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Abstract Engineered minimal chromosomes with suffi-
cient mitotic and meiotic stability have an enormous
potential as vectors for stacking multiple genes required
for complex traits in plant biotechnology. Proof of princi-
ple for essential steps in chromosome engineering such as
truncation of chromosomes by T-DNA-mediated telomere
seeding and de novo formation of centromeres by cenH3
fusion protein tethering has been recently obtained. In
order to generate robust protocols for application in plant
biotechnology, these steps need to be combined and sup-
plemented with additional methods such as site-specific
recombination for the directed transfer of multiple genes
of interest on theminichromosomes. At the same time, the
development of these methods allows new insight into
basic aspects of plant chromosome functions such as how
centromeres assure proper distribution of chromosomes to
daughter cells or how telomeres serve to cap the chromo-
some ends to prevent shortening of ends over DNA
replication cycles and chromosome end fusion.
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Abbreviations
BFB Breakage-fusion-bridge
cenH3 Centromeric histone H3-variant
Cre Phage P1 recombinase
CRISPR Clustered regularly interspaced short palin-

dromic repeats
DSB Double-strand break
GFP Green fluorescence protein
LacI Lac inhibitor protein
lacO Lac operator sequence
loxP Locus of crossing-over on phage P1
PARC Plant artificial ring chromosome

Introduction

In this review, we focus on recent approaches to manip-
ulate individual plant chromosomes in an ideally
targeted way in order to adapt them to needs of green
biotechnology. In this context, we outline the advan-
tages of engineering minichromosomes as vectors for
transgenes in contrast to conventional transformation
and discuss the basic strategies that can be followed to
customise chromosomes in plants. Based on this, we
summarise developments in practical implementation of
engineered plant chromosomes and consider further
steps required to get them established in broad applica-
tion. What we did not include are aspects of manipulat-
ing ploidy levels or recombination in plants, which have
been covered in an excellent recent review (Chan 2010).
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Advantages of chromosome engineering in contrast
to conventional transformation

Current plant biotechnology often involves the transfer
of extraneous genes to establish desired traits.
Conventional transformation methods such as biolistic
or Agrobacterium-mediated DNA transfer result in inte-
gration of transgenes in the host genome at random (Yu
et al. 2007a). For stacking transgenes encoding complex
traits, however, coordinated transfer and inheritance of
multiple genes is required (Naqvi et al. 2010). The use
of engineered minimal (mini)chromosomes with suffi-
cient mitotic and meiotic transmission, but not engaging
in recombination with other chromosomes to ensure
joint inheritance of multiple genes, would offer an enor-
mous potential as vectors for plant biotechnology as
exemplified in Acevedo-Garcia et al. (2013). Beyond
application-related aspects, custom-designed
minichromosomes would also form an excellent
model system to study the mechanisms underlying
chromosome function, such as how centromeres
assure proper distribution of chromosomes to
daughter cells or how telomeres serve to cap the
chromosome ends, preventing shortening of ends
over DNA replication cycles and chromosome end
fusion.

“Bottom-up” versus “top-down” approach

Construction of minichromosomes can be approached
in two ways, “bottom-up” by the assembly of all essen-
tial parts such as replication origins, centromeres and
telomeres from cloned components, or “top-down” by
modification of existing chromosomes in the organism
of interest. While the bottom-up approach is well
approved in yeast and animal cells, its applicability in
plants, albeit reported (Carlson et al. 2007; Ananiev
et al. 2009), is a matter of ongoing debate (reviewed in
Houben et al. (2008) and Gaeta et al. (2012)). In con-
trast, the top-down approach has turned out to be robust
in plants (reviewed in Birchler (2014)), making it the
method of choice for the time being.

