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Abstract Passiflora edulis, the yellow passion fruit, is
the main crop from the Passiflora genus, which com-
prises 525 species with its diversity center in South
America. Genetic maps and a BAC (bacterial artificial
chromosome) genomic library are available, but the nine
chromosome pairs of similar size and morphology
(2n = 18) hamper chromosome identification, leading
to different proposed karyotypes. Thus, the aim of this

study was to establish chromosome-specific markers for
the yellow passion fruit using single-copy and repetitive
sequences as probes in fluorescent in situ hybridizations
(FISH) to allow chromosome identification and future
integration with whole genome data. Thirty-six BAC
clones harboring genes and three retrotransposons (Ty1-
copy, Ty3-gypsy, and LINE) were selected. Twelve
BACs exhibited a dispersed pattern similar to that re-
vealed by retroelements, and one exhibited subtelomeric
distribution. Twelve clones showed unique signals in
terminal or subterminal regions of the chromosomes,
allowing their genes to be anchored to six chromosome
pairs that can be identified with single-copy markers.
The markers developed herein will provide an important
tool for genomic and evolutionary studies in the
Passiflora genus.
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SSC Saline–sodium citrate buffer
SDS Sodium dodecyl sulfate
Cy3-
dUTP

5-Amino-propargyl-2′-deoxyuridine 5′-tri-
phosphate coupled to red cyanine fluores-
cent dye

Alexa Alexa Fluor 488
FITC Fluorescein isothiocyanate
BSA Bovine serum albumin
LINE Long interspersed nuclear element

Introduction

The genus Passiflora L. belongs to the family
Passifloraceae Juss. ex Kunth, a member of the order
Malpighiales (Judd et al. 2016). Passiflora is a large and
morphologically variable genus, and it includes some
525 species distributed throughout the tropical and sub-
tropical regions of America, Africa, and Asia (Ulmer
andMacDougal 2004), with its diversity center in South
America (Bernacci et al. 2015). The Passiflora species,
popularly known as passionflowers or passion fruits, are
typically tendril-bearing vines with a non-pedunculate
inflorescence and one or two sessile, pentamerous
flowers, many of which are highly prized for their
exotic, unusual shape. Recent phylogenetic studies di-
vide the genus into four main subgenera: Astrophea (57
species), Decaloba (220), Deidamioides (13), and
Passiflora (240) (Feuillet and MacDougal 2003;
Hansen et al. 2006), proposing Tryphostemmatoides
(1) (Muschner et al. 2012) and Tetrapathea (3)
(Krosnick et al. 2009) as new subgenera. Passiflora
edulis Sims, the sour passion fruit in the Passiflora
subgenus, is self-incompatible, with perfect flowers,
and widely used for producing juice and in cosmetics
and herbal products. It is also consumed as fresh fruit
(Rudnicki et al. 2007).

Genome sizes (1C = 1,049.4 ± 547.7 Mbp) and flow-
er diameters (6.12 ± 2.75 cm) vary substantially in the
genus (Yotoko et al. 2011). Based on all data available
for genome size, the difference between the largest and
smallest genomes has been reported to be as high as 10
times (207.4Mbp in P. organensis,Decaloba subgenus;
2,621 Mbp in P. quadrangularis, Passiflora subgenus)
(Souza et al. 2004; Yotoko et al. 2011).

Passiflora species also show a variation in chromo-
some size and number and are classified in four groups
according to their basic chromosome numbers: x = 6, 9,

10, and 12 (Melo and Guerra 2003; Hansen et al. 2006).
P. edulis, like most species in the subgenus Passiflora, is
diploid with 2n = 18. Several karyotypes have been
proposed for the species (Oliveira 1996; Soares-Scott
1998; Melo et al. 2001; Melo and Guerra 2003; Cuco
et al. 2005; Praça et al. 2008; Viana and Souza 2012),
but there is no consensus on chromosomal morphology,
with reported values ranging from two pairs (1 and 8) of
submetacentric chromosomes and seven pairs of meta-
centrics (Cuco et al. 2005) to three pairs of submetacen-
trics (1, 8, and 9) and six pairs of metacentrics (2 to 7)
(Praça et al. 2008).

