ORIGINAL ARTICLE

The *r‑X1* **deletion induces terminal defciencies in the maize B chromosome**

Yen‑Hua Huan[g · T](http://orcid.org/0000-0002-3244-1850)zu‑Che Lin · Wan‑Yi Chiou · Ya‑Ming Cheng

Received: 16 May 2021 / Revised: 16 August 2021 / Accepted: 20 August 2021 / Published online: 3 September 2021© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract In addition to causing the nondisjunction of maize B and normal A chromosomes at the second megaspore division during embryo sac development, the $r-XI$ deletion results in terminal deficiencies (TDs) in various A chromosomal arms, but whether the *r-X1* deletion also induces TDs of the maize B chromosome remains unknown. To answer this question, the chromosomal composition in the *r-X1-*containing progeny of *r-X1/R-r* female parents carrying two standard B chromosomes was determined. Nine of 104 (8.7%) examined kernels contained a smaller telocentric B chromosome, and one of these (designated Bdef-1) was further identifed as a TD with a breakpoint in the third distal heterochromatic region of the B chromosome. Thus, the results indicated that the *r-X1* deletion could also induce TDs of the maize B chromosome during megaspore divisions. The Bdef-1 chromosome lacked nondisjunctional behavior, and this behavior was restored by the presence of the B chromosome in the cell. A transmission analysis of the Bdef-1 chromosome revealed

Communicated by Andreas Houben.

T.-C. Lin

that loss of the distal portion of the B chromosome reduced female but not male transmission of the B chromosome. Furthermore, the Bdef-1 chromosome was used to more fnely map B-derived miRNA genes on the B chromosome. Our results indicate that the *r-X1* deletion results in TDs of the B chromosome in maize, and the *r-X1* deletion system can thus be used to generate a series of terminally truncated B chromosomes that may be used to map features of the B chromosome, including genes and properties related to B chromosome functions.

Keywords $r-XI$ deletion \cdot B chromosome \cdot Terminal deficiency · Meiotic loss · Mapping · Maize

Abbreviations

- CK Centromeric knob DAPI 4',6-Diamidino-2-phenylindole DE Distal euchromatin DH Distal heterochromatin FISH Fluorescence in situ hybridization RFLP Restriction fragment length polymorphism PE Proximal euchromatin
-

TD Terminal defciencyIntroduction

The *r-X1* deletion is a small intercalary deletion located within the long arm of maize chromosome 10 and was originally produced by L.J. Stadler via X-ray induction. This deletion, which is only transmitted

Y.-H. Huang \cdot W.-Y. Chiou \cdot Y.-M. Cheng (\boxtimes) Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan e-mail: ymcheng@dragon.nchu.edu.tw

Department of Plant Industry, College of Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan

through the female gamete (Weber [1983\)](#page-9-0), induces nondisjunction of normal A chromosomes at the second megaspore division during embryo sac development (Lin and Coe [1986](#page-8-0); Simcox et al. [1987](#page-9-1)) and generates monosomes and trisomes of various A chromosomes (Weber [1983](#page-9-0)). Monosomes generated with the *r-X1* deletion system have been employed in a variety of applications, including the study of gene dosage effects, the analysis of univalent chromosomal behavior, the characterization of monosomic syndromes, and the mapping of genes to chromosomes (Weber [1983\)](#page-9-0). In addition to the production of aneuploid gametes, the *r-X1* deletion can induce breaks in A chromosomes to generate terminal defciencies (TDs) in maternal plants (Lin [1987](#page-8-1); Lin et al. [1990](#page-8-2)), and these TDs have been used to physically map restriction fragment length polymorphism (RFLP) markers on specifc chromosomal arms (Lin et al. [1997\)](#page-8-3).

