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Abstract We review the picture of chromatin large-scale
3D organization emerging from the analysis of Hi-C data
and polymer modeling. In higher mammals, Hi-C contact
maps reveal a complex higher-order organization, extend-
ing from the sub-Mb to chromosomal scales, hierarchically
folded in a structure of domains-within-domains
(metaTADs). The domain folding hierarchy is partially
conserved throughout differentiation, and deeply correlat-
ed to epigenomic features. Rearrangements in the
metaTAD topology relate to gene expression modifica-
tions: in particular, in neuronal differentiation models,
topologically associated domains (TADs) tend to have
coherent expression changes within architecturally con-
served metaTAD niches. To identify the nature of archi-
tectural domains and their molecular determinants within a
principled approach, we discuss models based on polymer
physics. We show that basic concepts of interacting poly-
mer physics explain chromatin spatial organization across
chromosomal scales and cell types. The 3D structure of
genomic loci can be derived with high accuracy and its

molecular determinants identified by crossing information
with epigenomic databases. In particular, we illustrate the
case of the Sox9 locus, linked to human congenital disor-
ders. The model in-silico predictions on the effects of
genomic rearrangements are confirmed by available 5C
data. That can help establishing new diagnostic tools for
diseases linked to chromatin mis-folding, such as congen-
ital disorders and cancer.
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Abbreviations
CTCF CCCTC-binding factor
FISH Fluorescence in situ hybridization
mESC mouse embryonic stem cell
NPC Neural precursor cell
SBS Strings & Binders
TAD Topologically associated domain

Introduction

The traditional view of DNA as a linear sequence of
nucleotides carrying genetic information has radically
changed over the last couple of decades as its spatial
organization inside the cell nucleus has been shown to
play a key role in gene regulation, in normal cells as
well as in diseases (Bickmore and van Steensel 2013;
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Lanctôt et al. 2007; Misteli 2007; Tanay and Cavalli
2013; Dekker and Mirny 2016). New technologies,
such as Hi-C (Lieberman-Aiden et al. 2009), are
revealing complex 3D patterns of genomic contacts
in the mammalian genome and their analysis is
returning a formidable picture of chromosome folding
(Nora et al. 2012; Dixon et al. 2012; Phillips-Cremins
et al. 2013; Fraser et al. 2015). Here, we summarize
recent discoveries about the large-scale architecture of
chromosomes during neuronal differentiation. Recent
studies have shown that chromatin is folded in a tree-
like hierarchy of domains-within-domains, or
metaTADs, extending across genomic scales (Fraser
et al. 2015). Far from random, contacts between
regions with similar functional properties, for exam-
ple active genes, tend to have preferential co-localiza-
tion, and occupy common structural domains corre-
lated to the structure of metaTADs. Such a hierarchical
organization may reflect the capacity for general
compaction of the genome while retaining the flexi-
bility needed for regional specialization of nuclear
functions.

To understand the molecular mechanisms whereby
chromosome 3D structure is shaped and orchestrated
in the cell nucleus, concepts from polymer physics
have been introduced in order to provide a quantita-
tive, predictive framework to explain experimental
contact patterns in a principled approach (see, e.g., a
review in Nicodemi and Pombo 2014; and Nicodemi
and Prisco 2009; Bohn and Heermann 2010; Barbieri
et al. 2012; Brackley et al. 2013; Jost et al. 2014;
Sanborn et al. 2015; Brackley et al. 2016a, b;
Fudenberg et al. 2016; Chiariello et al. 2016; Di
Stefano et al. 2016). Here, in particular, we discuss
that chromatin has been shown to be a complex mix-
ture of different regions, folded in the classical archi-
tectural classes predicted by polymer thermodynamics
(pure states) (Nicodemi and Prisco 2009; Barbieri
et al. 2012). Hi-C contact matrices can be derived
genome-wide with high accuracy and their molecular
determinants identified by the theory (Chiariello et al.
2016). In particular, we describe the case of the Sox9
locus, a region linked to severe human congenital
diseases. In mESC, that locus self-assembles hierar-
chically in higher-order domains, involving abundant
many-body contacts. The model predictions on the
effects of structural rearrangements are tested in the
case of theΔXTX deletion in the Xist locus, where 5C
data are available in wild-type and mutant cells.

