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Abstract The idea of a spindle matrix has long been
proposed in order to account for poorly understood
features of mitosis. However, its molecular nature and
structural composition have remained elusive. Here, we
propose that the spindle matrix may be constituted by
mainly nuclear-derived proteins that reorganize during
the cell cycle to form an elastic gel-like matrix. We
discuss this hypothesis in the context of recent observa-
tions from phylogenetically diverse organisms that
nuclear envelope and intranuclear proteins form a highly
dynamic and malleable structure that contributes to
mitotic spindle function. We suggest that the viscoelastic
properties of such a matrix may constrain spindle length
while at the same time facilitating microtubule growth
and dynamics as well as chromosome movement. A
corollary to this hypothesis is that a key determinant of
spindle size may be the amount of nuclear proteins
available to form the spindle matrix. Such a matrix could
also serve as a spatial regulator of spindle assembly
checkpoint proteins during open and semi-open mitosis.
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Abbreviations
ER Endoplasmic reticulum
FN Fibronectin
Ig Immunoglobulin
NMR Nuclear magnetic resonance
NPC Nuclear pore complex
Nups Nucleoporins
FG Phenylalanine-glycine
PAR Poly(ADP-ribose)
PARG Poly(ADP-ribose) glycohydrolase
PARP Poly(ADP-ribose) polymerase
Tpr Translocated promoter region protein
UV Ultraviolet

Introduction

A basic element of cell division is the formation of a
mitotic spindle that helps segregate the duplicated
chromosomes to the daughter nuclei. Although a variety
of approaches have been applied over the past century to
the investigation of this remarkable structure, in recent
years, its study has been facilitated by the very powerful
approach of using a concentrated Xenopus laevis
cytoplasmic extract that closely mimics certain in vivo
conditions yet still allows the classical reductionist in
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vitro approach of depleting or perturbing individual
constituents (Lohka and Maller 1985; Sawin and
Mitchison 1991; Desai et al. 1999). Indeed, such
manipulations have addressed mechanisms underlying
a variety of fascinating spindle features such as
poleward microtubule flux (Mitchison 2005) and have
uncovered unanticipated findings such as that a bipolar
spindle can form and function despite the absence of
chromosomes and their kinetochore targets (Heald et
al. 1996). This has been an especially tractable system
in which to study the dynamics of spindle micro-
tubules, arguably the “centerpiece” of the mitotic
spindle. In fact, many popular textbooks still describe
the “mitotic spindle” in terms only of microtubules and
their associatedmotor proteins. However, more recently,
this system has begun to uncover additional require-
ments for proper spindle functions for proteins other
than tubulin and motor proteins (reviewed in Johansen
and Johansen 2007, 2009; De Souza and Osmani 2009;
Zheng 2010).

The idea of a “spindle matrix” has been long
proposed to help account for a number of experimen-
tally observed properties of spindle behavior as well as
theoretical considerations that cannot be explained by
microtubule behavior alone (reviewed in Pickett-Heaps
et al. 1982; Pickett-Heaps et al. 1997; Johansen and
Johansen 2002, 2007, 2009). A large number of studies
spanning from early microscopy studies in the 1960s
(Forer and Goldman 1969) to recent proteomic analysis
(Sauer et al. 2005; Han et al. 2010) confirm that the
spindle is a very complex structure containing
significantly more than microtubules. A “spindle
remnant” can be isolated in the absence of microtubules
(Rebhun and Palazzo 1988; Leslie et al. 1987; Wein et
al. 1998) and in Drosophila, nuclear proteins (e.g.,
Megator, Skeletor, Chromator, and EAST) have been
shown to adopt a spindle-like structure that can persist
independently of the microtubule spindle (Walker et al.
2000; Rath et al. 2004; Qi et al. 2004, 2005).
Chromosomes still move poleward even after the
kinetochore microtubules have been severed using a
ultraviolet (UV) microbeam (Sillers and Forer 1983;
Spurck et al. 1997; Forer et al. 2007). Coupled with the
recent finding in fission yeast that chromosome
separation and nuclear division can occur despite
the complete absence of spindle microtubules
(Castagnetti et al. 2010), a strong case can be made
for the existence of additional components partaking
in chromosome segregation mechanisms.

Perhaps one reason why identification and functional
analysis of these “additional components” has been so
elusive is that many of these components appear to play
critical roles in nuclear organization and function during
interphase. Thus, it can be difficult to isolate and
characterize their roles in spindle assembly and function
if their removal or perturbation were to compromise
other processes at different cell cycle stages. However,
recent advances in cell imaging techniques combined
with molecular and genetic approaches have begun to
allow for a detailed investigation of these proteins’ roles
duringmitosis. Here, we review evidence supporting the
hypothesis that a non-microtubule entity such as the
proposed spindle matrix contributes to mitotic spindle
function, and we discuss molecular candidates
comprising such a structure. We propose that many
if not most of the proteins comprising this structure
originate from the nucleus and suggest that although the
nuclear architecture has traditionally been considered to
“disassemble” during mitosis, it may be more accurate
to characterize it as being “remodeled” during the cell
cycle.

Early observations pointing toward the existence
of a spindle matrix

Some of the first experimental observations that hinted
at the existence of a spindle matrix were from the early
experiments of Kane and Forer (1965) and Goldman
and Rebhun (1969), who found that the volume of the
nonmicrotubule portion of the spindle was much
greater than that of the microtubules in isolated mitotic
apparatuses from sea urchin zygotes. These mitotic
apparatuses contained microtubule arrays that appeared
the same as in living cells, but they also contained non-
microtubule components that kept the spindle shape
even after the microtubules were depolymerized (Kane
and Forer 1965; Goldman and Rebhun 1969; Steffen
and Linck 1992). Moreover, the non-microtubule
material bound kinesin leading to the suggestion that
it might act in vivo as a “matrix” that surrounds and
acts on spindle microtubules (Leslie et al. 1987;
Pickett-Heaps et al. 1984). Subsequent experiments
with diatom spindles further pointed to the existence
of an elastic matrix underlying the proper function of
spindle microtubules. Mitotic cells in diatoms such
as Hantzschia have a central spindle, which consists
of interdigitating microtubules from the two poles,
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together with polar microtubules that extend from
each pole toward the metaphase chromosomes. In
these spindles, the ends of the polar microtubules do
not attach to the kinetochores but rather extend past them
(Pickett-Heaps and Tippit 1980a, b; Tippit et al. 1980).
Thus, the kinetochores of each chromosome are
stretched in opposite directions along the spindle axis
in association with an electron-dense “collar” which
extends from each pole. Interestingly, colchicine
treatment had no effect on central spindle microtubules
but caused the microtubules associated with the
chromosomes to disappear, after which individual
chromosomes detached from one of the two poles and
moved to the other while remaining connected to the
“collar.” Based on these observations, Pickett-Heaps
and colleagues proposed a model where this collar may
constitute a contractile “matrix” and where microtubules
from the poles counteract forces from the collar that
would pull the chromosomes poleward (Pickett-Heaps
and Tippit 1980a, b; Tippit et al. 1980). Consequently,
when the polar microtubules are depolymerized, the
collar contracts and takes kinetochores with them to the
poles. A caveat to a potential general significance of
these experiments is that diatom spindles are unique in
that polar microtubules do not attach directly to the
kinetochores. However, similar observations with more
conventional spindles suggest that a contractile matrix
might be a general feature of mitosis (reviewed in
Pickett-Heaps et al. 1982, 1984).

