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1. Introduction

News articles typically present a story that develops over time. Events and
times are introduced and the reader understands what the sequence of events
is. Simple questions like “What happened after the kidnapping?” can only be
answered if information about events and the temporal relations between
events is available, and a document needs to be annotated automatically or
manually to provide this information.

This article focuses on how a temporal closure component can be
embedded in a temporal annotation environment. Temporal closure takes
known temporal relations in a text and derives new implied relations from
them, in effect making explicit what was implicit. A temporal closure com-
ponent helps to create an annotation that is complete and consistent.

The assumption here is that explicit temporal annotation is required for
natural language processing applications like question answering and text
summarization. Take for example the question-answering task. We want to
be able to answer questions that involve events occurring at certain times or
events happening in a certain order. As an example consider the following
fragment from a 1998 Associated Press newswire.

(1) Turkey (AP) — Some 1500 ethnic Albanians marched Sunday in
downtown Istanbul, burning Serbian flags to protest the killings of
ethnic Albanians by Serb police in southern Serb Kosovo province. The
police barred the crowd from reaching the Yugoslavian consulate in
downtown Istanbul, but allowed them to demonstrate on nearby streets.

This text is easy to understand and we all know what happened and when
things happened. But what do we exactly need to know when we answer
specific questions? Take the three questions below.

(2) What happened on Sunday?
(3) Were Serbian flags burned before the killings?
(4) Were ethnic Albanians killed during the demonstration?
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The first one is the simplest. The text contains a temporal expression Sunday
and an event-denoting verb right next to it. It is not too much of a stretch to
put these two together. Question (3) is more complicated. But if we have
encoded that a pattern “doing X to protest Y’ implies that X is during Y or
after Y, then we can give an answer. Question (4) is even harder because it
requires ordering of events that do not occur in near proximity to each other,
and there are no obvious markers that give us the needed information.

In any case, a document can be marked up to provide the information that
we need. We can add tags to the text that mark the events and time
expressions as well as the temporal relations between them. The text in
example (1) can be marked up with temporal information as in Figure 1. The
event marched is now explicitly anchored to the time expression Sunday. In
addition, the events in the pairs burning-killings and killings-demonstrate are
now ordered relative to each other. Once all events are anchored and ordered
we can effectively create a timeline and graphically display the sequence of
events in the document.

TimeML (Pustejovsky et al., 2003) is an XML-compliant annotation
language for temporal information. It uses a basic ontology of expressions
denoting temporally relevant entities: time expressions are identified by the
TIMEX3 tag and events are identified by the EVENT tag. The ontology also
includes temporal relations between events and time expressions. The TLINK
tag consumes no input and encodes temporal relations. One of its attributes
contains the kind of temporal relation between two events or times. Some of
the values allowed are before, simultaneous, includes, and begin.

A document could be processed automatically to achieve the results in Fig-
ure 1 and add the appropriate markup. The last couple of years have spawned
significant research on event extraction (Aone and Ramos-Santacruz, 2000),
extraction of time expressions (Mani and Wilson, 2000), and event anchoring
and ordering (Filatova and Hovy, 2001; Schilder and Habel, 2001; Mani et al.,
2003). This research is promising and some components, most notably the rec-
ognition of time expressions, are of a high quality. Nevertheless, it is too early to
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Figure 1. Enriching a text with temporal information.
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comfortably use state-of-the-art automatic generation of temporal relations
because it does not yet exhibit high enough precision and recall.'

Manual annotation needs to be a part of the total annotation effort given
the precision and recall figures for machine annotation. But manual anno-
tation comes with its own set of practical challenges. The task is a complex
one, characterized by high density, low markup speed, hard-to-avoid
inconsistencies, and low inter-annotator agreement.

The high density is due to the fact that the set of possible temporal
relations is essentially quadratic to the number of events and time expressions
in a document. If a document has N events and time expressions, then there
are N(N—1)/2 possible temporal relations. A typical document contains
about 50 temporal objects, which implies 1225 possible temporal relations.
Larger documents with about 150 time objects (events and time expressions)
have over 10,000 relations. An annotation that contains all temporal
relations is clearly impractical by human means alone.

Annotation of temporal relations requires more reflection than, for
example, annotation of part-of-speech tags and is, therefore, slower. Syn-
tactic tags and many semantic tags like entity tags or event tags can be added
in a strictly linear fashion. Temporal relations are different because they
require us to specify attributes of pairs of objects, and the objects involved
may not be close to each other in the text. Annotating a mid-sized newspaper
article can take up to an hour.

Experience with consistency checking tools showed that it is hard to
annotate a one-page document without introducing inconsistencies. An
inconsistency can occur because the choice for a particular temporal relation
often restricts choices down the road. For example, if an annotator decides
that X is before Y and Y is before Z, then the choice of temporal relations
between X and Z is constrained. But even trained annotators are liable to
introduce relations that clash with previous choices. This is sometimes the
result of vague or ambiguous temporal relations between events, and
sometimes the result of a fuzzy interpretation of a particular relation (for
example, does X includes Y mean that X and Y may share a beginning point
or not). But often plain fatigue is to blame.

A manually annotated document is sparse in temporal information given
the high density potential. More often than not, two annotators choose to
add different temporal relations simply because the space they can pick from
is so large, as depicted in Figure 2.

It is unreasonable to expect that an annotator adds much more than a
hundred links in a two-page document. On average, annotators annotate about
1-5% of all possible links and in only about 10% of the cases two annotators
chose to add temporal relations between the same two-time objects.”

The quality of an annotated document and the quality of an annotation
specification and its guidelines are often measured by comparing the
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Figure 2. Two annotators marking up different temporal relations.

Figure 3. Two pairs of identical annotations.

annotations of two or three annotators, and low inter-annotator agreement
scores are perceived by many to indicate an ill-defined annotation task
(Hirschman et al., 1998; Setzer, 2001). The sparsity of temporal annotation
depresses inter-annotator agreement.

Another complication is that, unlike, for example, part-of-speech anno-
tation, temporal annotations need to be compared at the semantic level and
not the syntactic level. The two pairs of temporal networks in Figure 3
should be considered pair wise identical because they convey the same
meaning, even though they do not contain the same temporal facts.

Some way is needed to compare temporal networks in a meaningful
manner. Temporal closure can be used to map semantically identical
annotations onto syntactically identical annotations.