Higher-order chromatin folding

By the analysis of Hi-C interactions, it has been dis-
covered that chromosomes are divided in 0.5-1 Mb
long domains, known as topologically associated
domains (TADs) (Dixon et al. 2012; Nora et al.
2012), heuristically defined as regions marked by
increased levels of intra-domain Hi-C interactions.
Larger structures have been also identified, such as
the 10 Mb wide A/B compartments linked respec-
tively to more transcribed and repressed chromatin
sequences (Lieberman-Aiden et al. 2009). Yet, pat-
terns are visible also within and across TADS at lower
as much as at very large scales (Phillips-Cremins et al.
2013).

Higher-order chromatin 3D structures were identified
by analyzing the interactions between TADs, through
mouse neuronal differentiation. Chromatin was found to
be organized in a hierarchy of domains-within-domains,
named metaTADs, up to chromosomal scales (Fraser
et al. 2015). The heuristic method to define such
metaTADs (Fig. 1) was based on the consideration that
the best candidates to form higher-order architectural
structures are the pairs of most strongly interacting
TADs, as by definition they share a number of contacts:
hence, the most strongly interacting pair of domains is
clustered to form ametaTAD and the procedure repeated
iteratively (Fig. 1 left). In this way, a tree of metaTADs
is produced that represents the way the different TADs
aggregate to form higher-order structures.

To validate the architectural relevance of such
metaTADs from a statistical viewpoint different mea-
sures were employed (Fraser et al. 2015). As much as
for the more fundamental TADs, it has been shown, for
example, that Hi-C interactions within and across
metaTADs were significantly above background up to
chromosomal scales. They were also confirmed by
FISH. MetaTADs are, thus, relevant architectural struc-
tures, as much as TADs.

To assess the biological relevance of metaTADs, the
enrichment of chromatin features, known to mark TAD
boundaries, was explored at metaTAD boundaries to
discover that they are even more enriched (Fig. 2).
More generally, the hierarchical 3D architecture of
metaTADs itself was shown to correlate with a variety
of epigenomic signals (Fraser et al. 2015). Taken togeth-
er such results point out that metaTADs must be at least
as significant as the fundamental TADs they are com-
posed of.

26 Bianco S. et al.



The hierarchical organization of chromatin in
domains-within-domains is systematically found during
neuronal differentiation, and it is confirmed consistently
in other mouse and human cell types (Fraser et al. 2015).
The metaTAD trees of chromosomes are, though, only
relatively conserved during differentiation, as their
average correlation across time points in approximately

82% (cophenetic correlation, Fig. 3). This value is com-
parable to the variation of TAD boundaries that are
approximately 70% conserved in the transitions from
mESC to neural precursors (NPC) and post-mitotic neu-
rons (Fraser et al. 2015), a figure similar to recent
findings in other systems (Schmitt et al. 2016).
Architectural changes are subtly linked to variations in
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Fig. 1 Chromatin in higher mammals is organized in a hierarchy
of domains-within-domains. a) The heatmap shows the Hi-C
contact map of a 5 Mb region of chromosome 2 (53-58 Mb) in
mESC (Fraser et al. 2015). Topologically Associating Domains
(TADs) are identified via the Directionality Index (DI (Dixon et al.
2012; Fraser et al. 2015)) and correspond to the squares along the
diagonal marked by black numbers. (named 1–6). b)TADs contact
each other in groups forming higher-order domains, named