A completely different line of experiments also
pointed to the existence of a possible elastic matrix.
Ultraviolet microbeam irradiations across an entire half
spindle destroy all the microtubules in the irradiated
region as seen by electron microscopy; hence, the
pole is severed from microtubule connections with
the rest of the spindle. Nonetheless, spindle poles move
toward the equator after the irradiation (Spurck et al.
1990; Snyder et al. 1991) by “unknown mechanisms”
(Spurck et al. 1990), suggesting there is an elastic force
acting on the spindle pole that is responsible for
moving it towards the spindle. In addition, if
microtubules are responsible for poleward forces
and the equatorial position in metaphase is because of a
balance of forces toward the two poles, then severing a
kinetochore fiber should block force from that pole and
thereby produce an imbalance of forces; hence the
chromosome should move off the equator toward the
non-severed fiber. However, severing kinetochore
microtubules in metaphase newt fibroblasts causes the

chromosome attached to the irradiated fiber (and its
attached kinetochore fiber stub) to move toward the pole
on the irradiated side, that is, the pole toward which the
severed fiber (kinetochore stub) is directed (Spurck
et al. 1997). Movement ceases once the kinetochore
stub reaches the pole. This is opposite to what would
be predicted by most current models, and it suggests
that poleward directed forces arising external to
microtubules (e.g., from a spindle matrix) acts on the
chromosomes and their kinetochore fibers. The kineto-
chore microtubules ordinarily resist these forces, but
once the kinetochore microtubules are severed, the
forces propel the kinetochore stub and chromosome to
the pole. When the stub reaches the pole, the stub
microtubules counteract the poleward forces from the
spindle matrix and motion slows again. Severing of
kinetochore microtubules in anaphase newt fibroblasts
causes the associated chromosome (and its stub) to
accelerate poleward, ahead of the other anaphase
chromosomes, until the stub reaches the pole (Spurck
et al. 1997). Similar results were obtained in grasshop-
per spermatocytes (Gordon 1980; Gordon and Inoué
1979; Izutsu 1988; Chen and Zhang 2004). Since
microtubule depolymerisation is the rate limiting step
for anaphase chromosome movements (Forer 1974;
Nicklas 1975, 1983; Inoué and Ritter 1975; Pickett-
Heaps et al. 1982), the results from the irradiations all
point to the idea that extrinsic components to the
microtubules produce poleward directed forces that
drive the chromosomes poleward. As further indication
that the forces arise external to the kinetochore
microtubules, microtubules in the path of the accelerating
chromosomes-and-stubs are bent (Pickett-Heaps et al.
1996), as are microtubules in Xenopus extract spindles
when poles move together during slow microtubule
depolymerization (Mitchison et al. 2005).

This experimental paradigm now has been repeated in
other cell types. For example, when metaphase kineto-
chore microtubules are severed in Drosophila S2 cells
(Maiato et al. 2004) or crane-fly spermatocytes (Forer
1965), the associated metaphase chromosomes do not
move off the equator, contrary to expectations, and there
is no change in inter-kinetochore distance. This shows
that in these cells, forces on the chromosome from the
kinetochore stub are equivalent to those from the non-
severed fiber to the opposite pole (Maiato et al. 2004).
When anaphase kinetochore microtubules are severed in
crane-fly spermatocytes, the chromosomes that continue
to move poleward do not accelerate but rather move at
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normal (unchanged) velocity. This argues against micro-
tubules as being the motor that drives the movement
and, despite the lack of acceleration, can be interpreted
as being due to the kinetochore stub being propelled
poleward by extrinsic forces (Forer et al. 2003).

Thus, many of these phenomena raise questions that
are unanswered by conventional models of spindle
function; for example, that metaphase chromosomes
would move toward the irradiated pole, that
anaphase chromosomes would accelerate, or that
intervening microtubules would be bent strongly all
suggest that forces act on the kinetochore microtubules
and are not produced by them directly. We suggest a
compelling answer may be the existence of a spindle
matrix that is independent of the microtubule-based
spindle apparatus. However, at present, the molecular
composition and biophysical properties of such a
potential matrix is unclear and one of the major
challenges is to define what a spindle matrix is.

What is the matrix?

I know why you’re here, Neo. I know why....
night after night you sit at your computer. ....It’s
the question that drives us, Neo. It’s the question
that brought you here. You know the question,
just as I did.

What is the Matrix?

The answer is out there, Neo. It’s looking for
you. And it will find you if you want it to.

-Wachowski, A. and Wachowski, L. The Matrix,
1999

The concept of a spindle matrix, though gaining
traction in recent years, has for many years remained a
controversial topic. Some of this may be due to an
admittedly incomplete understanding of the molecular
composition and emergent properties of such a matrix.
As well, early hypotheses necessarily require revisions
as additional information is gained. But much of the
resistance seems also to be due to semantics, as the term
“matrix” conjures up distinct meanings for different
people. This is perhaps because the dictionary definition
of “matrix” as “a substance, situation, or environ-
ment in which something has its origin, takes form,
or is enclosed” (The Merriam-Webster Unabridged
Dictionary) is not particularly restrictive. Thus, while

we do not as yet have a complete understanding of the
exact architecture of the spindle matrix, the accruing
data indicate that the matrix is not a rigid substrate. For
example, in Drosophila, when microtubules are
depolymerized the Megator-defined spindle matrix
compresses (Qi et al. 2004; Lince-Faria et al. 2009),
suggesting that the spindle matrix structure itself is
elastic. Mechanical probing of spindles assembled in
Xenopus extracts revealed that microneedle-skewered
spindles can translocate along the interpolar axis at a
velocity slightly slower than microtubule poleward flux
(Gatlin et al. 2010). Although these latter experiments
have the caveat that in vitro assembled spindles may
lack certain components such as actin that potentially
could play a structural role, collectively, the data
indicate the spindle matrix is comprised of a very
dynamic and flexible structure. Thus, a reasonable
question might be whether there is an alternative type
of organization other than a rigid, cross-linked filament
system that could confer the kinds of properties
envisioned for a spindle matrix yet be consistent with
the currently available data. We find it useful to consider
what is known about the molecular properties of the
nuclear pore complex (NPC), especially given that we
now know that some NPC proteins act as spindle matrix
proteins during mitosis (De Souza and Osmani 2009).