Our previous study showed that the *r-X1* deletion can also induce nondisjunction of the maize B chromosome during the second megaspore division and the frst microspore division, but whether the *r-X1* deletion causes TDs of the B chromosome was not analyzed (Tseng et al. [2018](#page-9-2)). The maize B chromosome is an additional nonessential chromosome that has no phenotypic effect on plants (Jones et al. [2008\)](#page-8-4) and is mitotically telocentric (Randolph [1941\)](#page-9-3). However, the occurrence of spontaneous B chromosomal variations is rare, and few cases have been reported to date (Randolph [1941](#page-9-3); Cheng et al. [2016\)](#page-8-5). At least three mechanisms have evolved for ensuring B chromosome survival: nondisjunction during the second microspore division (Longley [1927](#page-8-6); Roman [1947](#page-9-4)), preferential fertilization of the egg by sperm containing B chromosomes (Roman [1948](#page-9-5)), and prevention of univalent meiotic loss (Carlson [1986](#page-8-7)). The nondisjunction mechanism requires *trans*-acting elements located in the proximal and distal euchromatic regions of the B chromosomal long arm (Ward [1973](#page-9-6); Lin [1978](#page-8-8)), and at least one proximal region and one distal region of the B chromosome suppress the meiotic loss of the univalent B chromosome (Carlson and Roseman [1992\)](#page-8-9). The maize B chromosome has been widely used for the deletion mapping of B- or A-chromosome-located genes and molecular markers via experiments involving B-A translocations (Roman and Ullstrup [1951;](#page-9-7) Beckett [1978;](#page-8-10) Alfenito and Birchler [1993;](#page-8-11) Cheng and Lin [2003](#page-8-12); Peng et al. [2005;](#page-9-8) Lamb et al. [2007;](#page-8-13) Peng and Cheng [2011](#page-9-9); Chien et al. [2014;](#page-8-14) Lin et al. [2014](#page-8-15); Kao et al. [2015](#page-8-16); Hong et al. [2020;](#page-8-17) Huang et al. [2020](#page-8-18)).

The purpose of the current study was to determine whether the *r-X1* deletion also induces TDs of the maize B chromosome during megaspore divisions. We analyzed the chromosomal composition of the *r-X1*-containing progeny of maternal *r-X1* plants carrying two standard B chromosomes. The results indicate that the *r-X1* deletion also induces breaks in the B chromosome during megaspore divisions. Subsequently, we cytologically characterized one B chromosomal TD and found that the studied TD resulted from a break in the third distal heterochromatic region of the B chromosome. The truncated chromosome lost its nondisjunction property, and a transmission analysis suggests that loss of the distal portion of the B chromosome reduces female but not male transmission of the B chromosome. Additionally, the physical locations of three B-derived miRNA genes were determined relative to the truncation breakpoint.

Materials and methods

Plant materials

r-X1/R-r, *r/r*, and *R-r/R-r* stocks of inbred W22 maize carrying the typical B chromosomes have been propagated in our laboratory for decades (Tseng et al. [2018\)](#page-9-2). From the *r-X1/R-r* (W22) x *R-r/R-r* $(W22) + 2B$ cross, three *r-X1* plants with two standard B chromosomes (*r-X1/R-r*+2B) were identifed by chromosomal observation and used as female plants for crossing with *r/r* (W22) plants to identify B chromosomal defciencies. The chromosomal composition of the resulting F1 sibling *r-X1/r* (colorless) kernels was analyzed, and plants carrying B chromosomal defciencies were crossed as male parents with *r/r* (W22) females for propagation.

Cytological procedures

The chromosomal composition in Feulgen-stained root tip cells was determined as described by Lin [\(1977](#page-8-19)). Chromosomes at the pachytene stage were prepared from pollen mother cells following the standard protocol (Cheng and Lin [2003\)](#page-8-12). Fluorescence in situ hybridization (FISH) was performed