metaTADs (marked by roman numbers), identified by iteratively
clustering the most strongly Hi-C interacting domain pair. c)
MetaTADs have been shown to be statistically significant archi-
tectural structures up to chromosomal scales, validated by FISH
(Fraser et al. 2015). Those analyses return a picture of chromo-
somes where they are folded in a complex system of higher-order
structures, organized as a hierarchy of domains-within-domains.
(Adapted from Fraser et al. 2015)
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Fig. 2 MetaTAD boundaries are enriched with chromatin fea-
tures. TAD boundaries are known to be enriched by a variety of
epigenetic features, a notable example being CTCF binding sites
(Nora et al. 2012; Dixon et al. 2012). Interestingly metaTAD
boundaries are even more enriched for the same factors (Fraser

et al. 2015), highlighting than they are as biological significant.
More generally, the hierarchical 3D architecture of metaTADs
itself correlates with epigenomics, beyond their boundaries.
(Adapted from Fraser et al. 2015)
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transcriptional activity: expression changes overlap with
both changing and conserved metaTAD tree regions, but
tend to be coherent in sign only in the latter. Stated
differently, the analysis of CAGE transcription data,
matched with Hi-C data, has revealed that TADs
belonging to the same conserved niche of the
metaTAD tree tend to change their transcriptional activ-
ity in the same direction. Interestingly, it has been also
reported that expression changes overlap mostly with
compartment A or A-B transitions, while conserved
expression regions mostly with B (Fraser et al. 2015).

Taken together the above results return a picture
where chromatin architecture is organized in a
hierarchy of domains-within-domains (metaTADs),
which correlates with genetic, epigenetic and tran-
scription data (see scheme in Fig. 1c). The differ-
ent levels of metaTADs encompass the scales of
TADs (0.5 Mb) and of A/B compartments (10 Mb)
up to chromosomal levels, in mouse and human
cell types.

Polymer models of chromosomes

The above definitions of domains (such as TADs,
A/B compartments and metaTADs) are heuristic,
derived by simple criteria to empirically identify
patterns in Hi-C data. In the last few years, prin-
cipled approaches have been introduced to try to
identify the nature of chromatin architectural do-
mains and their molecular determinants from the
basic laws of polymer physics (Nicodemi and
Pombo 2014).

An important element in chromatin folding has
been shown to be steric hindrance effects (Kreth
et al. 2004; Marenduzzo et al. 2006; Rosa and
Everaers 2008; Lieberman-Aiden et al. 2009), how-
ever polymer models that also take into account
interactions with diffusing molecular factors are
needed to describe FISH and Hi-C data in a more
quantitative way (Nicodemi and Prisco 2009; Bohn
and Heermann 2010; Barbieri et al. 2012; Brackley
et al. 2013; Jost et al. 2014; Sanborn et al. 2015;
Brackley et al. 2016a, b; Fudenberg et al. 2016;
Chiariello et al. 2016; Di Stefano et al. 2016). To
describe in quantitative terms the scenario where
chromosome conformations are shaped by interac-
tions with nuclear elements such as DNA-binding
molecules, here we consider the Strings&Binders
(SBS) polymer model (Nicodemi and Prisco 2009)
that has been shown to well recapitulate Hi-C, as
well as FISH data within a single framework
(Barbieri et al. 2012; Fraser et al. 2015) (Fig. 4a).
In such a model a chromatin filament is represented
as a SAW (Self-Avoiding Walk) polymer chain with
binding sites for diffusing binders. In a toy version
of the model (Fig. 4a) only one type of binding sites
is present: the concentration of binders is named c
and their affinity EX. The system is subject to the
laws of physics and let to fold in its stable confor-
mational states where loops are spontaneously
established by the attachment of the binders at their
cognate binding sites along the chain.