Engineering of chromosomes with reduced size

Engineering of chromosomes in a top-down approach
starting from the native chromosomes of a host plant

requires maintaining essential functional components
such as centromere and telomeres, while removing as
much as possible of gene-containing parts in order to
avoid gene dosage imbalances and thus make the
minichromosomes-to-be phenotypically as neutral as
possible (reviewed in Conant et al. (2014)). An impor-
tant issue in this context is also size constrains that apply
to chromosome function. While there is a well-defined
upper limit for chromosome size as the longest chromo-
some arm must not exceed half of the length of the
spindle axis in mitotic telophase (Schubert and Oud
1997 ) , t h e po t en t i a l l owe r s i z e l im i t f o r
minichromosomes is less clear and might be set by the
requirements for proper bivalent stability or sister chro-
matid cohesion in meiosis, with possibly some depen-
dence on host genome size (Schubert 2001). Thus, the
desired small size is to be balanced with satisfactory
mitotic and meiotic transmissibility for most optimal
minichromosome-based vectors (reviewed in Birchler
and Han (2013)).

Several approaches exist to reduce the size of native
plant chromosomes. X-rays (Schubert 2001) or the
application of gametocidal (Gc) chromosomes or Gc
genes (reviewed in Endo (2007)) is an option to induce
random chromosome tuncation events. However, chro-
mosome fragmentation via the breakage-fusion-bridge
(BFB) cycle involving dicentric chromosomes as inter-
mediates is more efficient to downsize a particular chro-
mosome (reviewed in Yu et al. (2007a)). The application
of BFB cycles resulted in a series of midget chromo-
somes produced from the long arm of wheat chromo-
some 1B (Lukaszewski 1997). Based on a translocation
between a supernumerary B chromosome and the short
arm of the standard chromosome 9, several
minichromosomes could be generated in maize via the
BFB cycle (Han et al. 2006), which were transmissible
through sexual reproduction, but showed compromised
pairing or sister chromatid cohesion in meiosis (Han
et al. 2007; Birchler and Han 2013; Zhang et al. 2014).
Formation of minichromosomes, possibly involving
some BFB cycle steps, has also been reported for an
initially trisomic line of Arabidopsis thaliana (Murata
2014). These minichromosomes included linear as well
as ring chromosomes, which all were transmitted in
sexual reproduction, albeit with different efficiencies
with regard to the genetic background and transmission
via the male versus the female gametophyte. Interestingly,
ringminichromosomes seem to be more stably transmitted
than comparable linear ones.
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Site-specific recombination using exogenous sys-
tems such as Cre recombinase combined with loxP
locus of crossing-over sequences from phage P1 can
be used to modify DNA sequences in planta (reviewed
in Ow (2007)). Recombination requires the presence of
two loxP sites. If they are positioned on one linear DNA
molecule, recombination between them results in exci-
sion of the sequence flanked by them if they are in the
same orientation and in inversion of the sequence
flanked by them if they are in inverse orientation.
Thus, Cre-mediated recombination has been successful-
ly used to delete parts of plant chromosomes flanked by
transgenic loxP sites in the same orientation (Stuurman
et al. 1996). With the observation that ring
minichromosomesmight bemore stable than linear ones
that was mentioned above in mind (reviewed in
Murata (2014)), an approach to the directed con-
struction of a plant artificial ring chromosome
(PARC) using the Cre/loxP system in A. thaliana
has been taken. Site-specific recombination between
two loxP sites on the same chromosome was used to
release a large circular DNA fragment including a
good part of the native centromere. The resulting PARC
indeed showed substantial mitotic and meiotic transmis-
sion, although it did not engage in meiotic pairing
(reviewed in Murata et al. (2013)).

A recently developed option to shorten chromosomes
is the use of T-DNA-mediated telomere seeding
(reviewed in Birchler et al. (2010)). As shown first by
Farr et al. (1991), introduction of cloned telomeric
repeats into cells may truncate randomly the distal por-
tions of chromosomes by the formation of new telo-
meres at integration sites. Telomeres consist of tandem
repeats of a conserved short sequence (5′-TTTAGGG-3′
in A. thaliana) at the ends of chromosomes that are
synthesised by telomerase by adding repeat units to the
ends of existing arrays. Thus, a DNA end carrying a
tandem array of telomeric repeats can serve as seeding
point for the formation of a telomere. Introduction of a
T-DNA construct containing a block of telomeric
repeats at one end via Agrobacterium-mediated DNA
transfer can lead to the formation of T-DNA-associated
de novo telomeres. If oriented properly, that is, with the
T-DNA integrated in a way that the selection marker is
at the side in the direction of the centromere, de novo
telomere formation results in the formation of a stable
truncated chromosome, while all parts distal to the site
of telomere formation end up in an acentric fragment
that is lost in subsequent cell divisions (Fig. 1a).