1.1. MIXED-INITIATIVE ANNOTATION

So neither machine nor human can produce a high-quality annotation that is
consistent and complete. Manual temporal annotation is expensive and
time-consuming, and clearly impractical if it is to deliver a complete
annotation. Fully automatic temporal annotation is not yet up to the task
and exhibits precision and recall figures that are not high enough.
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The solution is to let both human and computer do what they do so well.
The human can quickly see how events relate in time without there being any
single clear and explicit textual marker; the computer can deal with large
amounts of tedious data and skillfully perform simple reasoning tasks.
Mixed-initiative temporal annotation is a hybrid approach that goes some
way towards meeting the practical challenges mentioned above. It was pio-
neered in the Alembic Workbench (Day e al., 1997) and includes a range of
modules:

— automatic pre-processing for those tasks that have high precision, most
notably recognition of events and time expressions

— manual annotation

— a user-assisted temporal closure algorithm

— machine learning techniques

Here, we focus on the closure component. Temporal closure makes it easier
to create a consistent temporal annotation because it constrains choices and
finds inconsistencies in a set of relations added before closure was applied. In
addition, temporal closure can be employed in a user-assisted mode where
the user is asked to fill in temporal relations and the machine continues to
add facts after each user-added relation.

I will show that this approach makes it feasible to achieve a near complete
annotation because temporal closure will derive about 95% of the temporal
relations.

In the following sections, I will first describe two annotation efforts that
used a model-theoretic approach or an explicit temporal closure component
for the purpose of annotation comparison (Section 2). Section 3 introduces
SputLink, a temporal closure module intended to be embedded in an
annotation environment. In essence, SputLink is based on a restricted
interval algebra. This theoretical background is presented in Section 3.1.
SputLink itself, as well as its embedding in an annotation environment, is
described in Sections 3.2 and 3.3. Finally, Section 4 gives statistics from
SputLink at work, including number and kind of links added (Section 4.1),
inter-annotator agreement (Section 4.2), and data on user-assisted closure
(Section 4.3).

2. Previous Approaches

Graham Katz and Fabrizio Arosio (Katz and Arosio, 2001) proposed a
simple temporal annotation language for intra-sentential precedence and
inclusion relations between verbs. Their language has labels < and > for
precedence relations and C and D for inclusion relations. Each sentence also
includes an indexical reference to the speech time which can be temporally
related to the verbs. Annotations are provided with a model theoretic
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interpretation and consistency of annotations is defined in terms of satisfi-
ability in models. Katz and Arosio report results from an experiment where
two annotators annotated 50 complex sentences. The annotations were
syntactically identical in only 70% of the cases, but they were semantically
consistent in 85% of the cases.

Andrea Setzer and Robert Gaizauskas aimed to capture temporal infor-
mation in newswire texts. To that end, they defined an annotation language
and a set of annotation guidelines called STAG: Sheffield Temporal Anno-
tation Guidelines (Setzer, 2001; Setzer and Gaizauskas, 2001). Events and
times are connected using five temporal relations: before, after, includes,
included and simultaneous. The fifth relation, simultaneous, is rather fuzzy
and means something like “‘roughly at the same time”.

Setzer and Gaizauskas used a deductive closure component to get more
reliable inter-annotator agreement figures. They use a domain £ U T (events
and time expressions) which has three binary relations defined on it. B, I and
S are the sets of all pairs in the domain that are assigned the before, includes
and simultaneous relations, respectively. Ten inference rules were derived
from the formal properties of the STAG relations; simultaneous is an
equivalence relation while before, includes and their inverses are transitive,
asymmetric and irreflexive. Three of the rules are shown below.

O 1. Vx,y,ze(EUD:(x,»)eS=0,x)eS
2. Vx,y,ze(EUTD :(x,y)€e€BA@(p,z)eB>(x,2)€B
3. Vx,y,ze(EUT):(x,»)EeBA(,2)€S>(x,2)€B

Now standard precision and recall measures can be applied to the domain
after computing the deductive closure of B, T and S. Measuring the inter-
annotator agreement was Setzer and Gaizauskas’ main application for the
deductive closure component, but they proceeded to use it to increase the
number of temporal facts in a text. They introduced two stages of annota-
tion. In the first stage, the annotator would manually markup explicit and
implicit temporal relations in the text. In the second stage, relations are
normalized and all inferences that can be drawn are added to the set of
relations. Then the system enters a loop where the user is prompted to specify
the relation between two events and time expressions that have not yet been
related. Each time the user adds a fact, the closure component tries to add
new inferences. This loop continues until all relations are specified.

This inferencing approach is not sound due to the fuzzy nature of the
simultaneous relation. Setzer acknowledges this in her thesis and gives an
example that illustrates this, here presented in Figure 4. Event x is before
event y and event y is simultaneous with event z (“roughly at the same time’),
yet event X is not before event z, thereby violating rule 3. These incorrect
inferences are not necessarily a problem when the closure component is used
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time

Figure 4. An incorrect inference in Setzer’s closure algorithm.

to more correctly measure inter-annotator agreement. But if temporal closure
is used to achieve a complete annotation then it should not be at the price of
lower precision.’

3. Implementing Temporal Closure
3.1. INTERVALS, POINTS, AND NEIGHBORHOODS

Allen’s interval calculus (Allen, 1983, 1984) has been very influential in the
field of temporal reasoning. Its starting point is the acknowledgement that
there are thirteen basic temporal relationships between two intervals, as
depicted in Figure 5, which shows seven relations and the inverses of six of
them.

The temporal relations between intervals can be maintained in a graph
where the nodes are the intervals and the arcs are labeled by arbitrary dis-
junctions over the 13 basic relations. Allen assumes that the network always
maintains complete information about how its intervals could be related.
When a new temporal relation between two intervals is added, all conse-
quences are generated by computing the transitive closure of the temporal
relations. Each new fact adds a constraint about how its two intervals could
be related, which may in turn introduce new constraints between other
intervals through the transitivity rules governing the temporal relations.

Relation Symbol Inverse Example

X before Y < > I Y
X meets Y m mi
Xoverlaps Y o oi T

X during Y d di V_m

X starts Y s si

X finishes Y f fi

X equal Y = = EI

Figure 5. The thirteen basic relations.
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A fragment of Allen’s 13x 13 transitivity table that models the transitive
behavior of all relation pairs is given in Table I. The composition operator ©
is used as another way to denote lookup in the transitivity table; r; © r, is the
cell (ry, r5). If a new fact (i during j ) is added, and j is before &, then it is
inferred from the table that i must be before k. The new constraint can be a
disjunction, for instance, if the arc (i, j ) is labeled { <} and the arc {j, k ) is
labeled {d}, then the arc (i, kK ) can be constrained to the set { < om d s}. In
any case, the new fact is added to the network, possibly introducing further
constraints on the relationships between other intervals.

Allen’s constraint propagation algorithm is given in Figure 6. In this
algorithm, R (i, j) is the new basic relation or set of basic relations just added
between i and j, and N (i, j) is the existing set of basic relations between i and
j. It is easy to see that the time complexity of Allen’s algorithm is O(N?)
where N is the number of intervals. Adding one arc to the network is linear
and the number of modifications that can be made is 13 times the number of
binary relations between all nodes, which is O(N?).

A problem with the constraint propagation procedure is that while it does
not generate inconsistencies it does not detect all inconsistencies in its input.
That is, it is sound but not complete. The algorithm never compares more
than three arcs at a time and there are temporal networks where each sub-
graph of three arcs is consistent but where there is no consistent labeling for
the whole graph (an example is given in (Allen, 1983)). The algorithm
becomes exponential when complete consistency checks are incorporated.