The number and locations of secondary constrictions
detected in the passion fruit karyotype also vary, and
they have been detected on chromosome 8 (Oliveira
1996); on the long arms of chromosomes 4 and 7
(Soares-Scott 1998); and on chromosomes 1, 2, 7, and
8 (Praça et al.2008). Active nucleolar organizer regions
(NORs) were detected by silver–nitrate staining on
chromosomes 8 and 9 of P. edulis, associated with their
secondary constrictions (Mayeda 1997). Using CMA
(chromomycin A3) and DAPI (4′,6-diamidino-2-
phenlindol) banding, CMA-positive blocks were detect-
ed in the terminal region of two chromosome pairs and
no DAPI-positive heterochromatin was visualized. The
CMA+ blocks were restricted to 35S ribosomal DNA
(rDNA) sites on the long arm of chromosomes 7 and 9
(Melo et al. 2001; Melo and Guerra 2003). However,
35S rDNA sites have also been reported on the short
arm of chromosome 7 and long arm of chromosome 8
(Praça et al. 2008). According to Cuco et al. (2005), 5S
rDNA was located on the long arm of chromosome 4
and according to Melo and Guerra (2003), on the long
arm of chromosome 5.

Due to its commercial interest, linkage maps based
on molecular markers have been constructed for the
passion fruit (Carneiro et al. 2002; Lopes et al. 2006;
Oliveira et al. 2008). However, no cytogenetic and
contig physical maps are currently available for the
species, and only partial genome sequencing data have
been published (Araya et al. 2017; Munhoz et al. 2018).

Bacterial artificial chromosomes (BACs) contain ge-
nomic inserts with average sizes of approximately
100 kb (Men et al. 2001; Wu et al. 2004) and are
important tools for genomic analysis and physical map
construction (Peterson et al. 2000). With this in mind, a
BAC library consisting of approximately 83,000 clones
with an average insert size of 108 kbwas constructed for
passion fruit (accession ‘IAPAR-123’), providing
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approximately sixfold coverage of its genome (Santos
et al. 2014) estimated at about 1,230 Mbp by flow
cytometric analysis (Yotoko et al. 2011). Recently, over
100 large inserts were completely sequenced resulting in
a prediction of around 1,900 genes; the richness of
repetitive elements, such as transposable elements
(TEs) and microsatellite sequences (SSRs), has also
been evaluated (Munhoz et al. 2018).

In this scenario, the aim of this study was to construct
a BAC-FISH-based idiogram for the passion fruit using
P. edulis BAC clones (Santos et al. 2014; Munhoz et al.
2018), integrating the locations of single-copy se-
quences and the distribution of major repeats in a refer-
ence karyotype.

Material and methods

Plant material and chromosome preparation

Root tips obtained from germinated seeds derived from
the cross-hybridization between ‘IAPAR-123’ ×
‘IAPAR-06 ’ were pretreated with 2 mM 8-
hydroxyquinoline for 4.5–18 h at 10 °C, fixed in
ethanol–acetic acid (3:1 v/v), and stored in fixative at
− 20 °C for up to several weeks. The root tips were
digested using a solution containing 2% cellulase and
20% pectinase (w/v) for 90 min at 37 °C and chromo-
somes prepared by air drying (De Carvalho and Saraiva
1993). Slides were selected after staining with 2 μg/ml
DAPI in 50% glycerol (Cabral et al. 2006).

Library screening for isolation and validation of clones

BACs were selected with sets of four to five genes (see
Munhoz et al. 2015; Munhoz et al. 2018) using the same
strategy previously employed for other sets of genes
(Santos et al. 2014). Positive clones were confirmed
by the polymerase chain reaction (PCR) using gene-
specific primers (Suppl. Table 2). Bacterial colonies
were used as templates for the amplification of each
gene using pairs of primers designed with Primer3 soft-
ware (Rozen and Skaletsky 2000). The reactions
contained 1× PCR buffer, 1.5 mM MgCl2, 0.2 mM
dNTP, 0.3 μM each primer, and 1 U Taq DNA poly-
merase enzyme in a volume of 16 μl. Amplifications
were performed in anApplied BiosystemsVeriti thermal
cycler using the following program: initial denaturation
at 94 °C for 5 min, followed by 30 cycles at 94 °C for

40 s, 60 °C for 40 s, and 72 °C for 1 min; and final
extension at 72 °C for 8 min. Amplification products
(5 μl aliquots) were electrophoresed on 1% (w/v) aga-
rose gels and visualized under UV light, and a 100-bp
GeneRuler DNA ladder (Fermentas) used as a molecu-
lar marker.