The nuclear pore complex is one of the largest
macromolecular complexes in biology consisting of an
8-fold symmetrical structure built from about 30
different proteins collectively called nucleoporins
(Nups), many of which are present in multiple copies
(reviewed in Baktrakou et al. 2009). There are three
main parts: a central core in the plane of the nuclear
envelope, a nuclear basket, and cytoplasmic filaments.
Whereas some nucleoporins form a rigid scaffold
structure, ~12–20% of the mass of a NPC consists of
the so-called FG-Nups that are characterized by
domains of unstructured and highly disordered
phenylalanine-glycine (FG) repeats (Rout et al. 2000;
Denning et al. 2003). These domains are proposed to
promote intra- and intermolecular cohesion to form a
malleable yet cohesive quaternary structure. Two
competing models describe the behavior of these
highly flexible polypeptide domains. In the elastic
“hydrogel” model, they are proposed to comprise a
three-dimensional network of hydrophobic clusters
with gel-like properties (Frey et al. 2006; Krishnan
et al. 2008); indeed, a single Nup FG-repeat domain
is able reproduce a hydrogel with permeability
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properties of the NPC (Frey and Görlich 2007). An
alternate model favors a more “brushlike structure”
of aggregated FG-Nups with compressive properties
(Miao and Schulten 2010).

The presence of multiple FG-repeat proteins provides
redundancy to essential barrier functions within an
aqueous channel (Strawn et al. 2004), although the
complexity and redundancy of FG-Nups has made it
difficult to study their roles in vivo in metazoans
(reviewed in Terry and Wente 2009). Nevertheless, in
vitro and in vivo studies in yeast support a model in
which the conformational flexibility inherent to these
domains facilitates collapse of the three-dimensional
sieve-like barrier when in contact with nuclear
transport receptors, thus transiently opening the mesh
(Frey and Görlich 2009; Miao and Schulten 2010).
Although such disordered structures are not amenable
to standard structural analysis techniques, recent
studies using solid state NMR indicate that the
NQTS-rich spacers in the FG domain contribute to
barrier function by forming amyloid-like interchain
β-structures that suppress passage of large inert
molecules (Ader et al. 2010). Although these amyloid-
like fibers are kinetically the most stable structures
within the FG hydrogel, rapid fluctuations of the
hydrophobic interactions between the FG repeats
prevent irreversible aggregation of the amyloid-like
fibers, thus maintaining a structure that can still be
collapsed (Ader et al. 2010).

Intriguingly, a number of NPC proteins have been
found to localize to the mitotic spindle. The best
studied is Megator, the Drosophila Tpr (translocated
promoter region protein) homolog, which exhibits a
number of properties consistent with a spindle matrix
(Zimowska et al. 1997; Qi et al. 2004; Lince-Faria et
al. 2009; see below). The spindle localization of Tpr
is conserved across evolution (see below). Tpr has a
long N-terminal coiled coil domain and an unstruc-
tured C-terminal domain (Mitchell and Cooper 1992),
so it is not an obvious candidate to confer gel-like or
brushlike properties. However, FG-Nups that have
thus far been observed to localize to the spindle
include Nup153 (Katsani et al. 2008), Nup214
(Hashizume et al. 2010) and Nup358 (=RanBP2)
(Joseph et al. 2002). The GLFG-Nup98 has also been
observed to disperse broadly throughout the cell
during mitosis, including throughout the spindle
region in an overlapping pattern with Rae1 (Xu and
Powers 2010). Rae1 is a microtubule-associated

protein that acts as a spindle assembly factor (Blower
et al. 2005). Disruption of Nup214 localization results
in multipolar spindles and chromosome separation
defects (Hashizume et al. 2010) whereas Nup358
depletion perturbs chromosome congression and
segregation (Salina et al. 2003). Nup98 associates
with intranuclear Tpr (Fontoura et al. 2001) and
although it is not known if this association continues
in mitosis, mitotic Nup98 has been shown to form a
complex with Rae1 and APCCdh1 (Cdh1-activated
anaphase promoting complex). Haploinsufficient
Nup98+/-/Rae1+/- mice exhibit premature separation
of sister chromatids and severe aneupoloidy due to
untimely degradation of securin (Jeganathan et al.
2005). In addition, non-FG nucleoporins in the Nup
107/160 complex localize to kinetochores, spindle
poles, and proximal spindle fibers (Orjalo et al. 2006;
Katsani et al. 2008; Mishra et al. 2010) and Nup88
colocalizes with Nup214 on the spindle bodies
(Hashizume et al. 2010). The Nup107/160 complex
appears to play a role in assembly or maintenance of
spindle fibers between the poles and chromosomes
(Orjalo et al. 2006) whereas loss of Nup88 results in
Nup214 depletion from the spindle and multipolar
spindles (Hashizume et al. 2010).

Thus, a gel-like spindle matrix would be predicted to
be capable of conferring the elastic, malleable properties
that have been observed, for example, in its rapid
compression upon disassembly of the microtubules in
Drosophila S2 cells by Lince-Faria et al. (2009).
Furthermore, like the nuclear pore complex, a spindle
matrix could serve as a barrier to some cellular
components while being permeable to others. For
example, a gel-like spindle matrix could act as a
barrier to exclude organelles such as mitochondria
from the chromosomal division arena, much like a
dense, cross-linked actin meshwork does at the cell
cortex (Morone et al. 2006). At the same time, a
gel-like structure would need to be permeable and
rapidly collapse and remodel around other substrates,
for example as would need to occur to allow focusing of
the spindle poles, integration of chromosome-initiated
microtubules into the spindle body, and movement of
both structural and regulatory factors as well as
chromosomes on the spindle by motor proteins. The
spindle matrix may even be envisioned to contribute
directly to building of the microtubule structure: Nup
107/60 interacts with γ-TuRC and recruits it to
unattached kinetochores where microtubules can be
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nucleated in a manner regulated by RanGTPase (Mishra
et al. 2010). Although a role for Nup358 in mitotic
microtubule dynamics has not yet been explored,
in its position on the cytoplasmic face of the NPC
at interphase, it interacts with microtubules and
overexpression of Nup358’s MT-binding domain results
in increased microtubule stability and bundling (Joseph
and Dasso 2008). All these data show that NPCs and
Nups contribute to spindle function, and we propose
that this is because they reorganize after nuclear
membrane breakdown to form part of the spindle
matrix.

Recent experimental data in the context
of a gel-like, elastic matrix

The spindle matrix in Drosophila

In Drosophila, nuclear proteins from two different
compartments reorganize during prophase into a
spindle-like structure that shows a number of properties
consistent with a spindle matrix (reviewed in Johansen
and Johansen 2007; 2009) including that the
spindle-like structure persists even after microtubule
disassembly (Walker et al. 2000; Qi et al. 2004) and
that mitotic spindle defects are observed upon loss of
EAST, Megator, or Chromator function in germline
mosaic, RNAi depletion, or mutant studies (Wasser
and Chia 2003; Qi et al. 2004; Lince-Faria et al.
2009; Ding et al. 2009). During interphase, two of
the proteins, Skeletor and Chromator, are chromosomal
(Walker et al. 2000; Rath et al. 2004) while two, EAST
and Megator, are found in the extrachromosomal
domain (Zimowska et al. 1997; Qi et al. 2004,
2005). Megator is also found in the nuclear pore
complex (Zimowska et al. 1997). The presence of a
large N-terminal coiled-coil domain in Megator raises
the intriguing possibility that Megator could comprise a
structural element of the spindle matrix complex. The
other proteins, however, are low complexity and
bioinformatic programs such as ProteinPredict
(Rost et al. 2004) indicate they are likely to be largely
unstructured, as is also true for the C-terminal domain of
Megator.