Chromosome truncation by telomere seeding has
been achieved by Agrobacterium-mediated transforma-
tion of maize (Yu et al. 2006; Vega et al. 2008),
A. thaliana (Nelson et al. 2011; Teo et al. 2011) and
barley (Kapusi et al. 2012) as well as biolistic transfor-
mation of rice (Xu et al. 2012) and maize (Gaeta et al.
2013). Chromosomes with extended deletions are usu-
ally not transmitted through sexual reproduction when
generated in diploid material due to gametophyte lethal-
ity associated with the loss of essential genes. However,
transfer of truncated chromosomes to the next genera-
tion is possible in lines containing backup chromosome
copies. In autotetraploid material that either was used as
target for transformation in the cases of A. thaliana
(Nelson et al. 2011; Teo et al. 2011) and barley
(Kapusi et al. 2012) or formed spontaneously in the
process of transformation in the cases of barley
(Kapusi et al. 2012) as well as maize (Yu et al. 2007b),
truncated chromosomes were inherited across genera-
tions. A truncated chromosome that was recovered from
a tetraploid maize plant could be transferred into diploid
background by repeated backcrossing. Here, it showed
stable transmission and failed to pair with its progenitor
chromosome in meiosis, that is, the features required for
a minichromosome-based vector (Yu et al. 2007b).

An interesting option in the context of avoiding del-
eterious effects of chromosome truncation is to use B
chromosomes, which by definition are supernumerary
and non-essential (reviewed in Houben and Schubert
(2007) and Houben et al. (2014)), as targets of telomere
seeding. Indeed, when a diploid maize line containing B
chromosomes was biolistically transformed with telo-
mere seeding constructs, multiple truncated B chromo-
somes were obtained that showed substantial transmis-
sion through sexual reproduction and expression of
inserted reporter genes (Yu et al. 2007b).

A further advantage of using B chromosomes as
starting point for chromosome engineering is that many
of them possess “drive” mechanisms that promote their
preferential inheritance and thus maintenance in the host
plant population (reviwed in Houben et al. (2014)).
Such a “drive” would also be very valuable for a
chromosome-based vector. A prerequisite to exploit the-
se drive mechanisms would be the ability to precisely
target truncation of B chromosomes in order to preserve
all chromosome regions required for the process of
drive. However, as the insertion of exogenous DNA into
plant chromosomes happens in general at random,
transgene-associated telomere seeding and chromosome
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truncation is random by default. Nevertheless, the inser-
t i on o f T-DNA cons t ruc t s i n t roduced v i a
Agrobacterium-mediated DNA transfer can be targeted
to particular sites in the genome by simultaneous site-
specific formation of DNA double-strand breaks
(DSBs) (Chilton and Que 2003). Thus, the targeting of
T-DNA-mediated telomere seeding to particular chro-
mosomal sites via the site-specific introduction of DSB
should be approached (Fig. 1a). There are now several
tools for the sequence-specific induction of DSB in
plants available, with CRISPR/Cas RNA-guided nucle-
ases representing the most timely method (reviewed in
Puchta and Fauser (2014)). Once such targeted telomere
seeding would be available, targeted deletion of chro-
mosome arms, while retaining other desired chromo-
some elements, would become feasible.

Induction of de novo centromere formation

Beside of using the existing centromeres of native chro-
mosomes of the host plant, it would be very useful if
centromeres could be generated de novo in plants.
However, simply transferring centromeric sequences
seemingly is not sufficient (Gaeta et al. 2012; Phan
et al. 2007). Centromeres are marked by cenH3, a
centromere-specific histone H3 variant (reviewed in
Jiang et al. (2003)). In complex eukaryotes including
plants, the presence of cenH3 at a particular DNA site is
an epigenetic feature (reviewed in Burrack and Berman
(2012)). That is, the cenH3 present prior to DNA repli-
cation serves as a signal for the loading of new cenH3 at
the same site after DNA replication in order to maintain
a constant cenH3 mark and thus centromere function