A tractable restricted subset of the interval algebra was proposed by Marc
Vilain, Henry Kautz and Peter van Beek (Vilain et al., 1990). They used
relations on points to restrict the 2'°=8192 different labels that interval
algebra allows. Each interval can be represented as a pair of points where one
precedes the other. For example, the interval X could be rewritten as x;— x»,
where x is the begin point, x, is the end point and x; < x,. All basic relations
can also be rewritten using precedence and equality relations on begin and
end points, as shown for a few of the basic relations in Table I1I.

Table I. The transitive behavior of basic relations

< > d di
< < all <omds <
> all > >oimidf >
d < > d all

di <omdifi > o1 di mi si ooidsfdisifi = di
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Add R(i,j):
add R(i,j) to ToDo
while notEmpty ToDo do
get next R(i,j) from ToDo
N(i,j) := R(@,))
foreach node k do
R(k,j) := N(k,j) N Constraints(N(k,i),R(i,j))
if R(k,j) C N(k,j) then
add R(k,j) to ToDo
R(i,k) := N(i,k) N Constraints(R(i,j),N(j,k))
if R(i,k) C N(i,k) then
add R(i,k) to ToDo

Constraints(R1,R2):
Result := ()
foreach rl1 in R1 do
foreach r2 in R2 do
Result := Result U r1l ® r2
return Result

Figure 6. Allen’s constraint propagation algorithm.

Table II. Mapping interval relations to point relations

X before Y X2 < Vi
X starts Y X1=Y1A X2 < Y2
X during Y X] > YiAX2 < Y2
X overlap Y X| <Y1 AX2 >y AXa<Y2
<
x1 » X2
R1 R2
R3 R4
<
y1 —» V2

Figure 7. Decomposing an interval relation.

The point algebra is defined by the four point relations between the
beginning and end of two intervals. Any basic relation between intervals can
be represented by defining the four relations RI through R4 as shown in
Figure 7. The labels R1 through R4 on the point relations are taken from the
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set { <= >}, so instead of thirteen basic relations there are now only three.
An interesting table emerges when all thirteen basic relations from the
interval algebra are ordered according to the point relations assigned to the
four relations above, see Figure 8.

A convex relation is a relation between the four points where the following
labels are allowed: { <}, {=1}, {>}, {<=}, {> =}, and {< = >}. Convex
relations map to disjunctions of interval relations, but not all disjunctions of
interval relations can be expressed by a convex relation. For expample,
x> <= y; maps to the disjunction { < m}, but there is no convex relation
that covers the disjunction { < si >}, as can easily be verified by inspecting
Figure 8. Ordering and restricting the unlimited disjunctions of Allen this
way gives us a set of 82 convex relations. Schilder (1997) ordered these in a
hierarchy based on the subset relation.

This restricted point algebra of convex relations can be mapped to a
subset of Allen’s interval algebra by simply translating the point relation
assignments to disjunctions of basic relations between intervals, using
Figure 8. This interval algebra, with 82 rather than 2'* possible labels, has
the property that detecting inconsistencies is now tractable. Indeed, (Vilain
et al., 1990) proved that Allen’s constraint propagation algorithm is sound
and complete if the reduced set of labels is adopted.

Christian Freksa (Freksa, 1992) proposes another subset of the interval
algebra. He argues that Allen does not introduce a good mechanism for

x2
X2 <y2 = x2>y2
y2
x2 <yl <
x2 =yl m x1 <yl
o | fi | di
S = Si x1 =y1
x2>y1 d f oi
mi x1>y1
>
x1 x1
x1<y2 = >
y2 [ y2

Figure 8. Interval relations and point relations.
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coarse temporal information because his disjunctions of basic relations are
not at all restricted. In addition, Allen’s representation and algorithm
become more complex when less information is available on the arcs. Coarse
temporal information is needed to properly describe indefinite temporal
information in discourse, as exemplified in example (6) below.*

(6) “Mary stared' at Peter. He gave®® her pizza back.”

Event el can occur before ¢2, it can meet 2 or it can overlap with ¢2. Allen’s
scheme needs the disjunction {<m o} to capture this information and
requires a loop over the transitivity table to compute how constraints
propagate through the network. To more concisely capture this kind of
coarse temporal knowledge, Freksa introduced the notion of conceptual
neighborhood. Two relations between intervals are conceptual neighbors if
they can be directly transformed into one another by deforming the intervals
(that is, shortening or lengthening), as in Figure 9.

The before and meet relations are conceptual neighbors, but before and
overlap are not because the transformation is indirect via the relation meet.
The 13 basic temporal relations can be ordered in a network according to

E o — ] — B
b

efore meet overlap
Figure 9. Deforming intervals.

—/ o0

Figure 10. The basic relations in their neighborhood.
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Table III. Two neighborhoods

Label Mnemonic Allen Point relations
tt tail to tail with fi = X2 =Y,
oc older contemporary of ofidi X1 <Y1 A X2>Y)

their conceptual neighborhood. The result is the graph in Figure 10 that
looks a lot like the table with point relation assignments in Figure 8.

The lines between the relations represent the direct one-step transforma-
tions of the intervals. A conceptual neighborhood is defined as a set of
relations that are path-connected through conceptual neighbor relations. For
example, the set {< m o fi =} is a conceptual neighborhood but { < o} is
not. Note that all convex relations are conceptual neighborhoods but that the
reverse is not true. Figure 8, by the way, presents another way of defining
convex relations. A convex relation Rel has a top element r; and a bottom
element r, such that Rel = {r|r; C r Cry}. So {oi =} is not a convex relation
because by the definition above f and si should also be included.

Freksa continues by identifying ten conceptual neighborhoods that are
the basis for coarse temporal reasoning. He selected the neighborhoods in
such a way that finer relations (the Allen relations) can be expressed as
conjunctions of the coarse relations. Two examples of these neighborhoods
are shown in Table III. Freksa then creates the transitivity table for these
ten relations and shows that using this table generates the same inferences
as Allen’s transitivity table, the difference only being that Allen’s algo-
rithm creates disjunctions when reasoning over coarse information whereas

Add R(i,j):
add R(i,j) to ToDo
while notEmpty ToDo do
get next R(i,j) from ToDo
N(i,j) := R(i,7)
foreach node k do
R(k,j) := N(k,j) N ©Wk,i),R({E,]))
if R(k,j) C N(k,j) then
add R(k,j) to ToDo
R(i,k) := N(i,k) N ©R({,j),N(G,k))
if R(i,k) C N(i,k) then

add R(i,k) to ToDo
Figure 11. SputLink’s Constraint Propagation Algorithm.
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Table IV. Transitivity table for point relations

< = > 9
< < < 9 2
= < = > ?
> ? > > 2
? ? ? ? ?