Dot blot analysis for detection of BACs containing
repetitive DNA

Denatured DNA from selected BAC colonies was dot-
ted onto a Nylon membrane (Hybond-N+; GE) and
subjected to hybridization with the total genomic DNA
of P. edulis as the probe, which in turn was extracted
essentially according to Doyle and Doyle (1987). The
probe was labeled with digoxigenin-dUTP using the
DIG High-Prime DNA labeling kit (Roche Diagnos-
tics). The membrane was hybridized overnight with
probe DNA in DIG Hyb hybridization buffer (Roche
Diagnostics) at 37 °C. After hybridization, membranes
were washed twice in 2× saline–sodium citrate (SSC)
buffer and 0.1% sodium dodecyl sulfate (SDS) for 5 to
15 min, and in 0.5× SSC buffer and 0.1% SDS for
15 min at 68 °C. Detection was performed using anti-
DIG alkaline phosphatase conjugate (Roche Diagnos-
tics) and CDP-Star (Roche Diagnostics) chemilumines-
cent substrate, according to the manufacturer’s instruc-
tions. Signals were captured on an X-ray ECL film
(GE).

DNA probes

Both repetitive and single-copy probes were used for
FISH. To detect repetitive DNA, three partial sequences
of retrotransposons from different families characterized
from BACs (Munhoz et al. 2018) were used as probes.
These sequences were amplified using specific primers
designed using Geneious pro v.7.1.8 (Suppl. Table 1)
and under the thermal conditions described above.
Primers were designed to amplify the RNAse-H domain
from a LTR/Gypsy element, the RT domain for the
element LINE/L1, and an undetermined fragment of
the LTR/Copia element. The D2 probe, a 500-bp frag-
ment containing 5S rDNA from Lotus japonicus
(Pedrosa et al. 2002), and a 25-28S, 5.8S, and 18S
rDNA clone (pTa71) from Triticum aestivum (Gerlach
and Bedbrook 1979), labeled with Cy3-dUTP (5-amino-
propargyl-2′-deoxyuridine 5′- triphosphate coupled to
red cyanine fluorescent dye; GE) or digoxigenin-11-
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dUTP (Roche), were used to localize 5S and 35S rDNA
sites, respectively.

Three groups of BAC clones were used as FISH
probes: (1) 20 BACs selected with genes by library
screening and dot blot (by Santos et al. 2014 and
present work); (2) three partially sequenced clones
(BES) considered conserved (rearranged and collinear)
after microsynteny analysis against complete genomes
of Arabidopsis thaliana, Vitis vinifera, and Populus
trichocarpa (Santos et al. 2014); (3) 13 fully sequenced
clones (Munhoz et al. 2018) selected based on high gene
content and low repeat content (Table 1). Details of the
BAC sequences are given in Munhoz et al. (2018) and
were depos i t ed a t h t tps : / /genomevolu t ion .
org/coge/GenomeInfo.pl?gid=52053. BAC DNA was
extracted using the Qiagen Plasmid Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s
specifications, with adaptations for use with BACs. All
selected sequences were labeled by nick translation
(Invitrogen or Roche Diagnostics) with Cy3-dUTP or
Alexa Fluor® 488-5-dUTP (Thermo Fisher).

Fluorescence in situ hybridization

The FISH procedure applied to mitotic chromosomes
was essentially the same as previously described
(Fonsêca et al. 2010). The hybridization mix consisted
of 50% (v/v) formamide, 10% (w/v) dextran sulfate, 2×
SSC, and 5-10 ng/μl probe. The slides were denatured
for 5 min at 75 °C and hybridized for up to 40 h at 37 °C.
A final stringency of 76% was obtained. P. edulis total
genomic DNA in 10- to 100-fold excess was added to
the hybridizationmix when necessary to block repetitive
sequences. Digoxigenin-labeled probes were detected
with 0.4 μl (1:100) sheep anti-digoxigenin conjugated
with fluorescein isothiocyanate (FITC; Roche Diagnos-
tics) and amplified with 0.2 μl (1:200) anti-sheep-FITC
(Dako) in 1% (w/v) BSA. Re-hybridization of slides for
localization of different DNA sequences in the same cell
was performed following Heslop-Harrison et al. (1992).