In fixed preparations, it was observed that the
nuclear proteins Skeletor, Chromator, EAST, and
Megator began to form a spindle-like structure during
prophase and prometaphase at a time when there was

no significant evidence of a microtubule spindle
penetrating within the nucleus (Walker et al. 2000;
Rath et al. 2004; Qi et al. 2004, 2005). This nuclear
spindle, however, was always oriented with respect to
the separating centrosomes, implying some kind of
relationship with the microtubule cytoskeleton (Walker
et al. 2000). One possibility is that the two structures
are coordinated across the nuclear envelope, perhaps
via transmembrane nuclear envelope proteins such as
SUN-KASH complex proteins (Fridkin et al. 2009).
However, since early in Drosophila mitosis, the
nuclear envelope and lamina becomes porous (Paddy
et al. 1996), another possibility that cannot be excluded
is that the earliest forming spindle microtubules had
invaded the nuclear space but were not stabilized under
the fixation conditions used. For this reason, a live-
imaging approach using fluorescently tagged spindle
matrix proteins and tubulin has been initiated to assess
the dynamics of both microtubules and matrix
proteins during formation of the mitotic spindle.
Such dual-imaging studies of Chromator-GFP and
α-tubulin-mCherry suggests that whereas Chromator
reorganizes away from the chromosomes as they begin
to condense to fill the entire nuclear space, there is no
obvious spindle-like morphology until the microtubules
begin invading the nuclear space (Fig. 1). Based on
these observations, we propose that the spindle matrix
exists as a malleable gel-like structure that reorganizes
in response to the incoming microtubules, thereby
giving rise to a spindle-like appearance.

Since matrix organization (that is rearrangement of
Chromator into a spindle shape) seems to occur only
after interaction with microtubules, the question arises
as to whether spindle matrix proteins form an
“independent structure” or whether they are simply
additional examples of the class of “microtubule-
associated proteins.” Several lines of evidence support
the notion that the spindle matrix is an independent
structure. Firstly, when microtubules are disassembled
using drugs or cold treatment, the spindle matrix

Fig. 1 Timelapse imaging of Chromator-GFP and tubulin-
mCherry in syncytial Drosophila embryos. The image sequence
illustrates the dynamic relationship of the spindle matrix protein
Chromator (in green) relative to microtubule spindle formation
(in red). The results suggest that the spindle matrix is present
within the nucleus prior to invasion of microtubules into the
nuclear space. The movie from which these images are derived
is available in the Supplementary Material and was obtained as
described in Ding et al. (2009). Scale bar=10 μm

b

350 K.M. Johansen et al.



The spindle matrix 351



structure containing Skeletor or Megator persists, albeit
in a compressed state (Walker et al. 2000; Qi et al.
2004) (Fig. 2), whereas, for example, the microtubule-
associated protein Jupiter does not (Lince-Faria et al.
2009). Secondly, measuring fluorescence intensities
across the width of an individual spindle structure
immunostained with both anti-α-tubulin and Skeletor
antibodies detected by different fluorophores reveals
that the peaks of tubulin labeling are notably distinct
from the peaks of Skeletor labeling (Fig. 3). This
pattern, although not conclusive, is consistent with
what might be observed for a gel-like matrix that
embeds around an invading microtubule spindle
structure.

Probing of the mechanical properties of the spindle
in the in vitro Xenopus spindle assembly system

A recent effort (Gatlin et al. 2010) to query how in
vitro-assembled spindles maintain a steady-state
length, used microneedles to skewer in vitro assembled
spindles to assess their mechanical properties and probe
for the potential existence of an isotropic spindle matrix.

Once skewered, the spindle moved along the interpolar
axis at a velocity slightly slower than microtubule
poleward flux and further slowed as it approached the
pole, although it was not clear whether slowing was due
to impedance by pericentriolar spindle matrix
components such as NuMA or because microtubule
sliding is intrinsically slower at the poles. In most cases,
the pole then splits apart, releasing the spindle. In cases
where pole formation (and NuMA recruitment; Merdes
et al. 1996; 2000) was disrupted by dynein inhibition,
poles remained splayed out and slowing did not occur.
Further experiments were performed using two
skewering needles to stretch the spindle either
longitudinally or transversely. Whereas longitudinal
stretching did not show any obvious changes until
the needles were close to the pole regions where
some spindle stretching did occur, transverse
stretching showed dramatic effects on the overall
spindle dimensions, causing the two poles to be pulled
closer together as the width of the spindle increased
(Gatlin et al. 2010). From these results, the authors
suggest there does not exist a strong isotropic spindle
matrix that could account for the observed steady-state

Fig. 2 Depolymerization of microtubules leads to compression
of the spindle matrix. a Control embryo at metaphase triple-
labeled with an antibody (mAb 1A1) specific for the spindle
matrix protein Skeletor (in red), with tubulin antibody (in
green), and with Hoechst (in blue). b Metaphase embryo
labeled as in (a) but after depolymerization of microtubules by
Nocodazole treatment. The length (L) and width (W) of the

spindle matrix relative to the spindle axis are indicated by white
lines. The L/W ratio was reduced almost 60% in Nocodazole-
treated embryos (0.61±0.07, n=6) as compared to control
embryos (1.44±0.18, n=5). The confocal images shown are
from preparations obtained as described in Walker et al. (2000).
Scale bar=5 μm
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length of in vitro spindles, although an anisotropic
matrix cannot be ruled out. Furthermore, they conclude
it is unlikely that a weak isotropic matrix is present
throughout the spindle (although it may exist at the
poles), given that the spindle moved at the rate of
microtubule flux until decreasing in velocity at the

poles. While the observed results do appear to rule out
a “strong,” unyielding anisotropic matrix they would
not be inconsistent with the existence of a pliable
matrix comprised of an elastic hydrogel. Interestingly,
the transient collapse of the nucleoporin barrier by an
optimal nuclear transport receptor-cargo complex can

Fig. 3 The spindle matrix and the microtubule spindle
apparatus do not co-localize but rather appear co-aligned. a–c
Metaphase embryo double labeled with antibody (mAb 1A1) to
the spindle matrix protein Skeletor (in green) and with an
antibody to tubulin (in red). d Linescan of the pixel-intensity

across the spindle of the Skeletor and tubulin labeling of one of
the metaphase spindles (ROI2) indicating their co-alignment.
The confocal images shown are from preparations obtained as
described in Walker et al. (2000)
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allow cargo to pass through the nuclear pore at the rate
of diffusion (Ribbeck and Görlich 2001). Thus, under
certain conditions, reorganization of a hydrogel can
occur on a very rapid time scale.