Fig. 1 Map positions of three B-derived miRNA genes (*black lines*) in relation to breakpoints (*arrows*) of four B-10L translocations and the Bdef-1 chromosome. *S* short arm, *CK* cen-

according to Cheng ([2010\)](#page-8-20). A total of six B chromosome sequences, including the B-repeat (Alfenito and Birchler [1993;](#page-8-11) Cheng [2010](#page-8-20)), Stark repeat (Stark et al. [1996](#page-9-10); Lamb et al. [2007](#page-8-13)), CL-repeat (Cheng and Lin [2004](#page-8-21)), CentC repeat (Ananiev et al. [1998;](#page-8-22) Peng and Cheng [2011](#page-9-9)), telomere repeat (Wang and Chen [2003\)](#page-9-11), and 180-bp knob repeat (Peacock et al. [1981](#page-8-23); Cheng and Lin [2003\)](#page-8-12), were used as FISH probes. The resulting fuorescence signals were captured using a cooled charge-coupled device camera (DP72, Olympus Corp.) on an Olympus BX51 fuorescence microscope and were processed using Photoshop software (Adobe, San Jose, CA, USA).

B-derived miRNA analysis

Primer pairs targeting three B-derived miRNAs, namely, miRmB1, miRmB2 and miRmB3, were used in the stem-loop RT-PCR procedure as previously described by Huang et al. [\(2020](#page-8-18)). The mapping of the positions of the three B-derived miRNA genes on the B chromosome using four B-10L translocations (TB-10L7, TB-10L18, TB-10L26, and TB-10L36) was reported by Huang et al. [\(2020](#page-8-18)) and is summarized in Fig. [1](#page-2-0) along with the position of the deletion

tromeric knob, *PE* proximal euchromatin, *DH1*-*DH4* distal heterochromatin 1–4, *DE* distal euchromatin

breakpoint of the B chromosomal deficiency determined in this study.

Results

The *r-X1* deletion induces deficiencies in the maize B chromosome

To determine whether the *r-X1* deletion could induce defciencies in the maize B chromosome, *r-X1*/*R* $r+2B$ (W22) plants, which served as the female parents, were crossed with *r/r* (W22) males, and the chromosomal constitution of F_1 sibling $r-X1/r$ (colorless) kernels from three ears was analyzed (Table [1\)](#page-2-1). Six (5.8%) of 104 analyzed kernels were aneuploid; among these six kernels, fve were monosomes, and the remaining kernel was a trisome. In addition, 72.1% (75/104) of the *r-X1/r* kernels carried 1B, and 15.4% (16/104) and 3.8% (4/104) carried 0B and 2B, respectively. This result was consistent with previously reported fndings that the *r-X1* deletion can induce B chromosome nondisjunction during megaspore divisions (Tseng et al. [2018\)](#page-9-2). Moreover, nine (8.7%) kernels contained 20 A chromosomes and one

Chromosomal composition Ear no Total no $20+1B$ $20+0B$ $20+2B$ $19+1B$ $19+0B$ 21 $20+1B$ def^t 1 31 $22 (70.1)^a$ 4 (12.9) $2 (6.5)$ 0 1 (3.2) 0 2 (6.5) 2 40 27 (67.5) 6 (15.0) 1 (2.5) 1 (2.5) 1 (2.5) 1 (2.5) 3 (7.5) 3 3 $23(69.7)$ $3(9.1)$ $1(3.0)$ $2(6.1)$ 0 0 $4(12.1)$

Total 104 $72 (69.2)$ 13 (12.5) $4 (3.9)$ $3 (2.9)$ $2 (1.9)$ $1 (1.0)$ $9 (8.7)$

Table 1 Cytological classifcation of colorless kernels produced by the *r-X1*/*R-r*+2B (W22) x *r/r* (W22) crosses

a The numbers in parentheses are percentages

^b Bdef B chromosomal deficiency with a size smaller than that of the standard B chromosome

smaller telocentric chromosome. These additional chromosomes were clearly smaller than the standard B chromosome, and their sizes were visually diferent from each other (Fig. [2\)](#page-3-0), which indicated the presence of TDs in the B chromosome induced by the *r-X1* deletion.

