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Abstract
Depression is the most common mental illness characterized by anhedonia, avolition and loss of appetite and motivation. The 
majority of conventional antidepressants are monoaminergic system selective inhibitors, yet the efficacies are not sufficient. 
Up to 30% of depressed patients are resistant to treatment with available antidepressants, underscoring the urgent need for 
development of novel therapeutics to meet clinical needs. Recent years, compounds acting on the glutamate system have 
attracted wide attention because of their strong, rapid and sustained antidepressant effects. Among them, selective inhibitors 
of metabotropic glutamate receptors 2 and 3 (mGluR2/3) have shown robust antidepressant benefits with fewer side-effects 
in both preclinical and clinical studies. Thus, we here attempt to summarize the antidepressant effects and underlying mecha-
nisms of these inhibitors revealed in recent years as well as analyze the potential value of mGluR2/3 selective inhibitors in 
the treatment of depression.
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Introduction

According to estimates from the World Health Organization, 
over 300 million people are diagnosed with depression glob-
ally, with a prevalence of 4.4% (WHO 2017). As a chronic, 
recurring mental disorder, depression is featured by clini-
cal symptoms such as continuous black mood, anhedonia, 
avolition and changes in appetite, causing enormous dis-
ability (Organization 2016; Zapata and Pearlstein 2022). The 
prescribed medications currently are mainly first-generation 
(monoamine oxidase inhibitors [MAOIs] and tricyclic anti-
depressants [TCAs]) and second-generation antidepressants 
(selective serotonin reuptake inhibitors [SSRIs] and sero-
tonin-norepinephrine reuptake inhibitors [SNRIs]). Among 
them, SSRIs are usually used as the “first-line” antidepres-
sants for depression treatment, owing to their high safety and 

fewer side-effects (Koenig and Thase 2009; Trivedi et al. 
2006). However, these available antidepressants have sev-
eral undesirable limitations. Firstly, more than 30% of the 
depressed patients do not respond to these drugs, thereby 
being referred to as "treatment-resistant depression (TRD)". 
Secondly, it takes weeks or even months to reach full effec-
tiveness after the first dose of these drugs. Thirdly, some 
symptoms of depression are difficult to be treated effectively 
with available antidepressants (Fabbri et al. 2021; Nutt et al. 
2007). All of these limitations highlight the critical need 
to develop more effective and rapid-acting interventions to 
alleviate all symptoms of depression

Accumulating evidence from postmortem and imaging 
studies suggests that glutamate system dysregulation plays a 
vital role in mood disorders including depression (Sanacora 
et al. 2004; Yildiz-Yesiloglu and Ankerst 2006). Changes in 
glutamate levels in different clinical samples from depressed 
individuals have been confirmed (Levine et al. 2000; Mitani 
et al. 2006), along with the specific proteins related to synap-
tic connections and glutamate receptors (Duric et al. 2013). 
Additionally, evidence also shows that targeting glutamate 
system has robust and rapid-acting antidepressant effects. 
Therefore, glutamate system has been widely concerned as the 
potential target for the treatment of depression as well as TRD 
(Pilc et al. 2013; Sanacora et al. 2008). Clinical investigations 
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have revealed that ketamine, a glutamate system modulator, 
has robust anti-depressive effects, though not all depressed 
patients respond to this compound (Berman et al. 2000; Mur-
rough et al. 2013). Ketamine also has serious adverse effects, 
including psychotomimetic effects and abuse liability (Sos 
et al. 2013), which restrict its clinical utility. However, the 
robust antidepressant effects of ketamine have altered our 
expectations regarding the speed of antidepressant response 
and bolstered efforts to identify more rapid-acting treatments.

Glutamate is one of the classical excitatory neurotrans-
mitters in the central nervous system. To our knowledge, it 
mainly exerts its effects through two principal classes of the 
receptor, called ionotropic glutamate receptors (iGluRs) and 
metabotropic glutamate receptors (mGluRs), respectively 
(Nakanishi 1992). Based on the affinity for glutamate and its 
analogs, iGluRs are divided into three subtypes: α-amino-
3-hydroxy-5-methyl-isoxazole-4-proprionic acid receptor 
(AMPAR), N-methyl-D-aspartate receptor (NMDAR) and 
kainate receptor. These ion channel complexes are responsi-
ble for mediating fast cation flux and synaptic transmission 
across the postsynaptic neuronal membrane. mGluRs have 
eight members (mGluR1-8) (Nakanishi 1994; Nicoletti et al. 
2011) and based on the sequence homology, G-protein cou-
pling, ligand selectivity and function of mGluRs, they are sub-
classified into three groups: group I (mGluR1 and mGluR5), 
group II (mGluR2 and mGluR3) and group III (mGluR4 and 
mGluR6-8) (Niswender and Conn 2010). Extensive studies 
have shown that mGluRs are implicated in the pathology of 
depression. Compounds acting on mGluRs are considered as 
potential agents for depression treatment. Notably, both pre-
clinical and clinical studies have demonstrated that agents 
targeting mGluR2/3, including the antagonist and nega-
tive allosteric modulator (NAM), possess fast and sustained 
antidepressant-like effects similar to that of ketamine though 
part of these compounds are not launched into clinical trials 
yet. Furthermore, these agents are even efficacious for TRD 
in animal models. In this brief review, we aim to summarize 
and update published preclinical and clinical studies investigat-
ing the antidepressant effects of mGluR2/3 selective inhibitors 
and analyze the potential value of these compounds as novel 
antidepressants.