Control of spindle length

Despite that microtubules are constantly undergoing
dramatic fluctuations in length due to dynamic
instability, the spindle maintains a uniform size that is
consistent within a given cell type, though spindle
length may vary in different cells within the same
organism or at different developmental stages (reviewed
in Webster et al. 2009). What determines spindle size
and how it is maintained is not known but microtubule
dynamics may play a role. Spindle shortening was
observed after blocking plus-end polymerization with
taxol or depleting the CLASP kinetochore protein
(Waters et al. 1996; Maiato et al. 2005). Spindle
lengthening was observed after interfering with
kinesin-8 or kinesin-13 family members’ microtubule-
depolymerizing activities (Walczak et al. 1996; Straight
et al. 1998; Savoian et al. 2004; Goshima et al. 2005) or
katanin’s microtubule-severing activity (McNally et al.
2006). Inhibiting either inward or outward sliding of
overlapping antiparallel microtubules resulted in
spindle lengthening or shortening, respectively, upon
perturbation of kinesin-5 or kinesin-14 family members
(Sharp et al. 2000; Mountain et al. 1999). Thus,
regulation of microtubule architecture clearly impacts
spindle length; however, numerous studies have shown
that microtubule length does not directly set the spindle
length since microtubules have been found to bend or
buckle within the spindle under various conditions. In
klp67A mutants in Drosophila, elongated microtubules
become bent and wavy as if something is constraining
microtubule extension (Savoian et al. 2004). In spindles
treated with hexylene glycol or antibodies against
MCAK, both of which result in microtubules (and
spindles) growing in length, a large number of micro-
tubules curve or buckle as the spindle elongates
(Mitchison et al. 2005). Indeed, the bending or curving
of a microtubule in response to some internal constraint
on spindle length may promote length-dependent
microtubule depolymerization, consistent with the ob-
served increased efficiency of binding of kinesin-13 to
curved microtubule protofilaments (Mulder et al. 2009).

An alternative approach has been to examine
mechanical and elastic properties of spindles upon

application or withdrawal of compressive forces per-
pendicular to their pole-to-pole axis. Using quantitative
perturbations with a piezo-resistive cantilever system,
Itabashi et al. (2009) found that Xenopus meiotic
spindles behave at metaphase like a viscoelastic or
plastic structure. Moreover, Dumont and Mitchison
(2009) observed that somatic mitotic spindle shape
changes occurring after application of a controlled,
compressive force on top of the spindle are character-
ized by two distinct stages: within the first ~3–4 min
spindles widened even in the presence of taxol,
whereas over a time-frame of ~12 min, spindles
lengthened in a tubulin polymerization-dependent
process that occurred at a rate consistent with poleward
flux. Several features of this study are particularly
noteworthy: during the initial passive spindle-widening
stage, the microtubules splay outwards, suggesting
some other component (such as a spindle matrix?) is
holding the poles at a fixed distance. After spindles
have reached full extension to their new length,
continued time-lapse imaging revealed a significant
degree of wavy microtubules and microtubule buckling,
suggesting the spindle is constrained from achieving yet
a larger size. But what is responsible for this internal
limit on microtubule extension? Perhaps this new length
is defined once an elastic spindle matrix has been
stretched to its full extension by the lengthening micro-
tubules. Once the force applied on top of the spindle is
released, the spindle returns to its original size
suggesting that whatever originally determined
“proper spindle size” remained intact. One possi-
bility to explain this behavior could be that a
stretched-out spindle matrix would return to its
original state once external forces are removed.
Computational modeling of arrays of FG-Nups
revealed that initially fully extended segments
would coil up and shorten into an intercrossing,
brush-like structure that continued to undergo
random conformational transitions once extension
forces are released (Miao and Schulten 2009).
Although the aim of modeling FG-Nup behavior
for this particular study was to characterize the
“resting state” of FG-Nups within the nuclear pore
channel, the observed lengthening and shortening
behavior of FG-Nups upon application and relaxa-
tion, respectively, of an artificial extension force
could also be viewed in terms of a model in which
FG-Nups might contribute to elastic forces that
influence spindle length. For example, growing
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microtubules might “stretch” the spindle matrix until
eventually the force level required for further stretching
(unfolding) induces microtubule buckling, thus stimu-
lating kinesin-13-related microtubule depolymerization
activities that serve to limit microtubule spindle length.
In this scenario there would need to be some kind of
“connection” between the spindle matrix and micro-
tubules. Yao et al. (2010) have recently provided
evidence that at least one spindle matrix protein in
Drosophila indeed has a microtubule-binding domain
and can be co-purified with microtubules.

Another possibility for generating elastic forces
within the spindle matrix would be the presence of
titin. Titin is a humongous molecule consisting
primarily of Ig-repeat, FN3-repeat, and PEVK
domains that has been found in both the nucleus and
associated with the spindle (Mechado and Andrew
2000; Fabian et al. 2007a; Qi et al. 2004; Zhong et al.
2010). In muscles, titin is thought to act as a
“molecular spring”, lengthening due to unfolding of
these domains when stretching forces are applied, but
shortening after these domains spontaneously refold
when stretching forces are lowered (reviewed in
Linke and Grützner 2008).

It should be emphasized, however, that many
different factors contribute to control of mitotic
spindle length, and for a thorough discussion of
relevant molecules and mechanisms, the reader is
referred to Goshima and Scholey (2010). Although
the correlation breaks down for very large cells such
as in Xenopus or Drosophila embryos, in general the
prevailing view is that cell size determines spindle
size with an upper limit of ~60 μm (Wühr et al.
2008). However, if rather than viewing the mitotic
spindle solely as a “cytoplasmic structure,” one
instead considers it to be a structure based equally
on a remodeled nuclear architecture joined by a
remodeled microtubule cytoskeleton (Johansen and
Johansen 2009), perhaps a correlation of spindle size
with nuclear size will prove more universal. Brown et
al. (2007) noted that differences in spindle matrix
architecture could underlie the variations that are
observed within different cells of a single organism or
between closely related species and more recently
Levy and Heald (2010) have found that the same kind
of size scaling that is observed between spindles of
X. laevis and X. tropicalis is found between their
nuclei as well. In fact, it has long been appreciated
that the size of a cell and its nucleus are related

(Gulliver 1875) and in yeast, for example, it was
determined that the ratio of average nuclear volume to
average cell volume as a cell grows in size is quite
consistent (Jorgensen et al. 2007; Neumann and
Nurse 2007). This relationship holds up over expan-
sive evolutionary distances independent of DNA
content (Cavalier-Smith 2005) but the mechanism
underlying this phenomenon was not known.
Recently, however, nuclear scaling was found to
arise due to differences in nuclear transport mech-
anisms (Levy and Heald 2010). Given that the
concentration of nuclear architectural proteins avail-
able to construct a spindle matrix would in general
increase concomitantly with nuclear size, it seems
plausible that the amount of nuclear proteins avail-
able to form the spindle matrix may be the major
determinant of spindle size.