Cytological analysis of B chromosomal defciency

Among the nine possible B chromosomal deficiencies, one (designated Bdef-1) was successfully propagated and used for further analysis. At mitotic metaphase, the morphology of the Bdef-1 chromosome was similar to that of the B chromosome but had a smaller size (Fig. $3a$). FISH signals were observed on the Bdef-1 chromosome using probes corresponding to the Stark repeat sequence specifc to the third distal heterochromatic region of the B chromosome (Lamb et al. [2007\)](#page-8-13) and the B chromosome centromere-specifc sequence B-repeat (Alfenito and Birchler [1993](#page-8-11)), which confrmed that the Bdef-1 chromosome was derived from the B chromosome (Fig. [3b](#page-4-0)). Although a strong signal from the B-repeat probe was observed on the Bdef-1 and intact B chromosomes, a markedly weaker signal from the Stark repeat probe was obtained with the Bdef-1 chromosome than with an intact B chromosome, and this result is consistent with a truncation breakpoint in the long arm of the B chromosome in the region enriched for the Stark repeat.

To determine the detailed structure of the Bdef-1 chromosome, bivalent chromosomes were observed at the pachytene stage. The pachytene B chromosome consists of a short arm, a centromeric knob (CK), a proximal euchromatin (PE), four distal heterochromatins (DH1-DH4), and a distal euchromatin (DE) (Fig. [3c](#page-4-0)). The pachytene Bdef-1

chromosome was similar to the B chromosome but lost DE, DH4, and the distal half of DH3 (Fig. [3d](#page-4-0)). A heteromorphic pair of the B and Bdef-1 chromosomes was very clear at the pachytene stage; at this stage, the homologous pairing of the short arm, CK, PE, DH1, DH2 and a portion of DH3 (DH3') from the Bdef-1 chromosome was complete, and the hemizygous portion contained DH4, DE, and the distal half of DH3 (Fig. [3e\)](#page-4-0).

To further investigate the organization of the Bdef-1 chromosome, fve repetitive elements in maize that have been mapped to various regions of the B chromosome, including the B-repeat, 180-kb knob repeat, telomere repeat, CL-repeat, CentC repeat, and Stark repeat, were used as FISH probes for the hybridization of pachytene bivalents of the B or Bdef-1 chromosome (Fig. [4](#page-5-0)). B-repeat signals occupied the distal half of CK on the B and Bdef-1 chromosomes, and telomere signals were observed at both ends of the two chromosomes (Fig. [4a](#page-5-0), [b\)](#page-5-0). Signals of the 180-bp knob repeat were detected in the proximal half of CK on the B and Bdef-1 chromosomes (Fig. [4c,](#page-5-0) [d](#page-5-0)), and the CL-repeat probe hybridized to the frst three heterochromatic regions of both chromosomes (Fig. [4d,](#page-5-0) [f\)](#page-5-0). CentC signals were observed in multiple regions along the length of the B chromo-some, as described by Lamb et al. ([2005\)](#page-8-24), and these regions included a CK region that colocalized with a region of intense B-repeat signaling and the four heterochromatic regions (Fig. $4g$). The distribution of CentC signals on the Bdef-1 chromosome was identical to that on the B chromosome with the exception that the signal at DH4 was lost on the Bdef-1 chromosome (Fig. [4h](#page-5-0)). The Stark repeat was detected specifcally at DH3 of the B chromosome and DH3' of the Bdef-1 chromosome (Fig. $4i$, [j](#page-5-0)), but the Stark repeat signals at DH3' were markedly weaker.

