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Abstract The centromere is a specialized chromosomal
locus required for accurate chromosome segregation. A
specific histone H3 variant, CENP-A, assembles at cen-
tromeres. CENP-A is required for kinetochore protein
assembly and is an epigenetic marker for the mainte-
nance of a functional centromere. Human CENP-A
chromatin normally assembles on α-satellite DNA
(alphoid DNA), a centromeric repetitive sequence.
Using alphoid DNA arrays, human artificial chromo-
somes (HACs) have been constructed in human
HT1080 cells and used to dissect the requirements for
CENP-A assembly on DNA sequence. However, cen-
tromere formation is not a simple genetic event. In other
commonly used human cell lines, such as HeLa and
U2OS cells, no functional de novo centromere forma-
tion occurs efficiently with the same centromeric
alphoid DNA sequences. Recent studies using protein
tethering combined with the HAC system and/or genetic
manipulation have revealed that epigenetic chromatin

regulation mechanisms are also involved in the CENP-
A chromatin assembly pathway and subsequent
centromere/kinetochore formation. We summarize the
DNA sequence requirements for CENP-A assembly and
discuss the epigenetic regulation of human centromeres.
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Abbreviations
Alphoid
DNA

Alpha satellite DNA

ARS Autonomous replicating sequence
CAD CENP-A distal
CCAN Constitutive centromere-associated

network
CDE Conserved DNA element
CENP Centromere protein
HAC Human artificial chromosome
HOR Higher order repeat
ICEN Interphase Centromere Complex
KMN KNL-1/Mis12 complex/Ndc80
NAC CENP-A nucleosome-associated

complex
YAC Yeast artificial chromosome

Introduction

The centromere is a specialized chromosomal locus
required for accurate chromosome segregation. The
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kinetochore structure is composed of more than 100
protein components that assemble on the centromere
locus during themitotic phase. The kinetochore interacts
with microtubules and regulates the chromosomal seg-
regation process via interactions with the mitotic check-
point proteins (Cleveland et al. 2003; Musacchio and
Salmon 2007; Allshire and Karpen 2008).

Almost 34 years have passed since eukaryotic artificial
chromosomes were first generated in budding yeast. The
first artificial chromosomes were constructed by combin-
ing origins of DNA replication with the functional cen-
tromere DNA elements in circular plasmids. Currently,
artificial chromosomes with functional centromeres can
be generated in human cells. During this process,
centromere-specific repetitive DNA sequences (α-
satellite DNA) are required for de novo assembly. How-
ever, human artificial chromosome formation is also
strongly correlated with epigenetic regulation (e.g., chro-
matinmodifications), as it is at natural centromeres, where
evidence for epigenetic regulation came from the discov-
ery of centromere inactivation (Earnshaw and Migeon
1985) and from the formation of human neocentromeres
on non-α-satellite DNA if the natural centromeres are lost
or deleted (Fukagawa and Earnshaw 2014). In this review,
we focus on current advancements in de novo formation
and maintenance of functional human centromeres and
discuss how epigenetic chromatin modifications regulate
centromere assembly, activation, and inactivation, includ-
ing neocentromere formation.

The first eukaryotic artificial chromosome
with a point centromere in budding yeast

In budding yeast (Saccharomyces cerevisiae) cells, the first
autonomous replicating sequence (ARS) had been identi-
fied in part of the TRP1 gene as an element that enhanced
the transformation efficiency of bacterial plasmid DNA in
yeast cells (Stinchcomb et al. 1979; Struhl et al. 1979).
Plasmid DNA containing ARS element replicates efficient-
ly, accumulating as multicopy plasmids without integrat-
ing into the host chromosomes. However, such ARS-con-
taining plasmids, which cannot properly segregate at mi-
tosis, accumulate in the mother cells and are rapidly lost
from cell population during growth without selection.

Clarke and Carbon (1980) identified the first func-
tional centromere DNA element (CEN) near the CDC10
locus of chromosome III, which had been mapped ge-
netically. Introduction of the cloned CEN DNA into a

circular plasmid bearing an ARS element caused that
plasmid to undergo classical Mendelian segregation
mechanism with equally distribution into daughter
cells and maintenance of a copy number of one per
cell. The centromere and replication origin were both
required for stable maintenance of this circular
minichromosome.

Normal eukaryotic chromosomes are linear in
structure and have telomere repeats at both chromosomal
ends. The first linear artificial chromosome was
constructed by Murray and Szostak (1983) in budding
yeast. A linear DNA fragment containing a centromere,
ARS, and selectable marker was capped at both ends
with Tetrahymena rDNA repeats containing telomere
structures. After transformation into yeast cells, this
synthetic DNA construct formed a minichromosome,
that segregated and stably maintained as a linear yeast
artificial chromosome (YAC) (Fig. 1a, left).

The minimum length of centromere DNA of
S. cerevisiae called as the conserved DNA element
(CDE) is a quite short ∼120 bp (Fitzgerald-Hayes et al.
1982). The essential centromere-specific histone H3 var-
iant Cse4 assembles as a single nucleosome on CDE II
with other core histones, including H2A, H2B, and H4
(Furuyama and Biggins 2007; Camahort et al. 2009).
This centromere-specific histone H3, CENP-A (also
known in some organisms as CenH3), is highly con-
served among eukaryotes, from yeast to humans and
plants (Earnshaw and Rothfield 1985; Talbert et al.
2012; Earnshaw et al. 2013). In S. cerevisiae, the
Cse4/CENP-A nucleosome cooperatively recruits kinet-
ochore proteins for assembly with another CDE I binding
protein (i.e., CBF1) and CDE III-binding protein com-
plex CBF3 (Kitagawa and Hieter 2001). The defining
factor of the yeast point centromere is that it is solely
defined by the DNA sequence. Any DNA molecule
carrying the 125-bp CDEI, CDEII, and CDEIII se-
quences capable to assemble a centromere, and a single
DNA base mutation in CDEIII can inactivate the centro-
mere (Hegemann et al. 1988).