From polymer physics it is known that the SBS
polymer equilibrium conformations fall into a few
universality classes that are in a one to one

Regions with conserved and changing local tree structure

chr.6
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Fig. 3 Conformational reorganization of metaTADs upon neuro-
nal differentiation in mouse models. MetaTAD architecture is only
relatively conserved during neuronal differentiation in mouse
models (average Cophenetic correlation approx. 80%) (Fraser
et al. 2015). The figure compares the metaTAD tree of chr6 in

mESC and neural precursor cells (NPC). The degree of local
changes in the tree structure is shown by the central color map.
TADs in architecturally conserved niches tend to have expression
changes coherent in sign. (Adapted from Fraser et al. 2015)
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correspondence with its thermodynamics phases.
Different conformations of the polymer belonging
to the same class are statistically indistinguishable.
Hence, to derive the polymer folding properties it
is enough to identify the system thermodynamics
phases. Figure 4b reports the phase diagram of the
toy model in Fig. 4a where only one type of
binding sites and binders is present (red)
(Chiariello et al. 2016). The system has three main
phases: at low concentrations, c, or small affinities,
EX, the chain is in its coil state, randomly folded
as on open chain; above its Θ-point transition, a
globule phase exists where the chain is closed in
compact conformations, while the binders can form
a disordered or an ordered (crystalline-like) assem-
bly according to the value of c and EX.

The conformational classes identified by the coil-
globule and order-disorder transitions are general fea-
tures of the physics of interacting polymers, indepen-
dent on finer model details. Although in real chromatin
off-equilibrium conformations are also expected to be
encountered, those thermodynamics classes represent
the stable states where the system spontaneously folds
into according to the laws of physics and, as such, they
must be an important component in chromosome fold-
ing, at least at the level of single loci. In fact, eu- and
heterochromatin domains, visualized as open and com-
pact states, are well known in microscopy. Hence, a

natural, yet approximated physics model of chromatin
is to consider a chromosome as a sequence of regions
folded in the architectural classes predicted by polymer
physics, such as open and compact conformations
(Barbieri et al. 2012; Chiariello et al. 2016).

A more realistic model of chromatin architectural
domains

Interestingly, within such a simplified view based on
fundamental polymer physics, a more realistic version
of the SBS polymer model can explain Hi-C pairwise
contact data with good accuracy. For instance, in the
case of a 6 Mb region around the Sox9 gene (important
in human congenital diseases) in mESC (Fig. 5a), the
patterns of Hi-C data is reproduced with a 95% accuracy
by the model as seen in Fig. 5b (Chiariello et al. 2016).
This is achieved by a more refined SBS polymer with
respect to the toy model of Fig. 4a, including 15 differ-
ent types of binders and cognate binding sites (see
cartoon in Fig. 5a), whose genomic locations are shown
in Fig. 5c represented by different colors. The position
along the sequence of the binding domains (colors) is
derived from the experimental Hi-C contact data, via a
robust procedure of statistical inference, in order to
obtain the best, minimal SBS polymer model explaining
such data based only on physics (Chiariello et al. 2016).
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Fig. 4 A cartoon of the Strings&Binders polymer model and its
phase diagram. a) A cartoon of a simple version of the
Strings&Binders (SBS) model including only one type of binders
(red spheres): c is the binder concentration and EInt their binding
affinity. Its equilibrium conformations fall into universality classes
that are in a one to one correspondence with the system

thermodynamics phases. b) The phase diagram of the model in
panel a) includes (Chiariello et al. 2016): a coil phase where the
chain is open, a Θ-point transition line and a globule phase where
it is closed in compact conformations. In the globule phase, the
binders have also an order-disorder transition that can lead to
ordered structures. (Adapted from Chiariello et al. 2016)
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The body of the different binding domains is roughly
coinciding with the known different TADs of the locus
(A-F in Fig. 5c). Yet, binding domains overlap with each
other, which explains the complex internal structures
seen within TADs and at TAD borders. Some of the
domains extend broadly over the region to produce the
interactions across TADs seen in Hi-C data, which give
rise to the higher-order structures described by
metaTADs (Chiariello et al. 2016). In this picture, the
binding domains are the physical, fundamental determi-
nants of chromatin architectural patterns, heuristically
visualized as TADs and metaTADs. As the SBS model
can explain comparatively well Hi-C data, it can provide
a mechanistic understanding of the regulation of chro-
mosome architecture, capturing at least some of their
key folding mechanisms.