Fig. 2 Mitotic metaphase B chromosome and B chromosomal defciencies. All B chromosomal deficiencies are telocentric and smaller than the standard B chromosome. *B* B chromosome, *Bdef* B chromosomal defciency, *Scale bar* 10 μm

Fig. 3 Chromosomal structure of the B and Bdef-1 chromosomes. **a**, **b** A mitotic metaphase cell containing the typical B (*arrowhead*) and Bdef-1 (*arrow*) chromosomes. Maize B-specifc B-repeat (*red*) and Stark repeat (*green*) probes were used to detect the B and Bdef-1 chromosomes. The chromosomes were stained with DAPI (*blue*). **c** The pachytene B chromosome consists of a short arm (*S*), a centromeric knob (*CK*), proximal euchromatin (*PE*), four distal heterochromatins (*DH1*-*DH4*), and distal euchromatin (*DE*). **d** The pachytene Bdef-1 chromosome is similar to the B chromosome but does not have DE, DH4, and a portion of DH3. **e** Heteromorphic pairing of the B and Bdef-1 chromosomes at the pachytene stage. *DH3'* indicates the residue of DH3 on the Bdef-1 chromosome. All the *scale bars* are equal to $10 \mu m$

Transmission of the Bdef-1 chromosome

The transmission frequencies from the male and female parents recorded in W22 plants carrying a univalent B or Bdef-1 chromosome were 43.1% and 29.4% for the B chromosome, respectively, and 47.5% and 12.4% for the Bdef-1 chromosome, respectively (Table [2](#page-6-0)). The transmission frequencies of the univalent Bdef-1 and B chromosomes from male parents were similar, but the transmission **Fig. 4** FISH analysis of the pachytene Bdef-1 chromosome. Pachytene bivalents of the B (**a**, **c**, **e**, **g**, **i**) and Bdef-1 (**b**, **d**, **f**, **h**, **j**) chromosomes were hybridized with the B-repeat probe (*red*) and various maize repetitive elements (*green*), including a telomere repeat (**a**, **b**), 180-bp knob repeat (**c**, **d**), CL-repeat (**e**, **f**), CentC repeat (**g**, **h**), and Stark repeat (**i**, **j**). The chromosomes were stained with DAPI (*blue*). All the *scale bars* are equal to 10 μm

frequency of the Bdef-1 chromosome from the female parent was signifcantly lower than that of the B chromosome. Nondisjunction of the B chromosome was observed from the male parent, but the Bdef-1 chromosome lacked the ability to undergo nondisjunction. However, the coexistence of the Bdef-1 chromosome with the normal B chromo-some restored its nondisjunction ability (Table [3](#page-6-1)). This result was reasonable because the Bdef-1 chromosome lacks the DE region of the B chromosome, which is essential for nondisjunction (Ward [1973\)](#page-9-6).

 $\bigcircled{2}$ Springer

Physical mapping of three B-derived miRNA genes on the B chromosome using the Bdef-1 chromosome

Primer pairs that amplify three B-derived miRNAs (miRmB1, miRmB2, and miRmB3) whose genes have been mapped to defnitive B chromosomal regions were used for stem-loop RT-PCR analysis of the total RNAs of $W22+0B$, $W22+1B$, and $W22 + 1Bdef-1$ $W22 + 1Bdef-1$ $W22 + 1Bdef-1$. As shown in Fig. 1, the miRmB3 gene was located in a region that includes CK and the proximal half of PE, and the miRmB1 gene was located in DH3. The miRmB2 gene was mapped

to a region including DH4 and DE of the B chromosome (Huang et al. [2020\)](#page-8-18). The B-specifc PCR products of miRmB1 and miRmB2 were present in $W22+1B$ RNA but absent in $W22+1B$ def-1 RNA (Fig. [5](#page-7-0)), which suggests that the positions of both miRNA genes are distal to the breakpoint of the Bdef-1 chromosome. The mapped position of the miRmB3 gene was proximal to the breakpoint of the Bdef-1 chromosome because it could be amplified from both $W22 + 1B$ and $W22 + 1B$ def-1 RNAs (Fig. [5](#page-7-0)). According to the results, the position of the miRmB1 gene can be narrowed down to the distal half of DH3 between the breakpoints of TB-10L36 and the Bdef-1 chromosome. The mapped positions of the three B-derived miRNA genes in relation to the breakpoints of the four B-10L translocations and the Bdef-1 chromosome are summarized in Fig. [1](#page-2-0).