A unique core centromere sequence surrounded
by heterochromatin is required for YAC formation
in fission yeast

In fission yeast (Schizosaccharomyces pombe), the
centromere-competent DNA is considerably larger than
in S. cerevisiae. S. pombe centromere DNA is 35–
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110 kb in length and consists of a unique central core
sequence (cnt, 4∼7 kb) surrounded by repetitive se-
quences (imr, dg, and dh) (Nakaseko et al. 1986;
Chikashige et al. 1989). For de novo formation of an
artificial minichromosome from the input naked DNA,
both the unique core and surrounding repetitive se-
quences are required (Hahnenberger et al. 1989)
(Fig. 1a, right).

The S. pombe centromere has a specialized chromatin
structure—when S. pombe DNA is cleaved with micro-
coccal nuclease, the central core DNA exhibits a smear
pattern rather than a nucleosomal ladder (Takahashi
et al. 1992), and this is required for functional kineto-
chore assembly (Takahashi et al. 2000). Multiple nucle-
osomes containing Cnp1, the S. pombe CENP-A, and
other centromere-related proteins are assembled at cnt
and imr DNA (Takahashi et al. 2000; Allshire and
Karpen 2008; Ogiyama and Ishii 2012). It is not clear
the extent to which these are interspersed with nucleo-
somes containing canonical histone H3. In contrast, the
outer repeat region (dg and dh), consists of H3 nucleo-
somes where H3 is lysine 9 di-methylated (H3K9me2)
and recruits Swi6/HP1, Clr4/Suv39, and other hetero-
chromatin factors (Grewal and Jia 2007). Although the
central core including outer repeat sequences is required
for de novo artificial chromosome formation and
Cnp1/CENP-A assembly, the outer repeat sequences
can be substituted with an artificially induced hetero-
chromatin structure (Folco et al. 2008; Kagansky et al.
2009). Heterochromatin is therefore important for
artificial chromosome formation in S. pombe.
Heterochromatin may be required for the enrichment
of cohesin between the sister chromatids through HP1
binding (Bernard et al. 2001; Nonaka et al. 2002) and/or
the assembly or maintenance of CENP-A chromatin
(Folco et al. 2008; Kagansky et al. 2009).

Human centromeric DNA and protein components

A characteristic feature of the centromere DNA of all
normal human chromosomes is α-satellite DNA
(alphoid DNA). Alphoid DNA is a highly repetitive
sequence with a monomer unit length of approximately
171 bp (Willard and Waye 1987) and clustered in regu-
lar and irregular arrays extending to 0.5∼5 Mbp in all
human centromeres.

In human cells, centromere proteins were identified
before the demonstration of a functional human DNA

sequence as a centromere. Discovery of the first centro-
mere proteins was made possible when it was shown
that autoantigens recognized by sera from patients with
scleroderma-spectrum disease were located at centro-
meres (Moroi et al. 1980). These antigens were subse-
quently identified as CENP-A, CENP-B, and CENP-C
(Earnshaw and Rothfield 1985). CENP-B, the first cen-
tromere protein cloned in any species (Earnshaw et al.
1987), which recognizes the 17-bp CENP-B box motif
in alphoid DNA (Masumoto et al. 1989; Muro et al.
1992), has a unique N-terminal DNA-binding domain
(Pluta et al. 1992; Yoda et al. 1992) and a self-
dimerization domain at the carboxyl terminus
(Kitagawa et al. 1995). CENP-A, the essential centro-
meric H3, is highly conserved among eukaryotes and
forms a nucleosome structure (Palmer et al. 1987;
Howman et al. 2000; Tachiwana et al. 2011—though
this is controversial—see discussion in Fukagawa and
Earnshaw 2014). CENP-A is required for kinetochore
assembly as an epigenetic marker of centromere chro-
matin (Black and Cleveland 2011). CENP-C is also an
essential protein that bridges the inner and outer plates
of the kinetochore (Saitoh et al. 1992; Przewloka et al.
2011; Screpanti et al. 2011).

With the development of proteomics approaches,
many other CENPs have been identified. CENP-A chro-
matin-associated proteins, which have variously been
termed the Interphase Centromere Complex (ICEN),
CENP-A nucleosome-associated complex (NAC)/
CENP-A nucleosome distal (CAD), or constitutive
centromere-associated network (CCAN) proteins, form
the centromere-specific chromatin structure (Obuse
et al. 2004; Izuta et al. 2006; Foltz et al. 2006; Okada
et al. 2006). Numerous kinetochore proteins, including
the KNL-1/Mis12 complex/Ndc80 (KMN) complex,
and other checkpoint proteins assemble on this centro-
mere chromatin during the mitotic phase (Cheeseman
et al. 2006; Musacchio and Salmon 2007).