Freksa’s uses conjunctions when reasoning over fine information. Finally,
he creates a 29 x 29 table that is closed under neighborhood-based rea-
sonings; that is, composition of any two of the 29 neighborhoods results
in one of the 29 neighborhoods. These 29 relations are a subset of the 82
convex relations defined by (Vilain ez al., 1990) and therefore the algebra
inherits the tractability of the point algebra with convex relations.

3.2. LAUNCHING SPUTLINK

SputLink is an implementation of Allen’s interval algebra but it restricts the
set of possible labels using insights from point algebra. Rather than using
{<} {=}, {>}, {<}, {>=}, and {<=>} as allowed labels for point
relations, SputLink only uses { <}, {=}, {>}, and { < = >}. As a result, the
set of possible labels is limited to 29 elements, which are the same relations
that Freksa identified. These relations between intervals can be plotted in a
hierarchy by using the subset relation. This hierarchy is similar to, yet smaller
than the hierarchy presented in (Schilder, 1997).

The core SputLink constraint propagation algorithm is presented in
Figure 11. It is very similar to Allen’s algorithm in Figure 6. The main dif-
ference is that there is no Constraints procedure that loops over a 13 x 13
composition table of basic relations but a single lookup in a 29 x 29 com-
position table of convex relations. This table can simply be computed by
applying Allen’s original algorithm to all 29 x 29 combinations of the
restricted set of labels. Alternatively, all combinations of interval relations
can be decomposed into point relations. Assume we have three intervals, x; -
X2, ¥1 —y» and z;—z,, and point relations between x; and y; and point
relations between y, and z,. The algorithm in Figure 11 can be applied to this
graph using the composition Table IV and the resulting point relations
between points in x; — x, and z; — z, can be mapped to interval relations and
put in the composition table.

3.2.1. Intervals and Points
Taking an interval-based approach assumes that intervals are the primitives
for the purpose of temporal closure over the annotation. Allen originally
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Table V. Mapping TimeML relations to basic relations

TimeML relation Allen relation Relations between points
A before B < a,<b,

A after B > a;<b,

A ibefore B m a,=Db,

A iafter B mi b,=a,

A includes B di a;<b; Aa,<b,
A is_included B d a;>b; Aay<b,
A identity B = a;=biA a,=b,
A simultaneous B

A holds B

A held_by B

A begins B s a;=bjA a,<b,
A begun_by B si a;=bjAa a,>b,
A ends B f a;>bjAa a,=b,
A ended_by b fi b;>ajAn a=b,

claimed that even events or time expressions that look like points-in-time can
in fact be treated as very short intervals and that interval-based reasoning
was more efficient than point-based reasoning. Antony Galton (Galton,
1990) argued that the neglect of time instants results in a formalism that is
too crude for representing facts about continuous change. To amend that,
points and intervals need to be treated on equal footing.

SputLink as described above has no concept of points but the 29 x 29
composition table can easily be expanded to allow for temporal relations
between points and intervals and relations between points. For example, to
take care of point-interval relations we can take the square in Figure 7 with
four relations between points and reduce it to a triangle with three point
relations. We can then create eight convex relations between point and
interval: five basic ones (before, starts, in, ends, and after), and three dis-
junctions ({before, starts, in}, for when the point comes before the end point
of the interval, {in, ends, after}, for when the point comes after the begin
point of the interval, and {before, starts, in, ends, after}, the totally under-
specified relation). The 8 x 8§ composition table can be filled in the same way
as the 29 x 29 composition table for interval-interval relations.

3.2.2. Intervals, Events and Times

Note that to initialize the algorithm we need to map an annotation graph
with TimeML objects into a graph with intervals and relations between
intervals (for the moment ignoring the points-in-time). This amounts to
reducing events to intervals. In other words, we abstract away from all
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properties of events (and times) and view them as time intervals only for the
sake of the algorithm. All TimeML relations are mapped onto Allen
relations, as given in Table V.

Note that there is no need for a mapping to the basic relations o and oi
since TimeML has no overlap relation. Another thing to realize is that
TimeML relations are not intended to be as precise as Allen relations. There
is a certain amount of fuzziness built into some of the relations, although this
fuzziness is not even close to the fuzziness of STAG’s simultaneous relation.
As a result, a TimeML closure engine that uses the precise relations behind
the screens may introduce incorrect links in a similar way as some of the
inference rules of Gaizauskas and Setzer. How often this happens is an
empirical question.

Also note that it is not trivial to translate back from Allen relations to
TimeML relations since there are four relations that are mapped onto
the = relation: identity, simultaneous, holds, and its inverse held_by.
Now, which TimeML relation should be assigned to a relation type if the
closure component generates a constraint on a temporal link that includes
Allen’s equal relation? The closure component is separated as much as
possible from the component that translates back to TimeML relation
types. The closure component reduces events and time expressions (timexes)
to intervals whose only characteristics are their begin and end points. The
choice of the TimeML relation type depends on factors beyond the
position of the events or timexes in the partial order of time points: it
depends on the types of intervals that are linked.

3.3. EMBEDDING SPUTLINK

SputLink’s closure algorithm does not run in a vacuum. It is embedded in a
mixed-initiative temporal annotation environment. This section explores
some of the issues about how the algorithm interacts with other components
and how the algorithm can be employed to achieve consistency and (near)
completeness.

There are basically two ways for the algorithm to be embedded: (i) as a
separate stage in the annotation and (ii) as a process that constantly runs in
the background.

In the first case, manual or automatic annotation occurs before any
activity from the temporal closure component, which runs in a separate
stage afterwards. This is the approach taken by (Setzer, 2001). She also
introduced a user-prompting stage where the user is asked to fill in a
relation type for a link that has none. This is followed by another
application of the closure component. The cycle continues until all event/
timex pairs are visited. Note that the first time that closure runs, it may
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phase 1 phase 2 phase 3
initial initial interactive
annotation closure closure

Figure 12. The three phases of annotation.

discover inconsistencies. So we have three stages of annotation: (i) a phase
of TLINK-annotation by the annotator, (ii) a phase of initial temporal
closure, and (iii) a phase of interactive closure centered around a user-
prompting and closure loop. This three-phase approach is presented
graphically in Figure 12.

In the second case, temporal closure runs each time a temporal relation
gets added or further constrained. This has the advantage that the
annotation is guaranteed to be consistent at any time, but it may not
always be possible to use this mode, for example, when some temporal
links are generated automatically in a pre-processing stage.

3.3.1. User-Prompting and Text-Segmented Closure
Closure by itself does not guarantee anything near completeness. Consider
the strategy where a manual annotation stage is followed by application of
the closure module. This strategy was used in the creation of the TimeBank
corpus (Day et al., 2003). TimeBank annotators typically mark up only 1%
of all possible temporal links and closure ramps this up to just over 5%.
User-prompting as used by (Setzer, 2001) does guarantee completeness.
Yet this kind of user-prompting requires the annotator to fill in relations
between events that may be separated by large expanses of text. The solution
is to constrain user-prompting using text-segmented closure. The basic idea is
that we relax the requirement (or strong wish) for completeness and settle for
local completeness, which is defined informally as follows:

(7) A locally complete temporal annotation of a document is an annotation
where each event is linked to all events and time expressions within its
local context and where each time expression is linked to all events
within its local context.