Microscopical data analysis

Photographs were taken in an epifluorescence Leica
DMLB microscope using Leica Las-AF software. For
final processing, images were artificially pseudo-
colored using Adobe Photoshop version 10.0 and ad-
justed for brightness and contrast only. To construct the
idiograms, five cells identified with specific BAC

markers were measured using the Adobe Photoshop
Ruler tool. Chromosomes were identified and classified
according to the length and arm ratio following Guerra
(1986). To measure the positions of the signals of each
BAC along the chromosome, 14 to 20 chromatids were
selected and measured as described by Fonsêca et al.
(2010).

Results

Distribution of repetitive sequences

Three retrotransposon sequences, identified as the most
abundant by a previous BAC-end analysis (Santos et al.
2014), were used as probes to investigate their chromo-
somal distribution. The L1-1Cpa, a LINE (long inter-
spersed nuclear element, Fig. 1a), and Gypsy-22, a Ty3-
gypsy LTR retrotransposon (Fig. 1b), showed a dis-
persed and uniform distribution throughout the genome.
By contrast, the Copy-13 element, a Ty1-copia LTR
retrotransposon, revealed a dispersed but not entirely
uniform distribution, with four small chromosomes
showing weaker labeling (Fig. 1c).

Mapping BAC clones

BAC clones were selected using three complementary
approaches. First, membrane screening of the BAC
library with four sets of gene probes (four or five
target genes within each probe, 17 genes in total,
Munhoz et al. 2018) allowed 33 positive BAC clones
to be identified (Suppl. Table 1). All 33 positive BAC
clones were subjected to PCR validation using specific
primers to recognize the respective gene sequences with
bands of the predicted lengths. Eighteen clones corre-
sponding to nine genes were validated by PCR: CHI-B
(Pe20N03; Pe108P03 clones), LHCB (Pe86H07;
Pe95P11; Pe103L12), CYS3 (Pe61D03; Pe70N03;
Pe88O02; Pe96N23), CESA (Pe25C22; Pe65F07;
Pe108C16), COX2 (Pe27O13), KTI (Pe55J16;
Pe58C13), GOX (Pe64C12), NDHJ (Pe85L08), and
STP13 (Pe24G19) (Table S1). None of the clones
matched the ARF2, EDA-2, GLR, KIN, or LOX2 genes.
No amplification products were observed with primers
for GLN2, GSH1, and S-ACP-DES.

In order to select the BAC clones with the lowest
repetitive content for each gene region, the eighteen
validated clones were subjected to dot blot using total
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Table 1 List of BAC clones used for FISH, indicating the selection strategy used, presence of genes and repeats in the BAC insert, hybridization
pattern after FISH, and chromosome with single-copy signal