mGluR2/3 Signaling in the Pathogenesis 
of Depression

As the receptor of the neurotransmitter glutamate, mGluR2/3 
is distributed in brain regions which are linked to social 
behavior and emotion regulation, such as the prefrontal 
cortex (PFC), anterior cingulate cortex, thalamus, amygdala 
and hippocampus (Matosin et al. 2014; Wright et al. 2001), 
indicating a modulatory role in depression. While group II 
mGluRs are predominantly located presynaptically where 
they function as auto- and hetero-receptors and inhibit the 

release of glutamate and other neurotransmitters, mGluR3 
is also found in postsynaptic and glial localizations (Petralia 
et al. 1996; Tamaru et al. 2001). mGluR2/3 belongs to class 
C G-protein coupled receptor which couples to Gi/o pro-
teins and then inhibit adenylyl cyclase and directly regulate 
ion channels and other downstream signaling molecules via 
the release of  Gβγ subunits. Additionally, mGluR2/3 also 
activates other signaling pathways, including MAPK and 
phosphatidylinositol 3-kinase (PI3 kinase) pathways (Iaco-
velli et al. 2002), resulting in changes of the expression of 
downstream genes such as BDNF, PSD95 and Synapsin I. 
Activation of mGluR2/3 directly affects glutamate levels 
and synaptic plasticity (Machado-Vieira et al. 2009). These 
validated effects of mGluR2/3 in modulating glutamatergic 
signaling make them potential targets for developing novel 
pharmacotherapies for depression treatment.

Several brain regions, including PFC, striatum, nucleus 
accumbens (NAc), thalamus, hippocampus and amygdala, 
were proven to be involved in regulation of the mood, cogni-
tion and depression behavior (Nicoletti et al. 2011; Wright 
et al. 2001). Coincidentally, studies have revealed that the 
expression of mGluR2/3 is altered in these regions in both 
depressed patients and animal models (Feyissa et al. 2010; 
Pytka et al. 2016; Wang et al. 2015). For instance, mGluR2/3 
was increased in PFC and hippocampus in the mice reared 
under isolated conditions (Kawasaki et al. 2011) and in the 
postmortem PFC of depressed patients (Feyissa et al. 2010), 
suggesting that elevated function of mGluR2/3 might be the 
etiological hallmark of depression.

The Antidepressant Effects of mGluR2/3 Antagonists

It has been confirmed that mGluR2/3 antagonists increase 
synaptic glutamate levels, commensurately boosting AMPA 
receptor transmission and firing rates and extracellular mon-
oamine levels. Multiple mGluR2/3 antagonists have been 
studied, as listed in Table 1, and they have all demonstrated 
beneficial effects on depression. mGluR2/3 antagonists, 
including MGS0039, LY341495 and LY3030371,display 
fast and sustained antidepressant-like responses in depres-
sion models (Campo et al. 2011; Chaki et al. 2004; Dwyer 
et al. 2013; Fukumoto et al. 2016; Joffe et al. 2020; Koike 
et al. 2013b; Podkowa et al. 2015), compared to the conven-
tional antidepressants which have a substantial delay in the 
therapeutic onset. For instance, MGS0039 and LY341495 
have been shown to manifest antidepressant-like effects as 
early as one day after administration, without any thera-
peutic delay (Dong et al. 2017; Dwyer et al. 2013). What’s 
more, the antidepressant-like effects of a single injection 
of mGluR2/3 antagonists last for at least a week, illustrat-
ing the prolonged effects of these antagonists (Dong et al. 
2017; Dwyer et al. 2013). Interestingly, the sustained antide-
pressant effects might be attributed to persistent recovery in 
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Table 1  Summary of the preclinical effects, effective doses of mGluR2/3 inhibitors in animals

Compounds Doses/
Administration

Animals Effects in the experimental 
models

References

mGluR2/3 antagonists MGS0039 0.3–3 mg/kg, i.p Rat (Sprague–Dawley) Show anti-antidepressant-like 
in FST and TST

Chaki et al. (2004)

1 mL/kg, i.p Mouse (NIH-Swiss) Show anti-antidepressant-
like in FST

Gleason et al. (2013)