A poly-ADP-ribose containing gel matrix?

Other components besides proteins also have been
proposed to be part of the spindle matrix. Work from
the Mitchison lab (Chang et al. 2004) revealed a
requirement for poly(ADP-ribose) (PAR), a heteroge-
neous linear or irregularly branched polymer of up to
200 ADP-ribose moieties (D’Amours et al. 1999), in
the assembly and maintenance of spindle bipolarity.
Either RNAi depletion of the PAR polymerase
(PARP) tankyrase-1 or reduction of PAR levels by
overexpression of the PAR glycohydrolase (PARG)
results in a range of defects including splayed or
multipolar spindles, increased spindle length, pole
curling, and even complete loss of spindle bipolarity
(Chang et al. 2004, 2005b). The underlying mechanism
by which decrease in PARylation levels leads to
defects in spindle morphology is not known. However,
the spindle matrix protein NuMA has been identified
as a major acceptor of the poly(ADP-ribosyl)ation
modification and, in addition, can directly bind to PAR
moieties (Chang et al. 2005a; Chang and Coughlin
2009). These findings suggest that poly(ADP-ribosyl)
ation could potentially function in dynamic cross-
linking of neighboring NuMA molecules to assist with
spindle pole focusing (Chang and Coughlin 2009).
Furthermore, the presence of such sugar polymers
could be envisioned to modulate the visco-elastic
properties of a gel matrix.

Interestingly, loss of PARylation did not impair
NuMA or Eg5 localization to the spindles, nor did it

The spindle matrix 355



interfere with Mad2 recruitment to kinetochores or
activation of the spindle checkpoint (Chang et al. 2004).
These results suggest that the Megator/Tpr spindle
matrix that is required for proper Mad2 checkpoint
signaling (Lee et al. 2008; Lince-Faria et al. 2009;
De Souza et al. 2009) is likely to still be intact.
However, the curling and twisting exhibited by micro-
tubules at the poles indicate the existence abnormal
torsional forces when PARylation is impaired (Chang et
al. 2005b). One possible explanation may be that
PARylation is required for certain molecules to
navigate unimpeded through the gel-like spindle matrix
and in the absence of this modification transport
through the spindle is disrupted, thus impairing proper
focusing of the spindle poles and proper balancing of
the forces and counterforces necessary to maintain
proper spindle length and bipolarity.

UV microbeam studies and the possibility of actin/
myosin as spindle matrix components

The hypothesis that the spindle matrix is an elastic gel
implies that its contractile properties would tend to
bring spindle poles closer together. Indeed, in the
findings of UV microbeam experiments that spindle
poles move together after all the microtubules in newt
half-spindles are severed (Spurck et al. 1990) and that
spindles collapse toward the equator in C. elegans
oocytes when kinetochores are removed from all
bivalents (Dumont et al. 2010) are consistent with this
idea. However, UV microbeam experiments discussed
above have also suggested that matrix forces ostensibly
act in the other direction, acting to propel kinetochore
fibers and stubs to the spindle pole (Spurck et al. 1997).
This raises the possibility that motile systems other
than the microtubule-based apparatus such as the actin-
myosin motility system may be involved in spindle
function, either as a direct part of the spindle matrix or
in collaboration with the matrix.

For example, irradiation of kinetochore fibers with an
ultraviolet microbeam creates kinetochore fiber stubs,
remnants of the kinetochore fibers that remain attached
to the kinetochore but are severed from the pole. When
kinetochore stubs are created in anaphase, anaphase
chromosomes that are connected to the stub continue to
move at normal speeds (e.g., Forer 1966; Spurck et al.
1997) or, in some cells, accelerate (Gordon and Inoué
1979; Gordon 1980; Izutsu 1988; Spurck et al. 1997;
Chen and Zhang 2004). In the context of the spindle

matrix hypothesis, the interpretation is that forces from
the matrix propel the kinetochore fiber poleward,
that the rate of chromosome motion is limited by
depolymerisation of the intervening kinetochore micro-
tubules, and that when the microtubules are severed and
do not extend to the pole, the speed due to matrix forces
is not limited by intervening microtubules so the
chromosomes accelerate. When stubs are created in
metaphase the associated chromosome sometimes
moves toward the pole on the irradiated side, which
can similarly be attributed to matrix forces: without
intervening microtubules to prevent movement the
chromosome is propelled poleward. Sometimes
chromosomes associated with metaphase stubs
remain at the equator (e.g., Maiato et al. 2004;
Forer 1965, 1966); for these chromosomes, the
interkinetochore distances remain the same, so this
indicates that the poleward force from the stub is
the same as that from the non-severed kinetochore
fiber going to the opposite pole, which again can
be attributed to forces from the matrix acting on the
stub. Tubulin subunits add to kinetochore stubs at
the kinetochore (Maiato et al. 2004), so metaphase
stubs elongate. Microtubule elongation is stimulated
by external forces (Franck et al. 2007) which might
arise from the matrix, and interestingly pharmacological
inhibitors of the actin-myosin system block elongation
of the kinetochore stub (Forer et al. 2007), thus
implicating actin-myosin in spindle and matrix
function.

Abundant evidence has accumulated that actin and
myosin (including activated (phosphorylated) myosin)
are present in spindles in general and kinetochore fibers
in particular (reviews in Forer et al. 2003; Woolner and
Bement 2009; Dulyaninova et al. 2004; Weber et al.
2004; Fabian et al. 2007b; Fabian and Forer 2007;
Woolner et al. 2008; Vilmos et al. 2009), as are proteins
that interact in actin-myosin function such as titin
(Fabian et al. 2007a), Band 4.1 (Krauss et al. 1997),
zyxin (Hirota et al. 2000), myosin light chain kinase
(Dulyaninova et al. 2004), and moesin (Vilmos et al.
2009). Actin and myosin interact with microtubules in a
variety of other motile situations (e.g., Rodriguez et al.
2003; Weber et al. 2004; Pizon et al. 2005; Woolner
and Bement 2009) so it would not be surprising were
they to interact with spindle microtubules. Not only are
they present in spindles but a variety of experimental
perturbations has also implicated them in spindle
function (reviewed in Forer et al. 2003; Pickett-Heaps
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and Forer 2009; Woolner and Bement 2009; Ma et al.
2010). For example, interfering with actin and/or
myosin alters anaphase chromosome movement, blocks
anaphase onset, and alters spindle shapes, chromosome
attachment, and chromosome distributions. It is difficult
to explain such a variety of results that implicate actin
and myosin as due solely to effects on microtubules;
rather, the results point to important roles of actin and
myosin in spindle functioning. Might actin and myosin
be part of a spindle matrix?