Importantly, our polymer models can be used to
derive any information on the folding of the loci of
interest genome-wide, beyond Hi-C pairwise contact
data. For instance, a snapshot of the full 3D structure
of the Sox9 locus, along with a comparison with its
average contact matrix and TADs, is shown in Fig. 6a.
For example, it is visible that TAD D (red) has a com-
plex internal 3D structure, with a large part of it mostly

associated to TAD E. Additionally, the dynamics of the
interactions between the genes within the locus and their
regulators can be derived (Chiariello et al. 2016). An
important, general discovery based on such polymer
models is that many-body interactions (triplets, quadru-
plets, etc.) are much more abundant than expected in a
randomly folded polymer chain (Fig. 6b), highlighting
that they could be an important functional component in
chromatin regulation.

Molecular nature of the polymer binding domains

To infer the specific molecular nature of the predicted
binding sites (model colors) and their cognate binding
factors, we crossed the information on their position/
type with epigenomic databases of chromatin features.
By integration of the data we can identify known and
new candidate factors driving folding and responsible
for its regulation. The heatmap in Fig. 6c illustrates the
correlation coefficient between the genomic positions of
binding domains and chromatin features from
ENCODE (The ENCODE Project Consortium 2012)
in the Sox9 region in mESC. Each binding domain
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are here shown along with the TADs of the locus. The predicted
binding domains overlap with each other, producing the complex
patterns visible within TADs and TAD-TAD interactions into
higher-order metaTAD structures. (Adapted from Chiariello et al.
2016)
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appears to have an epigenetic barcode that is a unique
combinatorial pattern of epigenetic features. For
instance, some domains are characterized by active
marks and PolII, others by more repressive marks.
CTCF correlates strongly with many of the domains,
yet others are not linked to it. That points out that
additional architectural factors, beyond CTCF, play a
key role in folding.

A test of the model

A stringent test of the model can be made by comparing
its predictions on the effects on folding of structural
variants, against their corresponding Hi-C patterns in
cells bearing the mutations. Starting from wild-type
data, the SBS model of any locus can be derived as seen
in the Sox9 case above. The structural variant of interest
is then implemented into the model and its new 3D
conformation derived under only the laws of physics,
without any adjustable parameter whatsoever. The
resulting pairwise contact data can then be compared
with Hi-C data of the modified cell system. We tested
the model prediction in the case of the Xist locus
(Fig. 7a) where 5C data are available for the wild-type
locus and for the ΔXTX deletion in mESC (Nora et al.
2012; Giorgietti et al. 2014). Interestingly, the model
well reproduces (90% correlation) the observed ectopic

interactions emerging as a consequence ofΔXTX in 5C
data (Fig. 7b,c).

The full 3D structure of the wild-type and of the
deleted system are shown in the snapshots of Fig. 7d
(Chiariello et al. 2016), highlighting that a part of the
ectopic interactions seen in ΔXTX derive from mere
proximity effects.

In summary, by suitable polymer models and by
crossing information with epigenomic databases we
can develop a platform to dissect the molecular factors
controlling folding and defining chromatin domains in a
principled way. As a consequence, we can also predict
the effects of the 3D organization of chromosomes of
structural variants, along with the rewiring of the regu-
latory networks of genes and their regulators. As archi-
tecture and transcription are deeply linked, that can open
the way to understand disease models, such as congen-
ital diseases and cancer.