Discussion

Previously reported data show that the *r-X1* deletion in maize induces the nondisjunction of chromosomes A and B during the second megaspore division (Lin and Coe [1986](#page-8-0); Tseng et al. [2018\)](#page-9-2) and causes breaks to generate TDs on various A chromosomal arms (Lin [1987](#page-8-1); Lin et al. [1997\)](#page-8-3). The frequency of TDs varies among diferent A chromosomes and ranges from 0% to approximately 1.2% (Lin et al. [1990](#page-8-2)). However, whether the *r-X1* deletion also induces TDs on the maize B chromosome is unclear. If this is true, B chromosome deletions would be observed in *r-X1*-containing kernels generated from *r-X1/R-r*+2B female parents, and the deleted region would be sufficiently large to be distinguished by light microscopy. Among the examined *r-X1*-containing kernels, 8.7% contained various B chromosomal defciencies with sizes smaller than that of the standard B chromosome

Table 3 Nondisjunction of the Bdef-1 chromosome in the presence of the B chromosome

Female parent	Male parent	B and Bdef-1 frequency in progeny						Total
			2Β	$2B + 2Bdef-1$	4B	1 Bdef-1	$2Bdef-1$	
W ₂₂	$W22 + 2B + 1Bdef-1$ 16 (41%) 12 (30.8%)			3(7.7%)	$2(5.1\%)$		$1(2.6\%)$ $5(12.8\%)$	- 39

Fig. 5 Mapping of B-derived miRNA genes with the Bdef-1 chromosome. Stem-loop RT-PCR primers of three B-derived miRNAs, namely, miRmB1, miRmB2, and miRmB3, were used to analyze total RNAs from W22+0B, W22+1B, and W22+1Bdef-1. *miR156* was used to confrm equal amounts of RNA. *M* 100-bp marker, *NC* negative control (water)

at mitotic metaphase (Table [1](#page-2-1), Fig. [2](#page-3-0)). The frequency of TDs in the B chromosome substantially exceeds that of A chromosomes, and this fnding is rational because the B chromosome is nonessential and exerts no phenotypic efect on plants (Jones et al. [2008](#page-8-4)). Thus, the *r-X1* deletion can induce breaks in the B chromosome during megaspore divisions.

One of these B chromosomal deficiencies, Bdef-1, was further proven to be a TD with a breakpoint in the middle of DH3 (Fig. $3d$, [e\)](#page-4-0). A FISH analysis of various B chromosome repetitive elements showed an identical signal distribution between the pachytene B and Bdef-1 chromosomes (Fig. $4c-j$), which indicated that no obvious chromosomal rearrangements occurred during the formation of the Bdef-1 chromosome. Moreover, FISH signals of telomere repeats were present at both ends of the Bdef-1 chromosome (Fig. $4b$), which suggested that de novo telomere formation occurred at the breakpoint of the Bdef-1 chromosome, as described by Santos-Serejo and Aguiar-Perecin ([2016\)](#page-9-12). The Bdef-1 chromosome lost its nondisjunction ability due to the absence of DE, which contains a *trans*-acting element essential for B chromosome nondisjunction (Ward [1973](#page-9-6)). However, the presence of a standard B chromosome restored the nondisjunction of the Bdef-1 chromosome (Table [3](#page-6-1)), which was similar to the behavior of mini B chromo-somes generated by other means (Han et al. [2007](#page-8-25); Cheng et al. [2016\)](#page-8-5) because DE was again present in the cell.