Actin, myosin, and titin are present in nuclei and
seem to function in maintaining nuclear structure and
in moving chromosomes inside nuclei (e.g., Mehta et
al. 2010; Zhong et al. 2010). Thus, they are similar to
the other spindle matrix proteins being discussed here
in being in nuclei prior to mitosis and in the spindle
during mitosis, and it is not inconceivable that they
interact with other spindle matrix proteins and micro-
tubules in setting up the spindle. Actin itself can form
gels (e.g., Janmey et al. 1994) that could support or be
a part of the spindle matrix. In starfish oocytes, actin,
and myosin form a network (“matrix”) that, when
anchored at one position, moves chromosomes from
the position of the former nucleus to the mitotic
spindle at the surface of the cell, up to 20–30 μm
away, at speeds near those of anaphase chromosomes
(Lénárt et al. 2005; Mori et al. 2010). The network does
not move the chromosomes in any direction when it is
not anchored (Mori et al. 2010), so if a similar network
existed in the spindle, it might be the microtubules and
spindle poles which provide the directionality. Spindles
remove granules and other not-attached components by
transporting them to the poles at speeds near those of
anaphase chromosomes (Bajer 1967; Nicklas and Koch
1972; LaFountain et al. 2001), a property shared with
the actomyosin network in star fish oocytes, which
moves “inert” granules to the anchor point in the same
manner (and same speed) that it moves chromosomes
(Mori et al. 2010). Thus, it is conceivable that actin and
myosin contribute to or actively participate in the
spindle matrix.

Do the distributions of actin and myosin match those
of the matrix proteins? There is little data that compare
them directly. Filamentous actin has been studied and is
present near matrix proteins in some species (Fabian et al.
2007a; Fabian and Forer 2007) but little is known about
total actin in spindles. Myosin is present in spindles (for
example, Silverman-Gavrila and Forer 2003; Fabian
and Forer 2005, 2007; Woolner et al. 2008; Sandquist

and Bement 2010) and phosphorylated (active) myosin
is concentrated in the spindle, near kinetochore fibers
(Fabian et al. 2007a, b). Thus, the limited data are
consistent with actin and myosin interacting with or
being part of the spindle matrix.

Membranes and the spindle matrix

The potential contribution of membranes to spindle form
and function has not been extensively addressed but a
number of independent studies have found evidence for
membranous structures present in some but not all
spindles (Hepler 1989). In some studies, vesicular or
tubular membrane elements were found to permeate the
spindle and/or ensheathe the chromosomes (Moll and
Paweletz 1980; Rieder and Nowogrodzki 1983; Wise
and Wolniak 1984; Paweletz and Fehst 1984;
Waterman-Storer et al. 1993) while in other cases
membranes formed a “spindle envelope” encasing the
spindle (Hepler 1980; Wise and Wolniak 1984; Motzko
and Ruthmann 1984; Stafstrom and Staehelin 1984;
Harel et al. 1989; Kremer and Hawley 2003). From
these studies, it is not clear whether the membrane
association with the spindle plays a functional role or is
simply a way to apportion membrane components to
daughter nuclei. However, the report of a functional
requirement for a transmembrane protein associated
with a spindle envelope (Kremer and Hawley 2003)
suggests the potential for an operative role in at least
some spindle types.

In a recent screen in fission yeast to identify mutants
unable to form stable diploid cells, a novel gene, ned1+
was isolated which when mutated gives rise to highly
deformed nuclei, overdeveloped endoplasmic reticulum
(ER)-like membranes, a high incidence of chromosome
missegregation, and increased sensitivity to microtubule
destabilization (Tange et al. 2002). Remarkably, this
gene was found to encode the yeast homolog of lipin, a
highly conserved phosphatidic acid phosphohydrolase,
dysfunctions of which are associated with lipodystrophy
in humans and mice. In this study, Tange et al. (2002)
determined that Ned1 interacts with components of the
Ran-GTP system known to be important in a number of
processes including bipolar spindle assembly, nuclear
envelope formation, and nuclear transport (reviewed in
Clarke and Zhang 2008) as well as interacting with
Nup189, the S. pombe homolog of the mammalian
GLFG-Nup98. Overexpression of ned1+ resulted in
nuclear elongation due to formation of a long microtu-
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bule bundle within the interphase nucleus (Tange et al.
2002). The nuclear elongation was a consequence of
this unusual microtubule structure since upon microtu-
bule disassembly, nuclear shape returned to a rounded
form. Mild depletion of lipin by RNAi in C. elegans
also results in abnormalities in nuclear shape and
disorganization of the endoplasmic reticulum, with the
appearance of membranous sheets replacing the normal
mitotic tubular structures (Golden et al. 2009). Strik-
ingly, there were also spindle abnormalities and failure
in pronuclear fusion events. Severely depleted animals
showed more extreme phenotypes of abnormal chro-
mosome segregation, irregular chromosome move-
ments, and aberrant nuclear envelope reassembly,
often encasing individual chromosomes or subsets of
chromosomes (Golden et al. 2009).

Why does a mutation that affects lipid biosynthesis
result in spindle defects? In systems displaying an open
mitosis lacking a nuclear membrane, the nuclear
envelope is absorbed into the ER which itself undergoes
a sheet-to-tubule transformation exhibiting a very
different structure characterized by more branch points
and shorter profiles (Puhka et al. 2007). In 3-D
reconstructions of mitotic cells Puhka et al. (2007)
observed the reticulated ER to be denser and more
evenly distributed throughout the cell apart from areas
occupied by the chromosomes and mitotic spindle.
However, in other studies, vesicular or tubular
membranes were described as permeating the
spindle and/or ensheathing the chromosomes (Moll
and Paweletz 1980; Rieder and Nowogrodzki 1983;
Wise and Wolniak 1984). Lipid bilayers will tend to
adopt a flat conformation because generation of
curvature requires energy. Thus, tubulation or vesicu-
lation typically is mediated by proteins that generate
membrane curvature either by hydrophobic insertion
mechanisms or by scaffolding mechanisms (reviewed
in Shibata et al. 2009). Presumably excess ER
membrane biosynthesis that occurs in lipin mutants
exceeds the capacity of the membrane-bending proteins
to remodel the ER during mitosis into tubules and, in
closed mitotic systems such in yeast, introduces defects
in the nuclear envelope that may interfere with SPB
function. Interestingly, the scaffold ring of the nuclear
pore complex contains four nucleoporins that share
a domain that is related to an ancestral coatamer
element such as found in vesicle coats like COPII
(DeGrasse et al. 2009) and recently, depletion of epsin,
an endocytic adaptor protein that induces membrane

curvature, was shown to result in a range of spindle
aberrations (Liu and Zheng 2009).

