenarios described in the previous section, we perform the following

experiment on each of the three data sets. For all collocation candidates, we extract

their frequency characteristics (the observed contingency tables) and context

(a) (b)

Fig. 3 a An example of vertical averaging of precision-recall curves. Thin curves represent individual
non-averaged curves obtained by Pointwise mutual information (4) on six data folds. b Crossvalidated
and averaged precision-recall curves of selected association measures (the numbers in brackets refer to
the table in Appendix)
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information (the immediate and empirical contexts) from their source corpora. The

empirical contexts are limited to a context window of 3 sentences (the actual one,

the preceeding one, and the following one) and filtered to include only open-class

word types (noun, adjectives, verbs, adverbs). Based on this information, we

compute the scores for all 82 association measures for all the candidates in each

evaluation data fold. Then, for each association measure and each fold, we rank the

candidates according to their descending association scores, compute values of

precision and recall after each true collocation appearing in the ranked list, plot the

averaged precision-recall curve, and compute the average precision on the recall

interval h0.1,0.9i. The AP values obtained on the evaluation data folds are used to

estimate the mean average precision as the main evaluation measure. Further, we

rank the association measures according to their MAP values in descending order

and depict the results in a graph. Finally, we apply the paired Wilcoxon test and

identify association measures with statistically indistinguishable performance.

First, we evaluate the association measures on PDT-Dep, the set of dependency

bigrams extracted from Prague Dependency Treebank. A baseline system ranking the

PDT-Dep candidates randomly would operate with the expected precision (and also

MAP) of 21.02%, which is the prior probability of a collocation candidate to be a true

collocation. Precision-recall curves of some well-performing methods are plotted in

Fig. 3b. The best method evaluated by mean average precision is Cosine context
similarity in boolean vector space (77) with MAP = 66.79%, followed by Unigram
subtuple measure (39), MAP = 66.72% and other 14 association measures with nearly

identical and statistically indistinguishable performance (see the dark square points in

Fig. 4). They include some popular methods known to perform reliably in this task, such

as Pointwise mutual information (4), Mutual dependency (5), Pearson’s v2 test (10), Z
score (13), or Odds ratio (27). Surprisingly, another commonly used method T test (12)
only achieves MAP = 24.89% and performes slightly above the baseline. Although the

best association measure uses the empirical context information, most of the other

context-based methods are concentrated in the second half of the ranked list of the

measures (indicated by dark-gray bars) and do not perform well.

Fig. 4 MAP scores of association measures obtained on PDT-Surf (bars) and sorted by the descending
MAP scores on PDT-Dep (square points). Methods are referred by numbers from the table in Appendix.
The darker bars correspond to the context based association measures (56–82)
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As a second experiment, we perform a similar procedure on the same text from

the Prague Dependency Treebank (exploiting only the morphological information),

compute association scores for surface bigrams from the PDT-Surf data set and also

show them in Fig. 4. For a better comparison, the methods are sorted according to

the results obtained on PDT-Dep. The MAP scores of most association measures

increased dramatically in this experiment. The best performing method is Unigram
subtuple measure (39) with MAP = 75.03% compared to 66.71% achieved on the

dependency bigrams (absolute improvement of 11.68%). This is probably due to the

non-directly-adjacent dependency bigrams not appearing in the PDT-Surf data set:

in most cases, they do not form collocations. Interestingly, this improvement is not

so significant for context-based association measures (see the dark-gray bars in

Fig. 4). The best context-based measure on PDT-Dep (77) ended up as the 22nd on

the surface data and its score increased only by absolute 4.1%

The third experiment is performed analogously on the the CNC-Surf reference

data set, i.e. instances of PDT-Surf in the Czech National Corpus. The content of

these two data sets is almost the same, CNC-Surf shares 98.46% of the collocation

candidates with PDT-Surf. The main difference is in their frequency counts obtained

from their source corpora. The data from the Czech National Corpus are

approximately 150 times larger (in terms of the number of tokens). The average

frequency of candidates in PDT-Surf is 161 compared to 1,662 in CNC-Surf.
The results are presented in Fig. 5 and compared to those obtained on PDT-Surf.