The meiotic loss of the univalent B-9 chromosome of TB-9Sb in females has been reported previously (Carlson [1986](#page-8-7)), and the results show that at least one proximal region and one distal region (although without DE) on the B chromosome suppress meiotic loss (Carlson and Roseman [1992\)](#page-8-9). In our study, the transmission frequency of the univalent B chromosome from the female parent was only 29.4%, which indicated a high rate of meiotic loss (Table [2\)](#page-6-0). However, the transmission frequency (12.4%) of the univalent Bdef-1 chromosome from the female parent was signifcantly lower than that of the univalent B chromosome (Table [2](#page-6-0)). This result indicated that DH4 and the distal half of DH3 may be needed for the suppression of meiotic loss. In contrast, the transmission frequencies of both the univalent Bdef-1 and B chromosomes from the male parents were close to the theoretical 50% frequency of a univalent chromosome (Table [2\)](#page-6-0). This result indicated that the meiotic loss of a univalent chromosome might not occur in the univalent B chromosome from the male parent or that the B chromosomal regions proximal to the Bdef-1 breakpoint strongly suppress meiotic loss through the male parent.

The breakpoints of A chromosomal TDs induced by the *r-X1* deletion have been determined to be random (Lin et al. [1990](#page-8-2)) and have been used for the physical mapping of RFLP markers on four A chromosomal arms (Lin et al. [1997\)](#page-8-3). However, the utilization of A chromosomal TDs for long-term physical mapping in maize is not possible because these TDs cannot be propagated. Due to the lack of phenotypic efects of the B chromosome on maize plants (Jones et al. [2008\)](#page-8-4), it is possible to produce and propagate a large collection of B chromosomal TDs mediated by the $r-XI$ deletion, which may offer a new system for assigning B-specifc molecular markers or genes to particular B chromosomal regions by deletion mapping. Using the Bdef-1 chromosome identifed in this study, we further physically mapped the B-derived miRmB1 gene to the distal half of DH3 (Fig. [1](#page-2-0)), but whether the *r-X1* deletion acts randomly on the B chromosome needs to be further determined.

In this study, we confrmed that *r-X1* deletion could induce TDs in the maize B chromosome of maternal plants. One B chromosomal TD with a breakpoint in the middle of DH3 of the B chromosome was identifed, and this TD causes loss of nondisjunction ability at the second pollen mitosis and reduces the female but not male transmission of the B chromosome. Moreover, the TD was used to map B-derived miRNA genes. Accordingly, the *r-X1* deletion system will be a valuable resource for generating B chromosomal TDs with various breakpoints along the entire B chromosome.

Funding This work was supported by grants from the Ministry of Science and Technology of Taiwan (MOST 107-2311-B-005-003 and MOST 110–2313-B-005-009).