This relaxed completeness does not require the annotator to fill in all the
relations that the closure algorithm cannot derive axiomatically. Instead, the
only relations that the annotator would be prompted for are relations
between events and timexes that are adjacent in the text. A segment is defined
as a sequence of N time objects (events or time expressions) or sentences,
where sentence boundaries are defined by punctuation markers. For example,
a segment could consist of three sentences. Segments overlap; for instance,
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Table VI. Number of global and local links

Time objects Segments Global links Local links
50 5 2500 500

100 10 10,000 1000

200 20 40,000 2000

with three-sentence segments, the first segment of a document contains the
first three sentences, the second segment contains sentences two through four,
and so forth.

The annotator in the prompting phase is faced with a sliding window that
moves down the text. The window starts out covering just the first segment
and the user is prompted for new relation types inside this window. Each time
the annotator adds a relation, temporal closure computes the consequences
(including the non-local ones). The cycle continues until all event and timex
pairs in the first segment are specified. Then the window will slip down one
sentence. A benefit of this is that the annotator always has easily available all
she needs to determine the relation type, no scrolling is required.

It is interesting to compare the number of global links to the number of
local links. Table VI has a few example figures that illustrate the difference
between those numbers in a document.

The number of global links is bound to O(N?) whereas the number of local
links is bound to O(n%s), where N is the number of time objects in a docu-
ment, #n the number of time objects in a segment and s the number of seg-
ments. This means that the number of local links is linear if the segment size
is fixed. By extension, temporal annotation using text-segmented closure is a
linear task. As mentioned before, text-segmented closure is not globally
complete, only locally complete. But, as we will see later in this chapter, text-
segmented closure with user-prompting easily can derive more than 90% of
all possible links.

Note, by the way, the distinction between the complexity of the annota-
tion task and the complexity of the closure algorithm. The first task is linear,
whereas the second is cubed to the number of time objects. This seems like a
fair division of labour.

4. SputLink and the Real World

In this section, I examine more closely the claims made about temporal
closure, showing that temporal closure detects inconsistencies and that, when
coupled with user-prompting, it makes a near-complete annotation feasible.
More specifically, I will present data on (i) the number of links added, (ii) the
increase in average link span, (iii) the number of inconsistencies detected in
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an annotated corpus, and (iv) the impact of closure on inter-annotator
agreement. In addition, I will investigate how the user-prompting in text-
segmented closure helps the annotation task. Throughout this section, some
fledgeling comparisons with Setzer’s closure component are offered.

The data on number of links added and average link span in Section 4.1
and the inter-annotator agreement figures in Section 4.2 are all relative to
phases one and two of the annotation. The user-prompting evaluation results
in Section 4.3, on the other hand, also include phase three.

4.1. CLoSING TIMEBANK

A wealth of TimeML data is available in the TimeBank corpus (Day et al.,
2003). TimeBank consists of 182 documents with 7962 events, 1422 timexes
and 5681 TLINKS. Applying closure to TimeBank delivers solid statistics on
numbers of links generated and the non-local nature of TLINKS after closure.
It also provides examples of how temporal closure identifies inconsistencies.
In all sections except the section on inconsistencies only a subset of the 182
TimeBank documents was used: the 32 documents that contained inconsis-
tencies were excluded from the sample.

4.1.1. Links Added

A first obvious characteristic of a corpus after initial closure is that its
number of TLINKS has increased. But what is always in the back of our
mind is the loftier goal of a complete or near-complete annotation. This
section explores how much initial closure gets us closer to that goal.

Running initial temporal closure over TimeBank more than quadruples
the number of TLINKS, as shown in Table VII. The density column deserves
some explanation. It is convenient to have a measure that reflects how
complete an annotation is. Using recall for this purpose has proven to be a
tad confusing, so here I’ll use the term ‘density’. The density of an annotation
is the percentage of TLINKS relative to all possible TLINKS in the corpus. An
annotation is complete if its density is 100%. After closure, the density of
TimeBank goes up from 1.28% to 5.30% and closure ends up being
responsible for almost 76% of all links.

Table VII. Links added during the first two phases of TimeBank annotation

Links Links/doc Share Density
(%) (%)
Added by initial annotation 4243 28.3 24.2 1.28
Added by initial closure 3306 88.7 75.8 4.02

Total 17549 117.0 100.0 5.30
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Table VIII. Density after initial closure relative to the largest subgraph

Ratio Docs Nodes/doc % Derived Density (%)
0.00-0.25 53 359 67.1 2.5
0.25-0.50 60 24.6 75.4 9.3
0.50-0.75 34 24.1 85.1 19.2
0.75-1.00 3 14.0 83.5 53.8

Table 1X. Comparing Setzer’s closure module to SputLink.

Docs Links per document Density (%)
Annotated Derived % Derived
Setzer 1 14.0 25.0 64.1 20.5
SputLink 45 25 12.6 24.6 66.2 18.8

It needs to be said that the average density after initial closure hides
massive variation across documents, especially amongst smaller docu-
ments. For example, the observed post-closure density for texts with less
than 25 time objects ranges from 2% to 57%. The parameter responsible
for this variation is the size of the largest subgraph. Suppose we have a
graph with eight events and two ways of carving it up into two subgraphs:
[{el e2 e3 e4}, {e5 e6 e7 e8}] and [{el e2 e3 e4 e5 e6 €7}, {e8}]. Closure can
never derive a link that connects two subgraphs because there already
needs be a path that connects the two events or timexes, so the number of
links derived by closure is bound by the maximum number of links for the
individual subgraphs. In the first case, the maximum number of links is
6 + 6 = 12, in the second case it is 21 + 0 = 21. In general, annotations
with the largest subgraphs are favored to derive more links by closure
because the number of links is quadratic to the number of time objects.

The size of the largest subgraph is measured as the ratio of the size of
the subgraph and the total number of time objects. For example, if an
annotation graph has 28 events and timexes and the largest subgraph
contains 12 elements, then the ratio is 12/28 = 0.43. Table VIII shows
that indeed the size of the largest subgraph has a major impact on the
density after initial closure, and this impact cannot be explained by
adjusting for document size. This means that an annotation strategy that
maximizes the size of the largest subgraph is more likely to achieve ‘higher
density with fewer user-added links. This issue will be taken up again in
Section 4.3.

Andrea Setzer (2001) also provides some data on percentage of links
derived by closure. A comparison of Setzer’s data with SputLink is given in
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Table IX. For this table, a subset of TimeBank was used; only the 45 doc-
uments with sizes similar to Setzer’s document (that is, between 15 and 25
time objects) were used.