The CENP-B box is found both in the centromeric
repetitive DNA of human alphoid DNA and mouse
centromeric minor satellite DNA, which has an other-
wise unrelated DNA sequence (Masumoto et al. 1989;
Kipling et al. 1995). When mapped in detail, the cen-
tromeric alphoid DNA of chromosome 21 and chromo-
some Xwas found to consist of two domains. The inner,
centromere core, on which the kinetochore assembles, is
composed of a homogeneous repeating array of higher-
order repeat (HOR) units. This is flanked by highly
divergent alphoid monomeric units (Fig. 1b). In the
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homogeneous HOR locus (also termed the type I
alphoid locus), chromosome-specific multimers of the
171-bp unit constitute the HOR unit, and the HOR units
extend over mega-base pairs of a homogeneous locus
(Choo et al. 1991; Ikeno and Masumoto 1994; Schueler
et al. 2001; Aldrup-Macdonald and Sullivan 2014; Miga
et al. 2014). In the monomeric repeating locus (also
termed the type II alphoid locus), 171-bp alphoid mono-
mers exhibit a divergence of ∼85 % and have no regular
repeat structure. All human chromosomes have slightly
different alphoid HOR units and monomeric loci around
the centromeres. CENP-B boxes appear in all type
I/HOR loci except the Y chromosome alphoid HOR
locus (Masumoto et al. 1989; Earnshaw et al. 1991).
Interestingly, the absence of CENP-B box motifs in Y
chromosome centromeres is common among humans,
chimpanzees, and mice (Pertile et al. 2009).

Human artificial chromosome formation
with centromeric repetitive DNA

It has been technically difficult to investigate whether
the entire alphoid repeat loci are required for centromere
function or if only a part of the alphoid repeat is suffi-
cient for de novo centromere formation. However, top-
down approaches for determining the functional centro-
meric DNA sequence have been carried out. The human
X and Y chromosomes were minimized using the
targeted telomere sequence-mediated chromosome frag-
mentation method until centromere function was lost.
This top–down approach indicated that centromere
function is associated with the alphoid repeats because
the minimum stable X and Y chromosomes contained
alphoid DNA (Brown et al. 1994; Farr et al. 1995). The
smallest stable derivative of the X chromosome that was
obtained by this approach had 1.8 Mb of alphoid DNA
(Mills et al. 1999).

In a bottom-up approach, Willard et al. cloned chro-
mosome 17 alphoid DNA HOR unit in a BAC vector
and extended the repeat structure in tandem using an
in vitro ligation method up to several hundred kilobases
in length. Extended alphoid DNAs with a selection
marker DNA fragment were co-transfected with total
human genomic DNA and telomere sequences as a
mixture of DNAs into human fibrosarcoma HT1080
cells. A mega-base-sized minichromosome formed as
a consequence of heterogeneous multimerization of in-
put DNAs from this mixture. This minichromosome

was stably maintained without selection as the first
human artificial chromosome (HAC) (Harrington et al.
1997) (Fig. 1c, top).

In another approach, 80–100 kb of type I/HOR or
type II/monomeric alphoid DNA fragments from chro-
mosome 21 were cloned into a YAC vector. These
alphoid YAC DNAs were retrofitted with human telo-
mere sequences at both ends, purified from yeast cells
and transfected into human HT1080 cells. HAC forma-
tion occurred efficiently with the type I/HOR alphoid
YAC DNA as mega-base-sized multimers of the input
DNA lacking detectable host chromosomal DNA. In
contrast, no HAC formation occurred with the type II/
monomeric alphoid YAC. CENP-A, CENP-B, CENP-
C, and CENP-E (a kinetochore motor protein) assem-
bled on the HACs, which segregated equally into
daughter cells at mitosis (Ikeno et al. 1998; Masumoto
et al. 1998; Tsuduki et al. 2006) (Fig. 1c bottom).

In all cases, the introduced alphoid HOR DNA
multimerized and formed stable mega-base-sized HACs
(Ikeno et al. 1998;Mejia et al. 2001; Grimes et al. 2002).
Telomere sequences were not required for HAC forma-
tion when the input DNA was circular (Ebersole et al.
2000). In that case, the circular input DNA formed
circular HACsmultimerizing the input DNAs. Although
HAC DNA exhibits normally controlled replication co-
ordinated with the cell cycle, no requirement for specific
origin of replication sequences has been identified in
these experiments.

Thus, although YAC and HAC formation with de
novo functional centromere assembly from introduced
naked centromeric DNAs has occurred both in yeast and
human cells, crucial differences exist. HAC formation is
always accompanied by multimerization of input DNA,
and the HAC acquires regulated replication without
defined origin sequences. HAC formation is not the only
fate of the input alphoid HOR DNA. The other fate is
integration into the host chromosomes as arrays that
lack centromere activity. One explanation is that a larger
chromosome size is required for stable mitotic mainte-
nance as a HAC. Such a size effect is also observed for
YAC stability (Murray and Szostak 1983; Hahnenberger
et al. 1989) and for truncated human X chromosomes in
DT40 cells (Mills et al. 1999). A second possible expla-
nation is that multiple internal initiations of replication
may be necessary. Recent analysis has shown that
alphoid DNAs have the potential to initiate replication.
Endogenous alphoid HOR DNA is a mega-base homo-
geneous repeat locus, and this size is much larger than
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the conceivable distance for the progression of a single
replication fork. In addition, the selectable marker gene
(Bsr) on the HAC vector arm works efficiently as a
replication origin sequence on the HAC (Erliandri
et al. 2014). But why does the same input alphoid
HOR DNA undergo different fates in human cells? This
interesting point for the epigenetic regulation of repeti-
tive DNAwith chromatin modification is discussed later
in this review.