References

- Alfenito MR, Birchler JA (1993) Molecular characterization of a maize B chromosome centric sequence. Genetics 135:589–597
- Ananiev EV, Phillips RL, Rines HW (1998) Chromosomespecifc molecular organization of maize (*Zea mays* L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078
- Beckett JB (1978) B-A translocations in maize. J Hered 69:27–36
- Carlson WR (1986) The B chromosome of maize. CRC Crit Rev Plant Sci 3:201–226
- Carlson WR, Roseman RR (1992) A new property of the maize B chromosome. Genetics 131:211–223
- Cheng YM, Lin BY (2003) Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics 164:299–310
- Cheng YM, Lin BY (2004) Molecular organization of large fragments of maize B chromosome: indication of a novel repeat. Genetics 166:1947–1961
- Cheng YM (2010) Evolution of the heterochromatic regions on maize B long arm based on the sequence structure of CL-repeat variants. Chromosome Res 18:605–619
- Cheng YM, Feng YR, Lin YP, Peng SF (2016) Cytomolecular characterization and origin of de novo formed maize B chromosome variants. Chromosome Res 24:183–195
- Chien YL, Lin CY, Lo KL, Cheng YM (2014) Development and mapping of CL-repeat display markers on the maize B chromosome. Cytogenetic Genome Research 144:227–236
- Han F, Gao Z, Yu W, Birchler JA (2007) Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell 19:3853–3863
- Hong ZJ, Xiao JX, Peng SF, Lin YP, Cheng YM (2020) Novel B-chromosome-specifc transcriptionally active sequences are present throughout the maize B chromosome. Mol Genet Genomics 295:313–325
- Huang YH, Peng SF, Lin YP, Cheng YM (2020) The maize B chromosome is capable of expressing microRNAs and altering the expression of microRNAs derived from A chromosomes. Chromosome Res 28:129–138
- Jones RN, Viegas W, Houben A (2008) A century of B chromosomes in plants: so what? Ann Bot 101:767–775
- Kao KW, Lin CY, Peng SF, Cheng YM (2015) Characterization of four B-chromosome-specifc RAPDs and development of SCAR markers on the maize B-chromosome. Mol Genet Genomics 290:431–441
- Lamb JC, Kato A, Birchler JA (2005) Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma 113:337–349
- Lamb JC, Riddle NC, Cheng YM, Theuri J, Birchler JA (2007) Localization and transcription of a retrotransposon-derived element on the maize B chromosome. Chromosome Res 15:383–398
- Lin BY (1977) A squash technique for studying the cytology of maize endosperm and other tissues. Stain Technol 52:197–201
- Lin BY (1978) Regional control of nondisjunction of the B-chromosome in maize. Genetics 90:613–627
- Lin BY (1987) Cytological evidence of terminal deficiencies produced by the *r-X1* defciency in maize. Genome 29:718–721
- Lin BY, Coe EH Jr (1986) Monosomy and trisomy induced by the *r-Xl* deletion in maize, and associated effects on endosperm development. Can J Genet Cytol 28:831–834
- Lin BY, Marquette K, Sallee P (1990) Characterization of defciencies generated by *r-X1* in maize. J Hered 81:359–364
- Lin BY, Peng SF, Chen YJ, Chen HS, Kao CF (1997) Physical mapping of RFLP markers on four chromosome arms in maize using terminal defciencies. Mol Gen Genet 256:509–516
- Lin HZ, Lin WD, Lin CY, Peng SF, Cheng YM (2014) Characterization of maize B-chromosome-related transcripts isolated via cDNA-AFLP. Chromosoma 123:597–607
- Longley AE (1927) Supernumerary chromosomes in *Zea mays*. J Agric Res 35:769–784
- Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494
- Peng SF, Cheng YM (2011) Characterization of satellite CentC repeats from heterochromatic regions on the long arm of maize B-chromosome. Chromosome Res 19:183–191
- Peng SF, Lin YP, Lin BY (2005) Characterization of AFLP sequences from regions of maize B chromosome defned by 12 B-10L translocations. Genetics 169:375–388
- Randolph LF (1941) Genetic characteristics of the B chromosomes in maize. Genetics 26:608–631
- Roman H (1947) Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32:391–409
- Roman H (1948) Directed fertilization in maize. Proc Natl Acad Sci USA 34:36–42
- Roman H, Ullstrup AJ (1951) The use of A-B translocations to locate genes in maize. Agron J 43:450–454
- Santos-Serejo JA, Aguiar-Perecin ML (2016) Breakagefusion-bridge cycles and de novo telomere formation on broken chromosomes in maize callus cultures. Genome 59:367–378
- Simcox KD, Shadley JD, Weber DF (1987) Detection of the time of occurrence of nondisjunction induced by the *r-X1* defciency in *Zea mays* L. Genome 29:782–785
- Stark EA, Connerton I, Bennett ST, Barnes SR, Parker JS, Forster JW (1996) Molecular analysis of the structure of the B-chromosome. Chromosome Res 4:15–23
- Tseng SH, Peng SF, Cheng YM (2018) Analysis of B chromosome nondisjunction induced by the r-X1 deficiency in maize. Chromosome Res 26:153–162
- Wang CJ, Chen CC (2003) Localization of centromere and telomere sequences on maize pachytene chromosomes by fuorescence in situ hybridization. BioFormosa 38:17–25
- Ward E (1973) Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics 73:387–391
- Weber DF (1983) Monosomic analysis in diploid crop plants. In: Cytogenetics of crop plants, edited by Swaminathan MS, Gupta PK, Sinha U. Macmillan India Limited, New Delhi. pp351–378

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.