Fig. 1 Steps toward precision engineering of minichromosomes.
a Chromosome truncation via T-DNA-mediated telomere seeding.
The lower acentric fragment is lost in subsequent cell divisions.
The site of truncation is random by default, but potentially can be
targeted by simultaneously setting a double-strand break (DSB) by
the use of a sequence-specific nuclease. b De novo centromere
formation at tandem repeats via tethering of a cenH3 fusion
protein. The presence of cenH3 at the ectopic site promotes the
loading of further cenH3 and attraction of kinetochore proteins. c
Combination of de novo centromere formation at tandem repeats

already integrated in a host chromosome with targeted T-DNA-
mediated telomere seeding proximal to the tandem repeats can
release prototype minichromosomes (mini). However, their possi-
ble sizes are determined by the chromosomal positions of the
tandem repeat insertion sites. d Including the tandem repeats for
cenH3 tethering in the T-DNA construct for telomere seeding and
simultaneously targeting T-DNA insertion to, for example, a
subtelomeric region could generate minichromosomes of any
desired size
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(Lermontova et al. 2006). Experimental tethering of
cenH3, for example via expression of a cenH3-fusion
protein comprising a sequence-specific DNA binding
domain in an organism carrying the respective target
sequence integrated in its chromosomes, can induce de
novo centromere formation at a predefined site. This
was first demonstrated in Drosophila (Mendiburo et al.
2011). Further, experimental tethering of accessory pro-
tein factors supports cenH3 loading to particular se-
quences in mammalian cells (Barnhart et al. 2011;
Ohzeki et al. 2012). In a similar setup, cenH3-GFP-
LacI fusion proteins could be targeted to lacO tandem
repeat arrays in A. thaliana (Teo et al. 2013) (Fig. 1b).
This cenH3 tethering was accompanied by the attraction
of kinetochore-specific proteins to the sites of lacO
tandem repeats, indicating the formation of ectopic cen-
tromere structures. The functionality of de novo centro-
meres was confirmed by the observation of anaphase
bridges, a feature that arises in mitosis when chromo-
somes with two functional centromeres, in the current
case the de novo and the native one, are at the same time
pulled in the direction of both spindle poles.

Beyond the construction of chromosome-based vec-
tors, this unique experimental system also has great
potential in the analysis of the processes underlying
plant centromere formation in general. Plant
neocentromeres, that is, centromeres positioned at chro-
mosomal sites that previously did not have centromere
function, have been repeatedly reported, but the details
of their formation still need to be studied (reviewed in
Burrack and Berman (2012)). Chromatin immunopre-
cipitation employing antibodies against cenH3 com-
bined with quantitative PCR for transgene and flanking
chromosomal sequences or next-generation sequencing
would allow following the development of induced de
novo centromeres within and across generations. By
combined determination of anaphase bridges as a func-
tional test, centromere function could also be followed.

Comparing the efficiencies of centromere formation
in wild type versus mutants, the roles of factors poten-
tially regulating centromere formation and function in
plants could be determined. This could also include the
possible impact of epigenetic marks other than cenH3
on centromere formation. In plants, centromeric chro-
matin has been reported to be depleted in cytosine
methylation and histone-H3-lysine-9-dimethylation
(Zhang et al. 2008), while the lacO tandem repeats
targeted for cenH3 tethering are associated with these
marks typical for repressive chromatin (Watanabe et al.

2005; Jovtchev et al. 2008, 2011). Using mutant lines
with reduced cytosine methylation and histone-H3-
lysine-9-dimethylation at the lacO repeats (Watanabe
et al. 2005; Jovtchev et al. 2011), it will be possible to
directly test to what extent the presence of these marks
interferes with centromere formation, and thus might
contribute to shaping the extent of native centromeres.
Whether de novo centromere formation can be achieved
for available LacI-binding lacO sites in maize (Zhang
et al. 2012) remains to be demonstrated.