BAC codes Genes in insert Repeats in insert
(dot blot or TE)1

Hybridization pattern
without blocking DNA

Hybridization pattern
with blocking DNA

Mapped
chromosome

Gene screening

Pe24G19 STP13 ++ No signal - -

Pe25C22 CESA ++ No signal - -

Pe27O13 COX2 + No signal

Pe29G08 MIPS ++ No signal - -

Pe55J16 KTI ++ Subtelomeric Subtelomeric -

Pe61D03 CYS3 ++ Disperse Disperse -

Pe79I13 LOX + Single copy - 2

Pe85L08 NDHJ + No signal - -

Pe64C12 GOX +++ Disperse NA -

Pe108P03 CHI-B + No signal - -

Pe61D03 CYS3 ++ Disperse Disperse -

Pe108C16 CESA + Disperse Disperse -

Pe125I23* CYCD1 − Single copy - 5

Pe134H15* ACO1 − Single copy + weakly scattered Single copy (5–50×) 1

Pe152I06 NDID +++ Disperse Disperse -

Pe187G07 EMB2765 + No signal - -

Pe198H23* ERS2 − Disperse NA -

Pe205A19 EMB2765 +++ Disperse NA -

Pe209G15 LOX + No signal - -

Pe215I08* G3PD − Single copy - 5

BES2

Pe93G04 - + Single copy - 1

Pe164M13 - + Single copy + weakly scattered Single copy (5–50×) 8

Pe216I05 - + Disperse NA -

Fully sequenced3

Pe69H24 21 genes 0 TEs Disperse NA -

Pe69O16 19 genes 0 TEs No signal - -

Pe93J9 23 genes 0 TEs Disperse NA -

Pe101P7 19 genes 0 TEs Disperse NA -

Pe141K8 16 genes + No signal - -

Pe164A12 21 genes + Single copy - 8

Pe164D09 28 genes 0 TEs Disperse NA -

Pe164K17 26 genes 0 TEs Single copy NA 1

Pe173B16 24 genes + Single copy NA 7

Pe185J16 24 genes 0 TEs No signal NA -

Pe195F4 23 genes 0 TEs Single copy NA 8

Pe214H11 29 genes + Single copy NA 3

Pe216B22 16 genes + Single copy NA 2

1 Intensity of membrane hybridization with P. edulis genomic DNA as probe in dot blot experiment (− no signal, + low, ++ medium, +++ high signal
intensity) or number of transposable element (TE) genes identified in BAC inserts, when available
2 For BAC end sequencing (BES) details see Santos et al. (2014)
3 For fully sequenced insert details see Munhoz et al. (2018)

* BACs previously used for FISH by Santos et al. (2014)
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genomic DNA as probe, as well as three clones selected
in a second approach, based on BES information
(Santos et al. 2014). Ten clones previously validated
for the ACO1, CYCD1, EMB2765, ERS2, G3PD,
LOX, MIPS, and NDID genes (Santos et al. 2014) were
also used for FISH in the present work. Altogether, 20
BACs selected with gene probes and showing lower
amounts of repetitive DNA were used as FISH probes
(Table 1).

A third approach was to select, from fully sequenced
BAC clones (Munhoz et al. 2018), the ones containing
the highest number of annotated genes and the lowest
number of annotated transposable elements in their in-
serts. Some of the fully sequenced BACs without trans-
posable annotation were also evaluated by dot blot, and
a total of 13 clones were selected after this third ap-
proach. A total of 36 clones, 20 selected with gene
probes, three selected after BES sequencing, and 13
fully sequenced, were used for BAC-FISH (Table 1).
Of the total of 36 BACs, 12 (33.3%) showed single-
copy signals (Figs. 2 and S1), 12 (33.3%) showed
repetitive signals dispersed across all chromosomes (da-
ta not shown), and 1 (2.8%) showed a subtelomeric
pattern (Fig. 1d). This clone contained repetitive DNA,
based on dot blot analysis. The remaining 11 (30.6%)
showed no FISH signal.

Most single-copy BACs showed terminal or subter-
minal signals on short or long chromosome arms. Chro-
mosomes varied from 2.21 to 3.19μm and were ordered
and named by decreasing size. Two of them (pairs 2 and
7) were submetacentric and the others metacentric. It
was possible to establish markers for six chromosome
pairs. Chromosome 1 (previously named chromosome 3
by Santos et al. 2014) is metacentric and harbors the
sequence present in BACs Pe134H15 (Fig. S1a),
Pe93G04, and Pe164K17 (Figs. 2a, b and 3), all located
in the distal region of the long arm. Chromosome 2
(submetacentric) harbors the sequence present in
Pe216B22 and Pe79I13 located respectively in the distal
region of the short and long arms (Figs. 2b, c and 3).
Chromosome 3 (metacentric) harbors the sequence pres-
ent in Pe214H11 located in the distal region of the short
arm (Figs. 2b, e and 3). On the other hand, Pe125I23 and
Pe215I08 were mapped on the short arm of chromo-
some 5 (metacentric), which also showed the 5S rDNA
site in the subterminal region of the long arm (Figs. 2e
and 3). Pe173B16 and Pe195F4 were mapped in the
distal region of the short arm of chromosome 7 (sub-
metacentric), which also contains a 35S rDNA site in the

terminal region of the long arm (Figs. S1c–e and 3).
Chromosome 8 (metacentric) shows a second 35S
rDNA site in the terminal region of the short arm and
harbors Pe164M13 (Figs. 2d, 3, and S1c) and
Pe164A12, both located on the long arm (Figs. S1b
and 3). Chromosomes 4, 6, and 9 showed no
chromosome-specific BAC marker (Fig. 4).