Alphoid HOR DNAwith CENP-B boxes is required
for de novo centromere formation

To investigate the importance of alphoid HORDNA and
CENP-B boxes in HAC formation and de novo centro-
mere assembly, point mutations, which lose their bind-
ing capacity to CENP-B, were introduced to all CENP-
B boxes in a chromosome 21 alphoid HOR DNA array,
which was then introduced into human cells. No HAC
formation occurred when all CENP-B boxes were mu-
tated, and CENP-A assembly was diminished on the
input mutant alphoid HOR DNA (Ohzeki et al. 2002;
Basu et al. 2005). Thus, the CENP-B box is required for
de novo CENP-A assembly and HAC formation. How-
ever, neither HAC formation nor CENP-A assembly
was observed using a synthetic repeat DNA composed
of a CENP-B box and a pBR-based non-alphoid GC-
rich DNA fragment (Ohzeki et al. 2002). Thus, some
aspect of alphoid HOR DNA, in addition to the CENP-
B box, is required for CENP-A assembly and HAC
formation. The requirement for CENP-B boxes appears
at first paradoxical, as the CENP-B gene is not essential
for life in the mouse, possibly because de novo centro-
mere formation does not normally occur outside labora-
tory conditions.

The CENP-B box in the chromosome 21 HOR unit
appears once per alphoid dimer sequence (340 bp).
When the density of the CENP-B box was reduced to
once per 11mer from the HOR unit by nucleotide sub-
stitution, CENP-A assembly decreased and the HAC
formation activity was lost (Okamoto et al. 2007). In
contrast, artificially increasing the CENP-B box density
in the chromosome 17 HOR (to once per alphoid mono-
mer) increased the efficiency of HAC formation (Basu
et al. 2005). These results indicate that the CENP-B
binding somehow attracts CENP-A assembly in a quan-
titative manner. The CENP-A density may be a thresh-
old for further centromere/kinetochore assembly.

HACs are multimers of input alphoid DNA, but a
minimum length of the input alphoid DNA is also
important for HAC centromere formation. When a se-
ries of YAC and BAC vectors containing several differ-
ent lengths of the alphoid HOR DNA were created,
efficient HAC formation was observed only when the
alphoid HOR DNA was more than 30 kb in length.
Shorter arrays of 10 kb did not form HACs with stable,
functional centromeres, even though the 10-kb array had
CENP-A assembly activity (Okamoto et al. 2007). On
the other hand, extension of the alphoid HOR DNA
array to 240 kb did not significantly improve the fre-
quency of HAC formation. Continuous regional occu-
pancy of CENP-A chromatin of at least 30 kb in length
without interruption by vector DNA may also be a
requirement for functional centromere assembly.

Involvement of CENP-B in de novo CENP-A
and heterochromatin assembly

CENP-B protein is a key factor in de novo HAC forma-
tion. CENP-B has homology to transposases and is con-
served among at least S. pombe and mammals. CENP-B
function is divergent among species. Three CENP-B
homologs exist in S. pombe, and these mutants are related
to heterochromatin formation at the centromere repeat
and transposon (Nakagawa et al. 2002; Cam et al. 2008).

Striking results were reported from three laboratories,
CENP-B gene knockout mice are viable, centromere/
kinetochore function is maintained, and chromosomes
are segregated without CENP-B (Hudson et al. 1998;
Perez-Castro et al. 1998; Kapoor et al. 1998). Thus,
either CENP-B is not required for maintenance of an
established centromere or its function is redundant. To
further test the requirement for CENP-B in de novo
centromere formation, human alphoid HOR DNA was
transfected into mouse embryonic fibroblasts (MEFs)
and de novo CENP-A assembly and artificial chromo-
some formation occurred (Okada et al. 2007). This de
novo CENP-A assembly activity was lost when the
CENP-B gene was knocked out. Significantly, CENP-
A assembly on the introduced alphoid HOR DNA re-
covered when the CENP-B amino terminal domain was
expressed in the knockout MEFs in an add-back exper-
iment (Okada et al. 2007). Thus, CENP-B protein con-
tributes to de novo assembly of CENP-A on the input
alphoid DNA. Surprisingly, add-back of full-length
CENP-B induced strong heterochromatic modification
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(H3K9me3) at sites of ectopic integration of the input
alphoid HOR DNA and CENP-A assembly was sup-
pressed (Okada et al. 2007). These observations suggest
that CENP-B exerts a dual antagonistic role on centro-
meric satellite DNA, balancing de novo centromere
assembly and heterochromatin-induced inactivation de-
pending on the overall chromatin context of the sur-
rounding environment (Fig. 1d).

Interactions between CENP-A, CENP-B, and CENP-
C may explain why CENP-B is required for de novo
centromere assembly but not for maintenance of
established centromeres. All three proteins co-
immunoprecipitate with alphoid DNA (Ando et al.
2002; Suzuki et al. 2004) and they interact with one
another. For example, CENP-B interacts with CENP-C
in yeast two-hybrid analysis (Suzuki et al. 2004). The
situation with CENP-A is more complex. The highly
conserved H3-like histone-fold domain of CENP-A is
flanked by unique N-terminal and C-terminal residues
(Black and Cleveland 2011). CENP-C binds the C-
terminal residues of nucleosomal CENP-A (Carroll
et al. 2010). Recently, a functional interaction between
CENP-B and the CENP-A N-terminal tail domain was
reported (Fachinetti et al. 2013).