Combination of approaches to custom-design
chromosomes

Once fully optimised protocols for chromosome trunca-
tion at deliberate positions via DSB-targeted T-DNA-
mediated telomere seeding and de novo centromere
formation via cenH3 tethering will be available, the
combination of the two methods will allow precision
design of minichromosomes with predefined length and
content. This would be possible using a sequential strat-
egy, in which first a de novo centromere is induced at
tandem repeats already integrated in a host plant chro-
mosome via the expression of a cenH3-GFP-LacI fusion
protein, and then a defined fragment including the de
novo centromere is released via targeted telomere
seeding (Fig. 1c). In this kind of approach, the T-DNA
construct for telomere seeding could be kept simple, but
the choice of possible centromere positions is limited by
the available transgenic lines containing lacO tandem
repeats (Matzke et al. 2005; Watanabe et al. 2005; Rosin
et al. 2008). Alternatively, the telomeric repeats for
telomere seeding and the lacO tandem repeats for
cenH3 tethering could be integrated together into one
T-DNA and be transformed into plants expressing
cenH3-GFP-LacI fusion protein (Fig. 1d). In both cases,
additional simultaneous expression of a CRISPR/Cas
nuclease targeting the desired site of telomere seeding
would be required.

With either method, scales of minichromosomes with
defined size and sequence composition could be gener-
ated. After confirmation of their structure by molecular
methods such as a telomere-specific PCR assay and gel
blot analysis as well as microscopic methods such as
immuno-staining and fluorescent in situ hybridisation
(Teo et al. 2011, 2013), they could be used to determine
the optimal chromosome-based vector design with
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regard to mitotic and meiotic stability on the one hand
and small size and thus phenotypic neutrality on the
other.

Loading of genes of interest
onto minichromosome-based vectors

Last but not least, once minichromosomes are available
that fulfil all requirements for a suitable vector, efficient
means for the transfer of expression cassettes for multi-
ple genes of interest will be required. Again, site-
specific recombination, for example via the Cre/loxP
system, offers a possible solution. It has been demon-
strated to allow the insertion of gene expression cas-
settes into transgenic loxP sites present in the plant
genome, albeit with limited efficiency (Albert et al.
1995; Vergunst et al. 1998), which, however, can be
improved by combining different lox sequence variants
to favour integration over excision (Louwerse et al.
2007). The sequential insertion of multiple expression
cassettes would also be feasible by using Cre/loxP in
combination with alternative site-specific recombina-
tion systems (Ow 2007) such as, for example, phiC31
integrase (Rubtsova et al. 2008). In maize, the Cre/loxP
system is active in modifying minichromosomes (Gaeta
et al. 2013), and an elegant alternative way to use it to
target sequences to minichromosomes has been
explored by first integrating elements of interest at a
separate chromosome end in the course of T-DNA-
mediated telomere seeding and then transferring them
by the exchange of chromosome ends via site-specific
recombination (Yu et al. 2007b).

Cross-lineage transfer of minichromosomes

For practical reasons, minichromosomes will be assem-
bled in genetic backgrounds that are most accessible to
the required molecular manipulations. Once established,
they will need to be transferred into the cultivars most
suitable for the desired applications. Provided that
minichromosomes do not recombine with the native
chromosomes of their host plants, this could be done
by tedious and time-consuming repeated backcrossing
over many generations. Single chromosomes may be
transferred between different plant cells in a solely
mechanic way by microscopic micromanipulation
(reviewed in Houben and Schlegel (1991)). A more

elegant way to solve this problem, however, would be
to use haploid breeding which is routinely used in
breeding (reviewed in Birchler (2014)). In maize hap-
loid breeding, crosses between particular genotypes
(haploid inducer lines) are used which result in specific
elimination of the chromosomes of one of the crossing
partners. In the formed haploid progeny plants, diploid
status can be restored by genome doubling, for example
via colchicine treatment. The loss of chromosomes from
one parent, however, is not always complete. Inmaize, it
has been demonstrated that a B chromosome present in a
haploid inducer line could be retained in resulting hap-
loids while the standard A chromosomes originating
from the same parental genome were eliminated (Zhao
et al. 2013). Thus, also selective transfer of
minichromosomes, in particular if they are derived from
B chromosomes, to cultivars of interest via haploid
breeding seems feasible.

Conclusion

Proof of principle for essential steps in chromosome
engineering such as chromosome truncation and de
novo centromere formation has been obtained. Now,
these steps need to be combined and supplemented with
additional methods for the directed transfer of multiple
genes of interest on the minichromosomes. At the same
time, development of the methods for chromosome
engineering allows new insights into many basic aspects
of plant chromosome function.
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