The effect of using a much larger data set leading to better occurrence probability

estimations is positive only for certain methods – surprisingly the most effective

ones. A significant improvement (4.5 absolute percentage points on average) is

observed only for a few of the best performing association measures on PDT-Surf
and also for some other less efficient methods. Performance of other association

measures does not significantly change or it drops down. The two most appropriate

measures are Unigram subtuple measure (39) with MAP = 79.74% and Pointwise
mutual information (4) with MAP = 79.71%, known to be very effective on large

data.

Fig. 5 MAP scores of association measures computed on CNC-Surf (bars) and sorted by the descending
scores of MAP on PDT-Surf (square points). Methods are referred by numbers from the table in Appendix
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When comparing results on these data sets, we must be aware of the fact that the

baseline MAP scores on these data sets are not equal (21.02% for PDT-Dep, 22.88%

for PDT-Surf, 22.66% for CNC-Surf) and their differences must be taken into

account during the analysis of the MAP scores on different data sets. However,

these differences are relatively small compared to the differences in MAP of

association measures observed in our experiments.

An interesting point to note is that the context similarity measures on the PDT-
Dep data set, e.g. (77) slightly outperform measures based on simple occurrence

frequencies, e.g. (39), measured by MAP. A more thorough comparison by precision-

recall curves shows that the former very significantly predominates the latter in the

first half of the recall interval and vice versa in the second half (Fig. 3b). This is a

case where MAP is not a sufficient metric for comparing performance of association

measures. It is also worth pointing out that even if two methods have the same

precision-recall curves, the actual bigram rank order can be very different. Existence

of such non-correlated measures will be essential in the following sections.

4 Combining association measures

A motivating example for combining association measures is shown in Fig. 6:

association scores of Pointwise mutual information and Cosine context similarity
are independent enough to be linearly combined in one model and to achieve better

results.

Each collocation candidate xi can be described by the feature vector xi =

(xi
1, …, xi

82)T consisting of all 82 association scores from the table in Appendix and

assigned a label yi [ {0, 1} which indicates whether the bigram is considered to be a

collocation (y = 1) or not (y = 0). We look for a ranker function f ðxÞ ! R that

would determine the strength of lexical association between components of bigram x

and hence have the character of an association measure. This allows us to compare it

with other association measures by the same means of precision-recall curves and

(a) (b)

Fig. 6 a Visualization of scores of two association measures. The dashed line denotes a linear
discriminant obtained by logistic linear regression. By moving this boundary we can tune the classifier
output (a 5% stratified sample of the PDT-Dep data set is displayed). b Precision-recall curves of selected
methods combining all association measures compared with curves of two best measures employed
individually on the same data sets
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mean average precision. Further, we present several classification methods and

demonstrate how they can be employed for ranking, i.e. what function can be used as

a ranker and how to optimize its parameters. For references see (Venables and Ripley

2002).

4.1 Linear logistic regression

An additive model for binary response is represented by a generalized linear model

(GLM) in a form of logistic regression:

logitðpÞ ¼ b0 þ b1x1 þ � � � þ bpxp

where logit(p) = log(p/(1-p)) is a canonical link function for modeling binary

response and p [ (0, 1) is a conditional probability for positive response given

a vector x. The estimation of b0 and b is done by maximum likelihood method

which is solved by the iteratively reweighted least squares algorithm. The ranker

function in this case is defined as the predicted value bp; or equivalently (due to the

monotonicity of logit link function) as the linear combination bb0 þ bbT x .

4.2 Linear discriminant analysis

The basic idea of Fisher’s linear discriminant analysis (LDA) is to find a one-

dimensional projection defined by a vector c so that for the projected combination

c Tx the ratio of the between variance B to the within variance W is maximized.

After projection, c Tx can be directly used as ranker.

max
c

cT Bc

cT Wc

4.3 Support vector machines

For technical reason, we now change the labels from yi [ {0, 1} to yi [ {-1, ? 1}.