Discussion

The approach based on the SBS model discussed above
has been used to explain folding at other loci, such as the
Bmp7 and the HoxB regions in mESC, along with their
dynamics (Chiariello et al. 2016; Annunziatella et al.
2016). Polymer models, in the same category than the
SBS model, informed with protein binding sites (i.e.,
DHS maps and CTCF sites) have also successfully
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model and its molecular determinants. a)A snapshot of the full 3D
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randomly folded chain, highlighting a likely functional role in
chromatin regulation (Chiariello et al. 2016). c) Heatmap of the
correlations between the genomic positions of the binding
domains in the Sox9 SBS model and chromatin features. A
barcode links architectural domains to epigenomicmarks, pointing
towards a combinatorial regulation of chromatin folding and tran-
scriptional activities
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reproduced the pattern of contacts at loci such as the α
and β globin gene regions in mouse erythroblasts
(Brackley et al. 2016a, b), the Xist locus in mouse
embryonic stem cells (Scialdone et al. 2011, Giorgietti
et al. 2014; Chiariello et al. 2016) or genomic loci in
Drosophila (Jost et al. 2014) and budding yeast (Cheng
et al. 2015). Polymer modeling of chromatin structural
organization has also been linked to replication timing
domains (Boulos et al. 2015). Finally, models based on
an active, DNA loop extruding mechanisms have been
shown to be compatible with Hi-C contact data at loci
where folding is driven by CTCF binding sites (Sanborn
et al. 2015; Fudenberg et al. 2016). However, for
instance, the 3D structures of the globin loci have been
shown to remain preserved in CTCF or other
Transcription-Factor knock-outs (Brackley et al.
2016a, b). Analogously, in the mouse Sox9 locus,
CRISPR/Cas9 precise deletions of TAD boundary
regions containing conserved CTCF binding sites had
no special effects on Hi-C contact maps and produced
no alterations of TADs (Franke et al. 2016). Such results
point towards a scenario where the combination of

different molecular factors is responsible for chromatin
folding, as predicted by the SBS model discussed here.

In conclusion, we discussed recent developments
based on the analysis of Hi-C data genome-wide, in
human as well as mouse cell models, that reveal that
chromosomes have a complex hierarchical architec-
ture of higher-order domains (metaTADs) extending
up to chromosomal scales, in a manner that reflects
epigenomic features. MetaTAD topologies are rela-
tively conserved through differentiation and their
reorganization is related to gene expression changes.
We also reviewed how concepts of polymer physics
can explain chromatin 3D structures from the sub-
Mbp to chromosomal scales, across cell types and
chromosomes. In particular, we discussed recent
findings showing that the 3D structure of loci, such
as the Sox9 locus, linked to human congenital dis-
orders, can be explained with high accuracy and its
molecular determinants identified. Model predic-
tions on the effects of genomic rearrangements have
been confirmed against available data, e.g., in the
Xist locus. Importantly, the approach proposed here
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providing a stringent test against experimental data. c) Interes-
tingly, the predicted contact matrix has a 91% correlation with 5C
data of the deletion and identifies the ectopic contacts arising after
the deletion. d) Additionally, from the SBS model the full 3D
structure can be derived, beyond the available pairwise contact
data, to visualize the effects of the mutation on folding (Chiariello
et al. 2016). (Adapted from Chiariello et al. 2016)
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does not require previous knowledge of DNA bind-
ing proteins. In our approach, the molecular factors
shaping folding, as much as their genomic locations,
are derived by only architectural data. Their molec-
ular nature is later identified by crossing their posi-
tional information with epigenomics datasets. In this
way, we can identify the determinants of folding and
their mechanisms of actions with no a-priori
assumptions beyond that chromosome conforma-
tions reflects polymer physics. Our approach can,
thus, help developing new diagnostic and treatment
tools for diseases linked to chromatin mis-folding,
such as congenital disorders and cancer (Ong and
Corces 2014; Lupiáñez et al. 2015; Valton and
Dekker 2016).

Materials and methods

A detailed description of the materials and methods is
provided in the cited references. In particular, the SBS
polymer model was investigated by Brownian
Molecular Dynamics computer simulations imple-
mented by LAMMPS. All the details about the model
and computational parameters, as well as on the analy-
ses performed are reported in the cited references.
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