Discussion

In the present study, 36 BACs containing Passiflora
genes or gene regions were used as probes for the
construction of an idiogram of the sour passion fruit
by BAC-FISH. Twelve of these clones showed single-
copy signals and could be mapped, allowing six of the
chromosomes to be identified. The advantages of FISH
for physical mapping (also known as a cytogenetic
mapping) include the visualization of the location of
the cloned DNA along the chromosome, assignment of
mapped sequences to chromosome domains (such as
subtelomeres or pericentromeres), and the potential to
construct a physical map at a relatively low cost (Jiang
and Gill 2006). In addition, new clones can be succes-
sively incorporated into the map to increase density.
Furthermore, chromosome-specific markers are useful
for chromosome identification, redefining pre-existing
karyotypes as described here in several species of agro-
nomic interest, such as rice (Cheng et al. 2001), cotton
(Wang et al. 2008), potato (Dong et al. 2000), common
bean (Fonsêca et al. 2010), and sugar beet (Paesold et al.
2012).

The established karyotype of passion fruit enabled us
to recognize chromosomes containing different genes,
including the 5S and 35S rDNA sites. The number and
positions of secondary constrictions, which correspond
to active 35S rDNA sites, have been controversial in
passion fruit. Oliveira (1996) reported only one second-
ary constriction located on chromosome 8, while
Mayeda (1997) reported two unspecified pairs of chro-
mosomes with satellites. Soares-Scott (1998) also re-
ported the presence of two secondary constrictions,
one on chromosome 4 and one on chromosome 7, both
on the long arms. In a subsequent study, at least three
secondary constrictions were reported, but the author
did not specify their positions (Soares-Scott et al. 2005).
The presence of secondary constrictions was recognized
in chromosomes 8 and 9 (Cuco et al. 2005), and Melo
and Guerra (2003) localized 35 rDNA sites on the long
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arm of chromosomes 7 and 9. The small size of P. edulis
chromosomes (~ 2.5 μm), the degree of chromosome
compaction at metaphase, and the difficulty in obtaining
consistent chromosome spreads of good quality ham-
pered the correct assignment of chromosome morphol-
ogy to specific chromosomes.

In situ identification of chromosomes with single-
copy sequences enabled us to better compare the relative
sizes of each individual chromosomal pair, confirming,
for example, that chromosomes 7 and 8 carry 35S rDNA
sites respectively on their long and short arms and that
they are larger than chromosome 9. The 5S rDNA site
was detected on the long arm of chromosome 5,

corresponding to the position described by Melo and
Guerra (2003) and Santos et al. (2014).

BAC clones may contain a large number of repetitive
sequences. Thus, by using these clones in FISH, the
probability of obtaining signals on several or all chro-
mosomes is high, making it difficult to locate single-
copy sequences (Jiang and Gill 2006). Thus, this meth-
od is more appropriate for the physical mapping of
species with smaller genomes (Dong et al. 2000; Jiang
and Gill 2006). In the case ofP. edulis (1C = 1,230Mbp,
Yotoko et al. 2011), a considerable proportion of single-
copy BACs (~ 33%) could be selected, compared for
instance with BACs containing RFLPmarkers, in which

Fig. 1 Fluorescent in situ hybridization toP. edulis chromosomes.
a LINE (long interspersed nuclear element) and b Ty3-gypsy LTR
retrotransposon, showing a dispersed and uniform distribution. c
Ty1-copia LTR retrotransposon showing a dispersed but not

entirely uniform distribution (arrow heads indicate four unlabeled
small chromosomes). d BAC Pe55J16 (red) showing a
subtelomeric pattern on most chromosome ends. Bar = 5 μm
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Fig. 2 Fluorescent in situ hybridization toP. edulis chromosomes.
a BAC Pe93G04 (blue) and Pe164K17 (red); b Pe93G04 (red),
Pe216B22 (blue), and Pe214H11 (yellow); c Pe216B22 (red) and
Pe79I13 (inset for one homolog in blue); d Pe164M13 (red) and
35S rDNA (green); e Pe125I23 (red), Pe215I08 (blue), Pe214H11

(yellow), and 5S rDNA (pink). Chromosomeswere counterstained
with DAPI, are visualized in gray, and are indicated by number.
BACs were labeled with Cy3-dUTP and pseudocolored. Bar =
5 μm
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52% of common bean single-copy sequences were se-
lected from a genome of only 600 Mb in size (Fonsêca
et al. 2010). This can be attributed to previous selection
of BACs from the P. edulis genomic library for high
gene and low repeat contents (see Munhoz et al. 2018).