The goal in support vector machines (SVM) is to estimate a function

f ðxÞ ¼ b0 þ bT x and find a classifier y(x) = sign(f(x)) which can be solved through

the following convex optimization:

min
b0;b

X
n

i¼1

1� yiðb0 þ bT xiÞ
� �þþk

2
kbk2

with k as a regularization parameter. The hinge loss function L(y, f(x)) = [1 - y
f(x)]? is active only for positive values (i.e. bad predictions) and therefore is very

suitable for ranking models with bb0 þ bbT x as the ranker function. Setting the

regularization parameter k is crucial for both the estimators bb0; bb and further

classification (or ranking). As an alternative to the often inappropriate grid search,

we employ the effective algorithm which fits the entire SVM regularization path

½b0ðkÞ; bðkÞ� and gives us the option to choose the optimal value of k proposed by

Hastie et al. (2004). The total loss on training data is used as the objective function.
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4.4 Neural networks

Using the most common model of neural networks (NNet) with one hidden layer,

the aim is to find inner weights wjh and outer weights whi for

yi ¼ /0 a0 þ
X

whi/h ah þ
X

wjhxj

� �� �

where h ranges over units in the hidden layer. Activation functions /h and function

/0 are fixed. Typically, /h is taken to be the logistic function /h(z) = exp(z)/

(1 ? exp(z)) and /0 to be the indicator function /0(z) = I(z > D) with D as the

classification threshold. For ranking we simply set /0(z) = z. Parameters of neural

networks are estimated by the backpropagation algorithm. The loss function can be

based either on least squares or maximum likelihood. To avoid problems with

convergence of the algorithm we used the former one. As the tuning parameter of

a classifier, the number of units in the hidden layer is used.

The presented methods are originally intended for (binary) classification. For our

purposes, they are used with the following modification: In the training phase, they

are employed as regular classifiers on two-class training data (collocations and non-

collocations) to fit the model parameters. In the application phase, no classification

threshold applies and for each collocation candidate the ranker function computes

a value which is interpreted as the association score. Applying the classification

threshold would turn the ranker back into a regular classifier. The candidates with

higher scores would fall into one class (collocations), the rest into the other class

(non-collocations).

4.5 Experiments

To address the incommensurability of association measures in our experiments, we

use a common preprocessing technique for multivariate standardization: the values

of each association measure are centered towards zero and scaled to unit variance.

Precision-recall curves of all methods are obtained by vertical averaging in six-fold

cross validation on the same reference data sets as in the earlier experiments. Mean

average precision is computed from average precision values estimated on the recall

interval h0.1,0.9i. In each cross-validation step, five folds are used for training and

one fold for testing.

First, we study the performance of the combination methods on the PDT-Dep
reference data set. All combination methods work very well and gain a substantial

performance improvement in comparison with individual measures. The best result

is achieved by the neural network with five units in the hidden layer (NNet.5) with

MAP = 80.93 %, which is 21.17% relative and 14.08% absolute improvement

compared to the best individual association measure. More detailed results are given

in Table 2 and corresponding precision-recall curves are depicted in Fig. 6b. We

observe a relatively stable improvement within the whole interval of recall.

The neural network is the only method which performs better in its more

complex variant (with up to five units in the hidden layer). More complex models,

such as neural networks with more than five units in the hidden layer, support vector
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machines with higher order polynomial kernels, quadratic logistic regression, or

quadratic discriminant analysis, overfit the training data folds, and better scores are

achieved by their simpler variants.

Comparison of performance of all the combination methods on all the reference

data sets is presented in Fig. 7a. We observe the same effect as with the individual

association measures. Extracting collocations as surface bigrams from PDT with

a neural network (5 units in the hidden layer) increases MAP from 80.87% to

84.84% (3.97% absolute improvement). Using the large data from the Czech
National Corpus (providing much better occurrence probability estimations) adds

other 1.46 absolute percentage points and the best MAP score on the CNC-Surf
reference data increases to 86.30%. This number can be considered as the estimation

of MAP (on the recall interval h0.1,0.9 i) that can be achieved with the neural

network using all lexical association measures on the entire candidate data extracted

from the Czech National Corpus and filtered by the part-of-speech and frequency

filter (1.5 million surface bigrams), which is a quite promising result.