It looks like there is no big difference in how many links are derived by
initial closure. However, a comparison is pretty much meaningless given the
very small size of Setzer’s sample and the observation made previously that
there is a large variation hidden in the averages.

4.1.2. Average Link Span

In this section, I present statistics that show that temporal closure adds non-
local TLINKS to the annotation and that these links were mostly absent from
the initial annotation. The annotators who marked-up TimeBank seemed to
converge on similar annotation strategies, linking events to other events and
timexes that were close in textual proximity. Take for example the TimeBank
fragment in (8) and the TLINKs added by the annotator in (9).’

(8) DCT: 02 — 27 — 980802EST"**

Both U.S. and British officials filed*!* objections to the court’s juris-
diction in 19953, claiming®'® Security Council resolutions** imposed“’*
on Libya to force’® the suspects’ extradition overruled’® a 1971
Convention which gives Libya the right to try the men.

(9) <TLINK event=¢l2 relatedToTime =123 reltype =IS_INCLUDED >
<TLINK event=el2 relatedToEvent=¢13 reltype =IS_INCLUDED >
<TLINK event=¢e20 relatedToEvent =e12 reltype = BEFORE >
<TLINK event=el4 relatedToEvent =¢20 reltype = SIMULTANEOUS >

The four TLINKS shown are all the TLINKS that the annotator added for
events and timexes in the sentence above; there were no TLINKS from
events in this sentence to events elsewhere in the document. The fragment
exhibits two kinds of TLINKS: a local anchoring of the filed event to the
time expression /995 and three TLINKS that establish local orderings of
events. What is interesting are the TLINKS that are not there. There are no
global anchorings from events to time expressions in other sentences and
there is no ordering of events with events outside the sentence. What we
have here is a subgraph in the annotation with the nodes {e12 e¢13 e14 ¢20
t23}.

The average link span is the textual span between the two events or
timexes that are linked; it is measured by the number of sentence
boundaries that are crossed. A sentence is delimited by punctuation and
may include a main clause and an embedded clause. If all TLINKS are
intra-sentential, as in the example above, then the average link span is 0; if
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all TLINKS cross one sentence boundary, then the average link span is 1.
Table X has the links spans for TimeBank.

The baseline is the average link span if all links were annotated, that is, a
complete TimeBank annotation would have an average link span of just over
13. For TimeBank, the average link span after initial annotation is 2.42. The
number between brackets reflects the average link span when all links to the
document creation time (DCT) are taken out. For TimeBank, taking out the
DCT makes a big difference: 2.42 vs. 0.88. This means that most cross-
sentence links involve global anchoring to the DCT and that there is no
significant global anchoring to other time expressions and no significant
global ordering of events.

After initial closure, the link span goes up from 2.42 to 6.89. This figure
reveals that initial temporal closure adds a whole group of non-local links
that are systematically missed by the annotators. Average link span of non-
DCT links before closure does not vary a lot across document sizes, but after
closure it is higher for larger documents.

4.1.3. Inconsistencies
An inconsistency occurs when the relation type r; of a TLINK (x r; ¥) clashes
with the relation type 7, of a TLINK {x r, y ), where rl # r, and {(x r, y ) is
derived by closure from {(x r3 ¢) and {g r4 y ). An example from TimeBank® is
displayed in Figure 13.

Table X. Link spans for TimeBank

Link span
Before closure 2.42 (0.88)
After closure 6.89
Baseline 13.35

6212: "the first nine months"
i

After accounting for a small downward revision Friday to
December’s figures, the economy has been creating®! jobs at
a rate of 358,000 a month for the last four months and over
381,000 over the last three months after averaging®®® 242,000 for
the first nine months*?'? of 1997.

Figure 13. Example inconsistency from initial TimeBank annotation.
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One of the motivations for temporal closure is that it can catch incon-
sistencies like the one in Figure 13 where two TLINKS, one added by initial
annotation and one added by initial closure, are incompatible. The dotted
line represents a TLINK {e81 < t212), which was derived by closure from {e81
< e85) and (e85 = t212). Clearly, (€81 < t212) clashes with (e81 d t212), an
event cannot be both during and before a certain time period. In this par-
ticular case, the annotator decided that “‘averaging” and ‘‘the first nine
months” are simultaneous, but then continued stating that “creating” is both
after one and during the other.

All TimeBank articles were checked for inconsistencies using SputLink.
There were 32 documents with an inconsistency. Manual inspection showed
that all inconsistencies could be reduced to three annotator-added TLINKS
between three time objects. About half the inconsistencies were intra-sen-
tential, the others crossed 1-20 sentence boundaries, with the vast majority
only crossing one or two sentences. Those spanning more than two sentences
almost always included the document creation time.

SputLink can obviously help resolve the inconsistencies and thereby
increase the number of correct TLINKS by 32 and marginally improve TLINK-
precision, which, given the 5681 TLINKS in TimeBank, would increase by 0.56%.

The number of 32 inconsistencies is small considering the size of Time-
Bank. But a couple of small-scale experiments with an early version of
SputLink® have shown that more inconsistencies can pop up in the user-
prompting phase, when the annotators are asked to reflect on temporal
relations that are much less clear than those that they volunteer in an initial
round of markup. This particular experiment showed that about four to five
inconsistencies are generated during the user prompting stage of a document
with about 40 time objects. This has not been quantified thoroughly though.

4.2. INTER-ANNOTATOR AGREEMENT

Inter-annotator agreement (IAA) gives a hint as to how well-defined an
annotation task is: low IAA indicates an ill-defined task. However, as noted in
Section 1, a comparison of two TimeML annotations needs to take into
account that two annotations can be syntactically different yet semantically the
same. Temporal closure maps identical semantic annotations onto identical
syntactic annotations and therefore has the potential to increase IAA scores, as
was claimed previously by Katz and Arosio (2001) and Setzer (2001).

To calculate TAA, I adopt (Setzer, 2001), who, following (Hirschman
et al., 1998), used pairwise comparisons of precision and recall figures.’
For each text, one annotator is taken as the key and standard precision
and recall, as defined in (10), are calculated with the other annotator as
the response. Then annotators swap their key and response status and
P&R are calculated again. Finally, we average over the two sets of data.
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Table XI. TAA scores for eight documents

Document Inter-annotator agreement
Time objects Links Relations

AP900822-0016 87.1 25.8 27.1 17.8 20.3
APW19980428.0729 83.1 359 42.9 14.4 8.6
APW19980510.0720 78.9 24.1 16.7 16.1 10.9
CNN19980104.1600.0033 68.6 8.7 14.7 0.0 2.9
NYT19980212.0025 66.7 16.1 10.9 6.4 4.4
PRI19980218.2000.0431 80.9 0.0 0.0 0.0 0.0
SIMNO91-06338157 79.5 31.6 36.3 6.3 16.1
WSJ910627-0102 75.5 20.6 20.4 8.6 13.3
(10) Precision = matches in response

entities in response x 100

Recall _ matches in response % 100
entities in key

The TAA data in this section are obtained from an experiment at Brandeis
University. Eighteen documents'® were each annotated by two people using
the Alembic Workbench. The annotators had no prior exposure to Alembic
and had no background in linguistics. They each received about 2 hours of
training. Of the 18 documents, 10 were taken out of the sample because
closure generated inconsistencies or because one of the two annotators did
not add any TLINKS at all. The IAA measures before and after closure are in
Table XI. The time objects column contains the IAA for the presence of an
event or timex at some text extent. This is rather liberal because it is con-
sidered a match when the same extent is annotated as an event by one
annotator and as a timex by the other. The links column is similar to the time
objects column and reflects whether two text extents were connected by a
TLINK by the two annotators. The relations column is sensitive to the relation
type of the two TLINKS: a match requires the two relation types to be the
same. The first percentage inside the links and relations columns reflects the
IAA after the initial annotation phase, the second percentage the IAA after
the initial closure.