Nevertheless, hybridization with 13BACs resulted in
strong dispersed or subtelomeric patterns on most chro-
mosomes, indicating that they contain moderate-to-high
proportion of repetitive sequences even when gene-rich.
The efficiency of BAC-FISH is indeed expected to be

low for medium-sized genomes (Koumbaris and Bass
2003). Therefore, the assembly of the first Passiflora
genome in the future will be important to obtain addi-
tional markers for the three remaining chromosomes.
Recently, three satellite DNAs were described for P.
edulis using the RepeatExplorer pipeline (Pamponét
et al. 2019). One of them (PeSat_3) showed a
subtelomeric pattern, but different from that observed
by the BAC hybridization, indicating that the
subtelomeric BAC may contain a different repeat or

Fig. 3 Physical localization of
BAC clones for P. edulis mitotic
chromosomes counterstained
with DAPI (in gray). Single-copy
clones (pseudocolored in yellow,
blue, and red) are ordered ac-
cording to their localization along
the short and long arms (from top
to bottom) of chromosomes from
different cells. The 5S (pink) and
35S rDNA (green) rDNA loci are
also shown. Bar = 5 μm
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other repeats together with PeSat_3 in its insert. A sim-
ilar subtelomeric pattern was observed in common bean
when using BACs harboring the subtelomeric satellite
DNA khipu (Fonsêca et al. 2010).

Unlike common bean (Fonsêca et al. 2010), CMA/
DAPI chromosome banding in Passiflora did not detect
pericentromeric or subtelomeric blocks (Melo et al.
2001), suggesting a difference in heterochromatin com-
position. Nevertheless, other BACs might show a
pericentromeric distribution, especially if not selected
for genes or gene-rich regions. In fact, all single-copy
BACs showed a terminal or subterminal distribution on
the chromosome arms, suggesting that these regions are
gene-rich, while the proximal regions are gene-poor and
consist of dispersed repetitive sequences (Dhar et al.
2009; Stack et al. 2009). The three P. edulis
retrotransposons analyzed by FISH showed a dispersed
distribution along the chromosomes, in agreement with
the results reported by Costa (2018), who classified
most of the P. edulis transposable elements as
retrotransposons. Pamponét et al. (2019) observed that
the most abundant retrotransposons were classified as

Ty3/gypsy (representing 33.33% of the genome),
followed by Ty1/Copy (16.89%). Both showed a dis-
persed distribution, except for Cluster 6, a Ty3/Gypsy/
Chromovirus, which was pericentromeric. LINEs are
not as abundant and a possible explanation for the
intense, dispersed distribution observed with the LINE
probe is that the RT domain was used, which could
possibly give cross-hybridization with other elements.
The distribution of retrotransposons dispersed along the
chromosomes, as observed in P. edulis, is also a com-
mon feature of plant genomes of similar sizes (Cheng
and Murata 2003; Nagaki et al. 2004), and it corrobo-
rates the findings of Bennetzen and Wang (2014) who
proposed that most TEs predominate in recombination-
poor regions.

Our results confirm the importance of using BAC-
FISH for chromosome identification and characteriza-
tion, enabling us to develop chromosome-specific
markers for P. edulis, the most important agronomic
Passiflora species. Because all mapped BACs contain
genes, it will be possible to integrate genome sequences
directly into chromosomes when it becomes available.

Fig. 4 Idiogram of the passion fruit showing the relative chromosome size (S) in μm and Mbp, centromere positions (ar, arm ratio), rDNA
loci, and single-copy BAC clone positions for six identified chromosome pairs
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In addition, with the availability of chromosome-
specific BACs, comparative mapping between species
from the four subgenera of Passiflora will be possible,
including those with different basic chromosome num-
bers (x) and ploidy levels (n), thanks to the high degree
of conservation of nucleotide sequences in gene-rich
regions observed in closely related taxa (Pedrosa et al.
2002; Lysak et al. 2006).

Conclusions

BAC-FISH enabled us to define chromosome-specific
markers for six chromosome pairs of P. edulis, the sour
passion fruit. The predominant terminal distributions of
the genes studied herein suggest that gene-rich regions
are possibly restricted to distal chromosome regions in
the Passiflora genome. The main retrotransposon fam-
ilies show a dispersed distribution, non-uniform in the
case of the Ty1-copia element. Other repetitive se-
quences have subtelomeric distribution. The markers
established will allow the genomic sequence, once ob-
tained, to be anchored to chromosomes, as well as
comparative mapping between related species.
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