Our next experiment is focused on the learning process of the employed

classification methods. Figure 7b visualizes the learning curve of the best

performing method (NNet.5) on the PDT-Dep data set, i.e. to what extent its

performance depends on the size of the training data. The beginning of the curve is

fairly steep and we reach 90% of its maximum value with only 5% of the training

data, with 15% of the training data we climb to 95%. A system operating with 99%

of the maximum MAP score can be developed with 60% of the training data.

5 Model reduction

We have demonstrated that combining association measures in general is reasonable

and helps in the collocation extraction task. However, the combination models

presented in the previous section are too complex in number of predictors used:

some association measures are very similar (analytically or empirically) and in

combination hence redundant. They make training of the model difficult and should

Table 2 Performance of methods combining all association measures on PDT-Dep: averaged precision

(in %) at fixed points of recal and mean average precision (MAP) on the recall interval h0.1,0.9 i and its

relative improvement (?, in %)

Method Averaged precision at MAP

R = 20 R = 50 R = 80 R = h0.1,0.9i ?

Neural network (5 units) 91.00 81.75 70.22 80.87 21.08

Linear logistic regression 86.96 79.74 64.63 77.36 15.82

Linear discriminant analysis 85.99 77.34 61.44 75.16 12.54

Neural network (1 unit) 82.47 77.08 65.75 74.88 12.11

Support vector machine (linear) 81.33 76.08 61.49 73.03 9.35

Cosine similarity (77) 80.88 68.46 49.99 66.79 0.00

Unigram subtuples (39) 75.86 68.19 55.13 66.72 –
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be avoided. Some other measures are for this task simply improper, they can hurt the

model’s performance and should be avoided too.

Experiments with principal component analysis applied to the association scores

of collocation candidates from the PDT-Dep data set show that 95% of its total

variance is explained by only 17 principal components and 99.9% is explained by

42 components. Based on this observation, we can expect the number of variables in

our models can be significantly reduced with very limited performance degradation.

In this section, we propose an algorithm which eliminates the model variables

(association measures) based on two criteria: (1) their linear correlation with other

variables in the model and (2) poor contribution to efficient ranking of collocation

candidates.

First, we employ hierarchical clustering in order to group highly correlated

measures into clusters. This clustering is based on the similarity matrix formed by the

absolute values of Pearson’s correlation coefficient computed for each pair of

association measures estimated from the held-out data fold (which is independent

from the evaluation data folds). This technique starts with each variable in a separate

cluster and merges them into consecutively larger clusters based on the values from

the similarity matrix until a desired number of clusters is reached or the similarity

between clusters exeeds a limit. An example of a complete hierarchical clustering of

association measures is depicted in Fig. 8. If the stopping criterion is set properly, the

measures in each cluster have an approximately equal contribution to the model.

Only one of them is selected as representative and used in the reduced model (the

other measures are redundant). The selection can be random or based e.g. on the

(absolute) individual performance of the measures on the held-out data fold.

The reduced model at this point does not contain highly-correlated variables and

can be more easily fit (trained) to the data. However, these variables are not

guaranteed to have a positive contribution to the model. Therefore, the algorithm

continues with the second step and applies a standard step-wise procedure removing

one variable in each iteration, causing minimal degradation of the model’s

performance measured by MAP on the held-out data fold. The procedure stops

when the degradation becomes statistically significant by the paired Wilcoxon

signed-rank test.

(a) (b)

Fig. 7 a Performance of methods combining all association measures obtained from the three reference
data sets: PDT-Dep (dark gray), PDT-Surf (gray), CNC-Surf (white). b The learning curve of the neural
network (5 units) measured on the PDT-Dep reference data set
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5.1 Experiments

We test the model reduction experiment on the neural network model with five units

in the hidden layer (the best performing combination method) on the PDT-Dep
reference data set. The parameter (number of clusters) is experimentally set to 60. In

each iteration of the algorithm, we use five data folds (out of the six used in previous

experiments) for fitting the models and the held-out fold to measure the performance

of these models and to select the variable to be removed. The new model is cross-

validated on the same six data-folds as in the previous experiments.