As expected, inter-annotator agreement before closure is low, varying
from 0% to 36%, with the average hovering around 20%. There is also
considerable disagreement amongst annotators on the relation type. There
were 104 instances where two annotators created a TLINK connecting the
same text objects, but in only 50 of those the annotators added the same
relation type attribute. IAA for relation type on average is about 9%, and
about 48% if links that do not occur in both annotations are ignored.
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What was not expected is that initial temporal closure has no obvious
effect on inter-annotator agreement: it goes up for some documents but down
for others. It may be unintuitive that temporal closure can actually lower
inter-annotator agreement, especially given the assertion that temporal
closure maps semantically identical but syntactically different annotations to
syntactically identical annotations. Consider Figure 14 for an example of
how closure can reduce IAA. The solid arrows are TLINKS added in the initial
annotation phase. The two annotations have one TLINK in common and differ
on the other: IAA is 50%. Now consider the dotted line which represents a
third TLiNnk added after initial closure. IAA is now down to 33%. In general,
closure can generate both TLINKS that raise IAA and TLINKS that push down
IAA and there are many annotation configurations where the latter is more
prevalent than the former.

So there is no evidence that initial temporal closure has a positive (or
negative) influence on TAA. This is contrary to results from (Katz and
Arosio, 2001) who reported that annotations were syntactically identical in
70% of the cases and semantically identical in 85% of the cases. It is not
clear however whether they measured the same thing as I'm measuring
here: (Katz and Arosio, 2001) only looked at annotation within a sentence
and used a very small set of temporal relations. A comparison with
(Setzer, 2001) is not possible because she does not provide IAA figures
after temporal closure. It should also be noted that the Brandeis experi-
ment was performed by a very diverse group of naive, unpaid and possibly
unmotivated annotators. A larger-scale experiment with less naive anno-
tators is sorely needed.

But even given these tentative results, we can still speculate with good
cause that IAA scores will go up when two annotations both have a suffi-
ciently high density. In that case the IAA figures in the links column have no
choice but to go up, with the numbers in the relations column probably
following in their wake.

Figure 14. Example of how closure can reduce IAA.
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4.3. TEXT-SEGMENTED CLOSURE

Initial closure does not provide a complete annotation: only one in 20
potential links in TimeBank are made available after initial closure. The data
in this section concentrate on phase three of the annotation: the interactive
closure with user-prompting. I will show that a near-complete annotation can
be obtained in linear time without having to ask the annotator to supply
non-local temporal relations.

Some of the data in this section are derived using a human annotator
actually answering the prompting. But the vast majority of data was
collected using a simulation. In this simulation, an added component to
SputLink stands in for the user and provides the relation type. This
relation type is generated randomly, but relative weights were used to
model the observation that some relations are more frequent than others.
Relation type distribution data from TimeBank provided the relative
frequencies of TimeML relations. The only exception was the unknown
relation, which was added to TimeML predominantly to allow for
underspecification in the prompting phase. Distribution data for this
relation type were gleaned from the manual prompting experiments, which
indicated that about 24% of user prompts result in the addition of an
unknown relation type.

The simulation was set up because there were not nearly enough data
to make any significant comparative statements. Properly evaluating the
claims about text-segmented closure, the optimal segment size and the
optimal prompting strategy would require a large-scale annotation effort
with a medium-sized group of annotators (about 5-10) annotating a range
of articles using an array of different user-prompting setups. There were
simply not enough resources to do this and the next best option was to set
up a simulation, with some human assisted closure as a sanity check.
Using a simulation is acceptable in the present case because, unlike with
inter-annotator agreement or precision, the data that I'm trying to gen-
erate here are quantitative; that is, I'm interested in how many TLINKS are
derived, not what TLINKS.

Consider the data in Table XII, which was filled using a simulation of
user-prompting with a segment size of three sentences where the segments
always included the document creation time.

As you can see, initial and interactive closure together derive a little
over 94% of all TLINKS (7.6 + 86.7), which is significantly higher than the
76% share of derived TLINKS after phase 2 (cf. Table VII). This particular
local prompting setup delivers a global density of just over 94%. Note
that all that’s needed to achieve a density of 94% is an average of about
22 + 24 = 46 user-specified TLINKS per document. The massive variation
in density we saw before user-prompting is not observed here. About 95%
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of all documents have densities over 80%, 44% have densities over 98%
and 20% have a density of 100%.

Let’s compare the figures in Table XII to the prompting statistics reported
by (Setzer, 2001). She gives closure figures for six newswire articles from the
New York Times from 1996. The comparison is in Table XIII.

The difference in link-generating capacity of the two closure engines (82%
versus 94%) may tentatively be explained as follows:

1. SputLink has a bigger rule base. Setzer uses an incomplete set of 10
inference rules; SputLink employs a complete relation composition table
with 638 entries.

2. The smaller sample size of Setzer’s corpus results in a higher variation of
closure percentage, potentially skewing the results. For example, one of
Setzer’s articles only had 67.4% of links derived by closure. Individual
data for the other files were not available.

3. Density is 100% for Setzer and 94.2% for SputLink. The last 6% may
have taken more prompting-cycles to complete.

4. The simulation skews the results.

The next section on optimal segment size makes it clear that explanation
number three is not correct. As for the possibility that the simulation skews
the results: manual experiments do indeed suggest that the simulation slightly
underreports the number of prompts needed to achieve a certain density, but

Table XTI. Number of TLINKS derived with simulated user-prompting

Links/doc Share % Density %
Phase 1 Annotated links 22.1 2.8 2.6
Phase 2 Initial closure 60.7 7.6 7.1
Phase 3 Prompted links 23.8 3.0 2.8
Interactive closure 695.0 86.7 81.7
Total 801.6 100.1 94.2

Table XIII. Comparison of user-prompting stages

Setzer SputLink

Links/doc Share % Links/doc Share %
Annotated 18.5 4.0 22.1 2.8
Prompted 63.5 13.8 23.8 3.0
Derived 387.3 82.2 755.7 94.2

Total 469.3 100.0 801.6 100.0
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Table XTV. Prompting simulation results for sentence segments

Number of sentences in segment

1 2 3 4 5 6 7 8 9

With DCT
Density in % 77.5 904 943 953 975 982 984 984  99.2
Prompts/doc 17.5 219 232 248 259 288 262 262 264
Without DCT
Density in % 289 757 902 954 974 975 984 984  98.7
Prompts/doc 13.7 214 240 244 255 262 267 263 263

this is not nearly enough to explain the difference between the link-generating
capacity of Setzer’s closure algorithm and SputLink.