Reorganization of nuclear envelope and ER mem-
branes may contribute to mitotic spindle function in
several different ways. Firstly, a very dense, reticu-
lated network surrounding the spindle may provide a
barrier function, restricting access to and from the
spindle. Secondly, the potential energy stored within
curved membranes may contribute to viscoelastic forces
acting upon the spindle. And thirdly, a membranous
matrix may provide a critical structure to sequester
essential mitotic factors as well as partition membrane
systems during cell division (Zheng and Tsai 2006;
Zheng 2010). Indeed, lamin B comprises a vesiculate
membraneous network that surrounds the microtubule
spindle during mitosis in a number of different systems
including Xenopus (Tsai et al. 2006) and has been
shown to sequester spindle assembly factors that are
released in a Ran-GTP-regulated process (Tsai et al.
2006). Furthermore, modeling of in vitro and in vivo
data suggests that an elastic and dynamic lamin-B
envelope could act antagonistically on plus-end-
directed motors to assist in both focusing and
stabilizing the microtubule spindle at least during early
stages of mitosis in Drosophila (Civelekoglu-Scholey
et al. 2010; Poirier et al. 2010). Depletion of lamin B
resulted in a range of spindle assembly defects
including elongated or multi-polar spindles as well as
half spindles or asters, whereas antibody cross-linking
of lamin Dm0 (the Drosophila lamin B homolog) into
a hyperstable network impeded spindle elongation (Tsai
et al. 2006; Goodman et al. 2010; Civelekoglu-Scholey
et al. 2010). Although the membranous spindle matrix
appears to be distinct from the internal spindle matrix
(reviewed in Zheng 2010), both structures arise from
the remodeling of nuclear architectural proteins and
may have the potential to exhibit viscoelastic properties
that can confer compressive or resistive forces onto the
spindle.

Evolutionary conservation and function of spindle
matrix proteins

One concern that has been raised against the concept
of a spindle matrix is that many of the components
identified in one system do not appear to have
obvious homologs in other systems, raising the
question of how “important” a candidate spindle
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matrix protein is if it appears to be unique to a given
model system. Regarding this concern, it should be
noted that until structural data were available to show
immunoglobulin domains exhibit the same overall
folding structure as cadherin domains (Overduin et al.
1995), the level of sequence divergence between these
two domains suggested there would be no similarity
between the two motifs whatsoever! So the failure to
identify obvious homologs by sequence comparisons
does not necessarily imply lack of existence of
functional homologs. This point is further under-
scored when considering that although yeast and
vertebrate NPCs share many obviously homologous
components, searches by sequence similarity in distant
taxa have identified surprisingly few NPC components.
However, recent proteomic analysis of fractionated
NPCs in a divergent eukaryote, Trypanosoma brucei,
found conservation of protein-fold type, overall
domain organization, composition, and modularity
(DeGrasse et al. 2009). Especially noteworthy, the
natively unfolded, unstructured FG-Nups showed
extraordinarily high rates of amino acid substitutions
that confounded in silico homology identification
(DeGrasse et al. 2009), which is consistent with what
had already been noted as an overall trend exhibited by
FG-Nup family members (Denning and Rexach 2007).

Thus, it may not be a fruitful endeavor to seek
potential spindle matrix proteins by sequence
comparison, especially for components of the spindle
matrix that are characterized by unstructured, natively
unfolded domains. Nevertheless, a notable exception to
this is the Tpr protein, which localizes to the mitotic
spindle in a wide range of different systems spanning
from yeast to filamentous fungi to plants to animals
(Niepel et al. 2005; Jiménez et al. 2000; Xu et al. 2007;
De Souza et al. 2009; Qi et al. 2004; Lee et al. 2008;
Lince-Faria et al. 2009). Furthermore, studies in many
of these systems report a critical role for the respective
Tpr homolog in spindle function.

In Drosophila depletion of Megator by RNAi in S2
cells leads to reduction in the mitotic index and
impaired checkpoint signaling, with both Mad2 and
Mps1 failing to properly associate with unattached
kinetochores (Qi et al. 2004; Lince-Faria et al. 2009).
Since Mad2 co-immunoprecipitates with Megator, this
could suggest that one of the roles of the spindle matrix
is to properly target checkpoint signaling proteins
during open and semi-open mitosis (Lince-Faria et al.
2009; De Souza and Osmani 2009). This is also true in

human cells where Tpr was identified by mass spec as
a Mad2-associated factor (Lee et al. 2008). Human Tpr
directly binds both Mad1 and Mad2, and its depletion
disrupts Mad1 localization to the kinetochores. Like
Megator, human Tpr localizes to mitotic spindles
(Sauer et al. 2005; Lince-Faria et al. 2009). Intriguingly,
human Tpr has recently been reported to directly
interact with dynein (Nakano et al. 2010).

Tpr homologs have also been identified in both
budding and fission yeast. In Saccharomyces cerevisiae,
there are two such homologs called Mlp1 and Mlp2
(myosin-like protein). Mlp2p binds to the yeast spindle
pole body (SPB) and promotes its efficient maturation;
depletion of Mlp2p results in shortened and defective
spindles, abnormal numbers of microtubule organizers,
and stochastic failures in cell division (Niepel et al.
2005). In S. pombe there are also two homologs,
Nup211 and alm1, with alm1 corresponding to Mlp2
and localizing to the SPB and mitotic midzone
(Jiménez et al. 2000; Ding et al. 2000). Disruption of
alm1p leads to mitotic defects and an inability to
germinate (Jiménez et al. 2000), although whether this
is associated with defects in SPB maturation as in the
case of budding yeast has not yet been examined.
Nevertheless, the recent report that although fission
yeast can undergo nuclear division in the absence of
spindle microtubules, this “back-up” mechanism for
chromosome segregation requires a mature SPB
(Castagnetti et al. 2010) raises provocative questions
as to whether a spindle matrix may be involved.

The Tpr homolog in the Aspergillus nidulans fungal
system, known as An-Mlp1, has been much more
extensively studied with respect to its mitotic role.
An-Mlp1 localizes to both a spindle matrix and the
kinetochores and, like Drosophila and mammalian
Tpr homologs, is required for spatial regulation of
spindle assembly checkpoint proteins (De Souza et al.
2009; De Souza and Osmani 2009). Significantly,
when cells that have been treated to depolymerize
microtubules enter mitosis, An-Mlp1 still accumulates
normally in an expanded region around the kinetochore
cluster where the prophase spindle would have formed,
indicating that the An-Mlp1 spindle matrix is a distinct
entity from the microtubule spindle (De Souza et al.
2009). Furthermore, An-Mlp1 retains a pool of An-
Mad1 around the spindle through telophase, suggesting
the spindle matrix plays a role in spatiotemporal
regulation of the SAC throughout mitosis, for example
to regulate mitotic exit and to coordinate postmitotic
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nucleolus disassembly (De Souza et al. 2009; De
Souza and Osmani 2009).

Concluding remarks

From the numerous studies reviewed here, there
appears little doubt that nuclear proteins reorganize
during mitosis to form a structure independent from
that of the microtubule-based spindle apparatus that
contributes to proper chromosome segregation. Here,
we propose that this structure may take the form of an
elastic, hydrogel-like matrix. This hypothesis in
theory would be able to account for most if not all
of the recently described dynamic and malleable
features of the spindle matrix. However, for this
hypothesis to be viable, many questions remain to be
answered in future experiments. Especially, it needs to
be determined whether the known spindle matrix
proteins physically can form such a loosely cross-
linked gel matrix with the viscoelastic properties
necessary to counteract forces produced by the
microtubule spindle apparatus while at the same time
allowing for chromosome movement.
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