Knockout of CENP-A is lethal (Oegema et al. 2001;
Régnier et al. 2005). CENP-A is a relatively stable
protein, and after its expression is shut off, pre-existing
CENP-A persists at the centromeres, only gradually
disappears, possibly by replicative dilution. These cells
maintain kinetochore function for a few cell cycles, but
then rapidly lose all kinetochore protein assembly when
the CENP-A level reaches a lower threshold (Fachinetti
et al. 2013). Expression of exogenous CENP-A can
rescue this kinetochore loss; either the N-terminal tail
or the C-terminal residues are required for suppression
of this kinetochore loss. CENP-A lacking the N-
terminal tail rescues kinetochore assembly, probably
through CENP-C interactions, but in these cells
CENP-B levels at centromeres fall by about a half.
Consistently, CENP-A lacking the C-terminal residues
rescues kinetochore assembly, but when CENP-B is
depleted by RNAi, chromosome segregation errors in-
crease dramatically (Fachinetti et al. 2013).

These results suggest two possible kinetochore
recruiting pathways: one leading from the CENP-A C-
terminal tail to CENP-C, and the other from the CENP-A
N-terminal tail to CENP-B. It is thought that CENP-B
recruits CENP-C or other centromere proteins (Fig. 1e).
These two possible kinetochore recruiting pathways

provide an answer for why a protein required for de novo
centromere and HAC formation on alphoid HORDNA is
not required for the function and the maintenance of the
established centromere itself. Once assembled, the cen-
tromere maintains its function as the CENP-A C-terminal
tail interacts with CENP-C without CENP-B. However,
during de novo kinetochore formation, kinetochore, and
centromere function require a strong link between
alphoid HOR DNA (through the CENP-B box), which
binds CENP-B and subsequent CENP-B-CENP-A N-
terminal tail interactions (Masumoto et al. 2004; Okada
et al. 2007; Fachinetti et al. 2013).

The evolutionarily conserved absence of the CENP-
B box from Y chromosome centromeres may reveal as-
yet undiscovered aspects of the regulation of this sex-
determining chromosome. In addition, CENP-B does
not always interact with CENP-A and CENP-C, espe-
cially in heterochromatic regions of the inner centro-
mere. How such interactions are controlled is an intrigu-
ing question for future study.

Epigenetic regulation at the centromere:
neocentromere and dicentric inactivation

Although de novo centromere assembly and HAC for-
mation under experimental conditions is highly depen-
dent on the DNA sequence, in patients, rare examples
can be found where the natural centromere is damaged
or lost, and a new centromere (Bneocentromere^) has
formed on a chromosomal arm (du Sart et al. 1997;
Fukagawa and Earnshaw 2014). Neocentromeres form
on a wide range of DNA sequences and lack alphoid
DNA or CENP-B. Nonetheless, they assemble CENP-A

Fig. 1 Centromere DNAs, protein components, and artificial
chromosomes. a Structures of yeast centromeres and yeast artifi-
cial chromosomes (YACs). b Structures of human chromosome X
and 21 alphoid DNA. The higher order repeats (HOR/type I) and
monomeric (type II) alphoid DNA repeats. The HOR unit of
chromosome 21 is composed of 11 alphoid monomer units con-
taining five CENP-B boxes and one pseudo-CENP-B box. Red-
shaded sequences are critical for CENP-B binding. Blue-shaded
sequences are changed in the pseudo CENP-B box. No CENP-B
binding is present on the pseudo-box. In the CENP-B box mutants
of 11mer, wild-type CENP-B boxes (white ovals) are substituted
with pseudo-box sequences (black ovals). c The assembly of
human artificial chromosomes (HACs). d Properties of CENP-B
protein. e A possible pathway for the CENP-A nucleosome in
kinetochore protein assembly
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chromatin and functional kinetochores assemble and are
maintained epigenetically at neocentromeres (Alonso
et al. 2007). This is a strong evidence that centromeres
are determined epigenetically and not simply by the
existence of the underlying DNA sequence. Further
evidence supporting this was the finding that DNA
cloned from a human neocentromere was not able to
seed de novo HAC formation in HT1080 cells (Saffery
et al. 2001).

Experimental formation of neocentromeres has also
been demonstrated following deleting of the endoge-
nous centromeres in S. pombe, Neurospora, Candida,
and chicken DT40 cells. Deletion of the centromere
using Cre-loxP recombination in S. pombe and DT40
cells yielded neocentromeres with low efficiency (fre-
quency of approximately 10−4 and 10−6, respectively;
Ishii et al. 2008; Shang et al. 2013).

Another epigenetic centromere event is dicentric in-
activation. Typically, dicentric chromosomes resulted
from breakage or other mechanism are highly unstable.
This is because the two centromeres of the resulting
chromosome can attach to opposite spindle poles,
resulting in the chromosome being stretched and break-
ing at anaphase (McClintock 1941; Stimpson et al.
2012). The broken chromosome end accelerates the
chromosome fusion event for the repair reaction, which
generates a new dicentric chromosome for the vicious
cycle. Rarely, the dicentric chromosome is stabilized by
inactivating one of the two centromeres (Distèche et al.
1972). Therefore, centromere inactivation is important
for maintaining dicentric chromosome integrity after rear-
rangement. The known dicentric inactivation mechanisms
are DNA deletion and epigenetic silencing of the centro-
mere (Earnshaw and Migeon 1985; Merry et al. 1985;
Earnshaw et al. 1989; Stimpson et al. 2012).