4.3.1. Optimal Segment Size

Two of the parameters that need to be set for text-segmented closure are
the segment size unit and the number of units in a segment. There are two
obvious choices for the unit: the sentence and the event or timex. The
sentence is here again understood as a text extent between two punctua-
tion markers. An additional question is whether the document creation
time (which is a bit like a global time expression) should be included in
the segment or not. There is always going to be a tradeoff between effort
(number of prompts) and result (density), but the ultimate goal is to get a
high enough density with a number of user prompts that is feasible for
human annotation.

Table XIV shows how link density and number of prompts are related
when the sentence is the unit of measurement. The top half of the table
presents the figures when the DCT is included in each segment; for the
bottom half the DCT is left out of all segments. The data in this table support
two significant observations:

1. All that’s needed to achieve near-completeness of TimeBank is about 25—
30 user prompts per document. Not shown in the table are the numbers
for individual documents. Not surprisingly, the amount of prompts is
higher for larger documents. But the number of prompts was lower than
the number of time objects for all documents which suggests that user
prompting in text-segmented closure is linear relative to the document
size.

2. Local prompting within a window of three to four sentences supports a
density in the mid nineties. This is a nice result because it means that text-
segmented closure does not need to degrade to large segments if high
density is required. So prompting can remain essentially local. The table
also shows that allowing restricted global prompting by including the
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Table XV. Prompting simulation results for node segments

Number of nodes in segment

1 2 3 4 5 7 10 15 20

With DCT
Density in % 623 774 835 862 8§93 925 946 967 978
Prompts/doc 11.8 18.3 19.6  21.1 220 232 248 288 263
Without DCT
Density in % 97 358 579 743 793 905 95.1 972 978
Prompts/doc 0.0 16.9 19.6 209 222 234 245 255 26.1

DCT gives much better results for the smaller segments. This effect
evaporates when the segments are larger than three sentences.

This picture does not change when we take segment sizes to be determined by
number of nodes (events and timexes) rather than sentences, as displayed in
Table XV. Using the node as the unit is in some sense more pure because it
will not allow extremely long or short sentences to skew the results. That this
indeed happens with sentence-sized segments becomes clear when we look at
the range of measurements for individual files. For example, the average
density when the segment size is three sentences (with the DCT included) is
94.3%, but this hides the fact that there are considerable variations. Sixteen
of the documents had a density below 90%, six below 80%, and one had a
density of 17%. If the segment size is set to ten nodes then the spread is much
smaller: seven documents with density below 90%, two below 80%, and none
below 65%. To frame this in more standard statistical terms we can use the
standard deviation ¢ which indicates how tightly measurements are clustered
around the mean. This is defined as

T(x -’
- 3
: _ G)
where p is the mean and » is the number of measurements. The standard
deviation for the three-sentence segments is 12.2, for the ten-node segments it
is 5.1.

I already discussed that Table XIV shows that user-prompting is linear to
the document size in time objects. In the early days of SputLink there was
some concern that global user prompting was potentially quadratic to the size
of the document because the number of potential links is quadratic to doc-
ument size. If this were true, then the number of prompts per document
would go up much faster than actually happens in Tables XIV and XV. What
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Figure 15. The relation between number of prompts and density.

we see instead is that density and number of prompts go up pretty much
evenly and that the relation is quite linear. And, indeed, setting the segment
size to infinity results in 100% density with only 27.1 prompts per document.
The documents used for this simulation did not show any outliers, in other
words, the worst-case scenario of quadratic user-prompting did not occur in
any of the documents. Figure 15 illustrates the linearity of the relation
between prompts and density.

So the simulation results do not display the worst-case scenario of qua-
dratic user-prompting. This was corroborated by a couple of manual
experiments where the segment size was set to infinity and where the anno-
tator was not abused with quadratic user-prompting at all. This result can be
explained by the fact that when the density of an annotation increases then
the chance that there is a path between any two nodes X and Y also increases.
And if there is a path between X and Y, then closure is often able to draw a
TLINK directly from X to Y.

Allin all, text-segmented closure has proven to be a viable approach to the
interactive closure phase of the annotation effort. It provides for near
complete annotations with a linear annotation effort while only prompting
the user for local temporal relations, which simplifies the annotation task.

5. Conclusion

A temporal closure component can greatly enhance temporal annotation. I
introduced SputLink, a temporal closure component based on James
Allen’s interval algebra and embedded in an annotation environment.
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I have shown that SputLink increases the density of an annotation and
helps reduce the locality of manual annotation. That is, closure generates
temporal relations between events that are not close to each other in the
document.

With closure, it is possible to ensure consistency and much easier to
achieve near completeness. Densities of over 90% are possible with interac-
tive closure and user-prompting. Experiments showed that temporal anno-
tation is a task that is linear to the size of the document. Text-segmented
closure simplifies the annotation process in the sense that the annotator will
never be required to specify temporal relations between events that are not
close in textual proximity. Yet text-segmented closure does not have a large
negative impact on the annotation density.

The main goal in any annotation strategy should be to create a fully
connected annotation graph. Running closure over a fully connected graph
generates the largest number of inferences. Text-segmented closure is able to
achieve that connectedness.

Notes

! Precision is defined as the percentage of correct answers. Recall is defined as the

percentage of correct answers relative to all possible correct answers. Reported precision
and recall figures range from 59% to 94%, depending on the complexity of the temporal
annotation subtask.

This is probably a rather pessimistic figure since it is based on a small experiment with
naive annotators. Trained annotators that have memorized a solid set of annotation
guidelines should choose to add the same links more often.

This begs the empirical question of how often false inferences are drawn. A small number
of these false hits and slightly lower precision may be acceptable as long as there would be
a significant increase in recall.

This example was taken from (Schilder, 1997).

This fragment was taken from TimeBank article APW19980227-0476.

Source: TimeBank document NYT19980206.0460.

Precision is defined in (10) in the next section.

This version did not use a complete composition table and allowed inconsistencies to be
generated during the user-prompting phase.

An older standard measure to measure inter-rater agreement is the Kappa coefficient,
which adjusts for the number of agreements that would have occurred by chance. This
coefficient though is not well suited for annotation tasks that cannot be construed as a
pure classification task.

These documents were not from TimeBank but they were taken from the same domain.
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