Precision-recall curves for some intermediate models are shown in Fig. 9. We

can conclude that we are able to reduce the NNet model to 13 predictors without

statistically significant difference in performance (a = 0.05%). The corresponding

association measures are marked in Table 3 in Appendix. The step-wise phase of the

model-reduction is, however, very sensitive to data and can easily lead to different

results.

6 Conclusions

In this work we have attempted to evaluate lexical association measures employed

for automatic collocation extraction.

We have created and manually annotated three reference data sets for three

evaluation scenarios: extracting collocations as dependency bigrams from the

morphologically and syntactically annotated Prague Dependency Treebank (PDT-
Dep), extracting collocations from the same source as surface bigrams (PDT-Surf),
and extracting collocations as surface bigrams from the Czech National Corpus with

automatically assigned morphological tags (CNC-Surf). The data sets contain 9–12

thousand collocation candidates and were manually processed by three linguists in

parallel. About 20% of the bigrams in each data set were agreed to be collocations

by three annotators and considered true collocations for the evaluation.

We have implemented 82 association measures and evaluated them against the

three reference data set by averaged precision-recall curves and mean average
precision in six-fold cross validation. The best result on PDT-Dep has been

achieved by a method measuring Cosine context similarity in boolean vector space
with mean average precision of 66.79%. Extracting collocations as surface bigrams

Fig. 8 A dendrogram – visualization of hierarchical clustering on the held-out data of the PDT-Dep data set
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have been shown to be also effective approach. The results of almost all measures

obtained on PDT-Surf have been significantly improved: the best MAP of 75.03%

has been achieved by the Unigram subtuple measure. The experiments carried out

on CNC-Surf have shown that processing of a larger corpus has a positive effect on

the quality of collocation extraction; MAP scores of the Unigram subtuple measure
and Pointwise mutual information have increased up to 79.7%.

Furthermore, we have evaluated four classification methods combining multiple

association measures and demonstrated that this approach certainly helps in the

collocation extraction task. All investigated methods have greatly outperformed

individual association measures on all reference data sets. The best results have

been achieved by a simple neural network with five units in the hidden layer. Its

mean average precision of 80.87% achieved on PDT-Dep have represents 21.08%

relative improvement with respect to the best individual measure. In the

experiments on CNC-Surf we have estimated the expected value of MAP on the

entire candidate data as 86.30%. The learning curve of the neural network model on

the PDT-Dep data set demonstrates that the amount of training data used in our

experiments is not necessary. We can develop a system with only 15% of the

training data and achieve 95% of MAP of the model trained on all data. By the

proposed model reduction procedure we are also able to reduce the number of

variables in the neural network from 82 to 13 without significant degradation of its

performance.

In our work, we have not attempted to select the best universal method for

combining association measures nor to elicit the best association measures for

collocation extraction. These tasks depend heavily on data, language, and the notion

of collocation itself. Instead, we have demonstrated that combining association

measures is meaningful and improves precision and recall of the extraction

procedure and the full performance improvement can be achieved by a relatively

small number of measures combined.

Acknowledgments This is a revised and extended version of our previous work (Pecina and
Schlesinger 2006). Details on the reference data sets are described in (Pecina 2008a). Experiments that
are performed on other data sets and confirm good results of our combination methods are presented in
(Pecina 2008b). This work was supported by the Ministry of Education of the Czech Republic project
MSM 0021620838.

(a) (b)

Fig. 9 a Precision-recall curves of reduced neural network models compared with curves of the full
model and two best individual methods. b MAP scores from the interation of the model reduction process
applied on the neural network (5 units)
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Appendix

Table 3 The inventory of lexical association measures used for collocation extraction used in our

experiments
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Table 3 continued
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Table 3 continued

A contingency table contains observed joint and marginal frequencies for a bigram xy; �w stands for any word

except w; * stands for any word; N is a total number of bigrams. The table cells are sometimes referred to as fij.
Statistical tests of independence work with contingency tables of expected frequencies f̂ ðxyÞ ¼ f ðx�Þf ð�yÞ=N
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