It is not yet known how CENP-A assembly is nucle-
ated at the neocentromere, acquires and maintains a
functional size, or how the dicentric centromere is
inactivated epigenetically. Understanding such epige-
netic centromere-regulating mechanisms may help to
elucidate why and how species have different and di-
vergent centromere DNA sequences.

Heterochromatin negatively regulates CENP-A
and kinetochore assembly

Integration of input alphoid HOR DNA into ectopic
chromosomal sites is another common fate of the

transfected DNA during HAC formation assays.
CENP-A and kinetochore assembly is generally sup-
pressed at the ectopic sites, even though the same input
alphoid HOR DNA has the capacity to undergo de novo
centromere assembly and HAC formation in other cells
in the same experiment. These ectopic integration sites
may be a good model to understand epigenetic inactiva-
tion of centromere DNA.

A common chromatin modification observed at ec-
topic alphoid HOR integration sites is the constitutive
heterochromatic modification H3K9me3 (Nakano et al.
2003, 2008; Nakashima et al. 2005; Okamoto et al.
2007; Okada et al. 2007). Interestingly, in normal hu-
man embryonic fibroblasts, centromeric H3K9me3
modification and CENP-B levels increase during the
cellular senescence process, while at the same time,
levels of CENP-A decrease at the centromeres (Maehara
et al. 2010). This could suggest that increasing levels of
H3K9me3 might inactivate centromere function and
inhibit CENP-A assembly.

This question could be answered using the alphoidtetO-
HAC with a conditional centromere, which was devel-
oped by a collaboration of three laboratories based on
synthetic alphoid dimer HOR repeats in which one
monomer contains a CENP-B box while the adjacent
monomer contains a tetracycline operator (tetO) at the
corresponding position in the alphoid DNA sequence
(Fig. 2). Any desired tet repressor (tetR) fusion protein
can then be tethered at this tetO site. For example, the tet
transcriptional silencer (tTS) is a tetR fusion protein

Fig. 2 Models of de novo centromere formation and epigenetic
maintenance. Top, schematic diagram of de novo centromere for-
mation and chromatin assembly balance. CENP-B nucleates de
novo CENP-A assembly in a quantitative manner on input alphoid
DNA. CENP-B or CENP-A also interacts with CENP-C, which
may enhance centromere protein assembly. H3K9-trimetylase not
only inhibits new CENP-A assembly but also disrupts CENP-C
assembly.Middle, once established, centromere chromatin is main-
tained with epigenetic mechanisms. CCAN protein assembly in-
cluding CENP-TWSX and CENP-C is a platform for further mi-
totic kinetochore protein assembly during metaphase. CENP-A
chromatin is replenished in the G1 phase (Jansen et al. 2007).
CENP-C interacts with M18BP1 protein, a subunit of the human
Mis18 protein complex (Moree et al. 2011; Dambacher et al. 2012).
The Mis18 complex may recruit the CENP-A deposition factor
HJURP. CENP-A replenishment requires its conserved domain, the
CENP-A targeting domain (CATD). During S-phase, the CENP-A
density would be diluted by DNA replication. Bottom, artificial
tethering of HAT and/or Suv39 as tetR fusion proteins opens the
way to manipulate the assembly balance of the centromere chro-
matin on the alphoidtetO DNA
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containing the KRAB-AB silencing domain of the Kid1
protein (SDKid1). Tethering of the tTS to the tetO sites of
the alphoidtetO-HAC recruits a repressive complex

including H3K9-metylatransferase SETDB1 through
protein–protein interactions. Thus, tethering the tTS to
the alphoidtetO-HAC causes an increase in the
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heterochromatic H3K9me3 modification at centromeres,
accompanied by a decrease in CENP-A assembly, and
eventual missegregation of the HAC (Nakano et al.
2008). A subsequent study revealed that tethering the full
KAP1 protein reduces other centromere chromatin protein
assembly in the order, CENP-H→CENP-C→CENP-A
(Cardinale et al. 2009). Thus, heterochromatin-associated
modifications are involved in hierarchal negative regula-
tion of centromere assembly (Bergmann et al. 2012b).

In mouse pericentromeric constitutive heterochroma-
tin, the H3K9me3modification is introduced by Suv39h1
and Suv39h2 (Peters et al. 2001). In MEFs with
Suv39h1/2 knocked out, de novo CENP-A assembly on
the transfected alphoid DNA is enhanced (Okada et al.
2007). Similarly, Suv39h1 depletion by siRNA in HeLa
cells results in a low, but significant, level of CENP-A
assembly at ectopically integrated alphoid HOR DNA
(Ohzeki et al. 2012). Thus, Suv39h1 H3K9-trimethyase
and heterochromatin appear to be involved in an intrinsic
centromere inactivation mechanism.

Acetylation positively regulates CENP-A assembly

Depletion of Suv39h1 by siRNA in HeLa cells was not
sufficient to induce functional kinetochore assembly at
the ectopic alphoid DNA integration sites. Thus, deple-
tion of one of the factors repressing CENP-A assembly
was apparently not enough to induce de novo functional
centromere formation. It appeared that some positive
regulation would be necessary.

In HT1080 cells, de novo centromere assembly and
HAC formation is relatively efficient. However, neither
de novo HAC formation nor stable CENP-A assembly
on exogenous alphoid DNA occurs in many other com-
monly used human cell lines, including TIG7, U2OS,
and HeLa cells. In exploring this phenomenon, we
noticed that in HT1080 cells, the level of heterochro-
matic H3K9me3 at endogenous alphoid DNA loci is
relatively low and histone H3K9 acetylation (H3K9ac)
is increased. In contrast, in TIG7, U2OS, and HeLa
cells, higher levels of H3K9me3 modification are ob-
served at endogenous centromeric alphoid DNA loci,
and H3K9ac is low (Ohzeki et al. 2012).

The importance of acetylation for de novo centro-
mere assembly was subsequently demonstrated in HeLa
cells. Tethering the histone acetyl transferase (HAT)
domain of p300 or PCAF to an ectopic integrated
alphoidtetO DNA array containing high levels of

H3K9me3 induced de novo hyper-assembly of CENP-
A (Ohzeki et al. 2012). This HAT-assisted CENP-A
hyper-assembly occurred across the entire ∼5Mb region
of the ectopic integrated alphoidtetO array within 2 h
during G1 phase. Later, during mitosis, de novo kinet-
ochore proteins were observed to assemble on the array
and interact with bundles of spindle microtubules.

De novo HAC formation has never been observed in
HeLa or U2OS cells following simple transfection of
input alphoidtetO DNA. Strikingly, transient tethering of
the histone acetyl transferase (HAT) domain of p300 or
PCAF to the input alphoidtetO DNA following transfec-
tion did permit de novo formation of HACs with func-
tional centromeres. It therefore appears that even tran-
sient HAT tethering can break an initial barrier (presum-
ably due to hyper H3K9me3 levels at centromeres) for
de novo centromere establishment on input alphoid
DNA in HeLa cells. Once formed, these HACs were
maintained stably without further assistance from the
tethered HAT, even under strong centromeric hetero-
chromatin pressure in HeLa cells (Ohzeki et al. 2012)
(Fig. 2). Thus, the centromere itself can acquire a system
to overcome such strong heterochromatin pressure.

Involvement of HAT activity in the pathway depos-
iting newly synthesized CENP-A at centromeres has
been suggested in several reports. hMis18 alpha is a
subunit of the human Mis18 complex (Fujita et al.
2007), which assembles at centromeres only in telo-
phase to G1. This complex functions upstream of the
CENP-A/Histone H4 chaperone, HJURP, in CENP-A
targeting (Dunleavy et al. 2009; Foltz et al. 2009). New
CENP-A deposition is lost following hMis18α deple-
tion, but hyperacetylation induced by histone
deacetylase inhibitor TSA treatment can suppress
this hMis18α depletion phenotype (Fujita et al.
2007). Indeed, during mitotic exit, a brief pulse of
histone acetylation can be detected on centromeric
alphoid DNA (Ohzeki et al. 2012). PCAF, p300
HATs (Craig et al. 2003), and MYST-HAT family
complexes (Ohta et al. 2010) associate with endog-
enous centromeres. Intrinsic HAT activity may
therefore cooperate with other factors during centro-
mere assembly or functional maintenance.

Tethering of the CENP-A deposition factors from the
Mis18 complex or HJURP can also induce CENP-A
targeting and subsequent kinetochore assembly on the
alphoidtetO DNA (Ohzeki et al. 2012). Indeed, tethering
of HJURP can deposit CENP-A and induce subsequent
kinetochore assembly, even on Lac operator (LacO)
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repeats in the absence of alphoid DNA sequence
(Barnhart et al. 2011). CENP-A assembly on such LacO
repeats can maintain centromere function without the
tethering of additional initial factors (Hori et al. 2013).
Established CENP-A chromatin is both a platform for
kinetochore assembly and an epigenetic landmark for
centromere maintenance.

Consistent with this view, the assembly of CENP-A
chromatin can be bypassed if two proteins that link the
inner and outer (microtubule-binding) elements of the
kinetochore (CENP-T, and part of CENP-C) are tethered
to ectopic arrays in vertebrate cells (Gascoigne et al.
2011; Hori et al. 2013). These synthetic kinetochores
appear to be fully functional without the assembly of
CENP-A or other inner kinetochore (CCAN)
components.

Other epigenetic modifications and transcription
for centromere/kinetochore assembly

Transcription-related chromatin modifications are also
involved in centromere/kinetochore assembly. A eu-
chromatic modification, H3K4me2, is associated with
transcriptionally competent chromatin. H3K4me2 is al-
so observed between blocks of CENP-A chromatin at
endogenous centromeres (Sullivan and Karpen 2004).
Tethering of LSD1, a H3K4me2 demethylase, on the
tetO-HAC reduces assembly of the HJURP and conse-
quent loss of new CENP-A assembly (Bergmann et al.
2011).

Monomethylation on H4K20 (H4K20me1) is also
associated with both transcriptional activity and repres-
sion. H4K20me1 is specifically associated with CENP-
A nucleosomes, both in endogenous centromeres in
HeLa and DT40 cells and at neocentromeres in the latter
(Hori et al. 2014). This modification appears to some-
how license CENP-A chromatin for subsequent kineto-
chore assembly, and the assembly of centromere pro-
teins CENP-H and CENP-T is diminished when PHF8,
a demethylase for H4K20me1, is tethered to endoge-
nous centromeres by fusion to CENP-U in human cells
(Hori et al. 2014).

Surprisingly, elongating RNA polymerase II has
been detected at centromeres in metaphase, where its
transcriptional activity may be important for CENP-C
assembly (Chan and Wong 2012). The level of this
transcriptional activity must be finely balanced, how-
ever. On the alphoidtetO-HAC centromere, induction

of strong transcriptional activity by the tethering of
VP16, a strong transcriptional activator, not only
blocks new CENP-A assembly but also strips the
centromere of pre-existing CENP-A. In this experi-
ment, VP16 raised centromeric transcript levels by
>100-fold, to the level of a housekeeping gene. In this
context, the HAC was rapidly lost due to failure of
mitotic segregation. In contrast, weak (∼10×) tran-
scriptional activation of alphoid arrays caused by teth-
ering the activation domain of NF-KappaB p65 is
compatible with CENP-A assembly (Bergmann et al.
2012a). H3K9me3 and acetylation are also involved
in transcriptional regulation. It is not clear if the weak
transcription is required for CENP-A assembly. How-
ever, differential histone H3.3 or H3.1 deposition is
indeed coupled with transcription or replication ma-
chinery respectively (Tagami et al. 2004).

Other transcription-related factors, such as FACT or
RSF1, also co-purify with CENP-A chromatin and in-
volved in centromere regulation. RSF1 appears to be
required for stable incorporation of CENP-A into chro-
matin (Perpelescu et al. 2009). Tethering of RSF also
recruits CENP-S and CENP-X (Helfricht et al. 2013).
FACT in yeast cells prevents ectopic CENP-A assembly
through a ubiquitin-related degradation pathway (Choi
et al. 2012; Dayter and Biggins 2014).

Balance between centromere nucleation
and suppression

The size of the CENP-A-bound region of alphoid DNA
has been suggested to be 30∼100 kb (Okamoto et al.
2007; Alonso et al. 2007; Shang et al. 2013), which is
much smaller than the type I alphoid HOR. Thus, en-
dogenous centromeres and HAC centromeres derived
from a simple alphoid HOR DNA have a large number
of non-CENP-A chromatin domains (Grimes et al.
2004; Okamoto et al. 2007), most of which are
heterochromatin.

What is the role of heterochromatin in HAC forma-
tion? Heterochromatin assembly may act to enhance
cohesion or suppress the CENP-A chromatin assembly
from extending into the whole area of a large repetitive
DNA. Disruption of heterochromatin during HAC for-
mation by embedding an additional promoter in the
vector arm results in intact de novo centromere assem-
bly, but HAC formation is lost, presumably due to a loss
of cohesin enrichment through HP1 binding
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(Nakashima et al. 2005). Another role of heterochroma-
tin may be to control kinetochore size. Forced introduc-
tion of H3K9me3 via the tethering of Suv39h1 on the
alphoidtetO-HAC centromere disrupts or cancels centro-
mere protein assembly. In contrast, forced introduction
of acetylation by tethering HATs results in extensive
CENP-A chromatin and kinetochore assembly across
an entire ∼5 Mb alphoidtetO DNA integration site
(Ohzeki et al. 2012) (Fig. 2). Such large kinetochore
cannot satisfy the mitotic checkpoint, probably due to
spindle abnormalities or formation of functional
dicentric chromosomes. A balance between centromere
nucleation and suppression by heterochromatin there-
fore appears be important to control either kinetochore
size or assembly.

S. pombe has a tRNA genes, which act as barrier
elements, between heterochromatin and centromeres at
the DNA level. Deletion of these genes induces hetero-
chromatin invasion into the centromere domain, and this
results in meiotic chromosomal instability (Scott et al.
2006). However, in humans and many other species,
centromere assembly occurs on homogeneous, simple,
repetitive DNAs. Maintenance of a mechanism
balancing centromere nucleation and suppression by
the heterochromatin is important. Centromere/
kinetochore size can be adjusted by artificially embed-
ding a boundary element between two different synthet-
ic alphoid HOR DNAs. Boundary elements that func-
tion in this way include human HS4, human gamma
satellite DNA, and tRNA genes, all of which prevent
heterochromatin from spreading to adjacent marker
genes (Kim et al. 2009; Ebersole et al. 2011). Develop-
ment of conditional protein tethering to pericentromeric
heterochromatin using combined tetO and/or LacO sys-
tems may increase our understanding of the interplay
between centromeric chromatin and pericentromeric
heterochromatin.

Concluding remarks

HAC formation is a powerful tool for understanding
how chromosomes form and are organized. However,
there is not a simple 1:1 correlation between input DNA
and the generated HAC. More technical advancements
and understanding of principal events that occur during
dynamic HAC formation in vivo are necessary.

With the HAC formation assay, knowledge about cen-
tromere chromatin and heterochromatin has been

accumulating. HACs can also be used for studies of
replication, telomeres, and other chromosomal functions
(Weuts et al. 2012; Wakai et al. 2014). The meiotic
behavior of artificial mammalian chromosomes is also of
interest.

HACs are also potentially useful as gene delivery
vectors for transgenic animals and variety of cells (Ikeno
et al. 2009; Hasegawa et al. 2014). Genome editing
technologies are rapidly advancing, and any genomic
locus could be loaded into a HAC via direct cloning
through homologous recombination. In particular, the
conditional alphoidtetO-HAC with a controllable kineto-
chore (Nakano et al. 2008; Kim et al. 2011; Kononenko
et al. 2014) is useful for a hit-and-run gene expression,
such as is useful during induction of pluripotency or
direct reprogramming of cells (Hiratsuka et al. 2011).
Advancement of chromosome transfer technology will
accelerate such HAC applications.
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