1 mg/kg, i.p Mouse (ICR) Show anti-antidepressant-
like in TST

Koike et al. (2011b)

1 and 3 mg/ kg, i.p Mouse (C57BL/6 J) Show anti-antidepressant-
like in TST

Pałucha-Poniewiera et al. 
(2010)

10 mg/kg, i.p Rat (Sprague–Dawley) Show anti-antidepressant-like 
in TST of learned helpless-
ness model

Yoshimizu et al. (2006)

1 and 3 mg/kg, i.p Rat (Sprague–Dawley) Show anti-antidepressant-like 
in open field test in olfac-
tory bulbectomy model of 
depression

Pałucha-Poniewiera et al. 
(2010)

1 mg/kg, i.p Mouse (ddy) Exert the anti-antidepressant-
like by blocking dopamine 
release in prefrontal of 
chronic corticosterone-
treated mice

Ago et al. (2013)

1 mg/kg, i.p Mouse (ddy) Decrease the immobility time 
of isolation-reared mice 
in FST

Kawasaki et al. (2011)

1 mg/kg, i.p Mouse (C57BL/6 J) Exert rapid and sustained 
antidepressant-likes in the 
social defeat stress model 
through BDNF-TrkB 
signaling

Dong et al. (2017)

LY341495 0.1–3 mg/kg, i.p Rat (Sprague–Dawley) Have dose-dependent 
antidepressant-like effect 
in FST

Chaki et al. (2004)

5 mL/kg, i.p C57BL/6 J Show dose-dependently 
reduced immobility time 
in FST

Campo et al. (2011)

1 mg/kg, i.p Mouse (NIH-Swiss) Have dose-dependent 
antidepressant-like effect 
in FST

Gleason et al. (2013)

0.3–3 mg/kg, i.p Mouse (NMRI) Have dose-dependent 
antidepressant-like effect 
in FST

Bespalov et al. (2008)

1 mg/kg, i.p Mouse (ICR) Show antidepressant-like 
effect in TST and novelty-
suppressed feeding test

Koike et al. (2013a)

3 mg/kg, i.p Mouse (CD-1) Show antidepressant-like 
effect in TST through 
increasing the number of 
active dopamine neurons 
in the ventral tegmental 
area, increasing extracel-
lular levels of dopamine 
in the nucleus accumbens 
and prefrontal cortex, and 
enhancing the locomotor 
stimulatory effects of dopa-
mine D2/3 receptor agonist 
quinpirole

Witkin et al. (2016)

5 mL/kg, i.p Mouse (helpless) Exert antidepressant-like 
effect in TST

Campo et al. (2011)
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Table 1  (continued)

Compounds Doses/
Administration

Animals Effects in the experimental 
models

References

0.3–3 mg/kg, i.p RAT (Wistar) Reduce immobility in the 
mouse FST

Bespalov et al. (2008)

0.3 mg/kg, i.p Mouse (ddy) Exert the anti-antidepressant-
like by blocking dopamine 
release in the prefrontal 
of chronic corticosterone-
treated mice

Ago et al. (2013)

0.3–3 mg/kg, i.p Rat (Sprague–Dawley) Reduce immobility in the 
mouse FST

Koike et al. (2013b)

1–3 mg/kg, i.p Rat (Sprague–Dawley) Reduce immobility in the 
mouse FST

Iijima et al. (2013)

3 mg/kg, i.p Rat (Sprague–Dawley) Produce rapid and robust 
antidepressant-like in 
sucrose preference

Dwyer et al. (2013)

LY3030371 1 or 2 mL/kg, i.p Rat (Sprague–Dawley) Show antidepressant-like 
effect in sucrose preference

Witkin et al. (2017a)

1–10 mg/kg, i.p Mouse (NIH-Swiss) Show antidepressant-like 
effect in FST

Chappell et al. (2016)

RO1, RO2 10 mL/kg, i.p Mouse (NIH-Swiss) Show antidepressant-like 
effect in FST

Gleason et al. (2013)

mGluR2/3 NAM RO4491533 1,3,10,30,100 mg/kg, p.o C57BL/6 J Reduce immobility time in 
FST

Campo et al. (2011)

Mouse (helpless) Show antidepressant-like 
effect in TST

Campo et al. (2011)

RO4432717 10 mg/kg, p.o Rat (Sprague–Dawley) Increase long-term potentia-
tion in dentate gyrus and 
improve cognitive, learning 
behaviors in rat

Goeldner et al. (2013)

mGluR2 NAM VU6001966 10 mg/kg, i.p Mouse Increase latency to immobil-
ity and decrease total 
immobile time in FST; 
reverse anhedonia induced 
by chronic corticosterone 
treatment or exposure to 
chronic variable stress

Joffe et al. (2020)

mGluR3 NAM VU650786 10 mg/kg,i.p Rat (Sprague–Dawley) Inhibit marble burying in 
mice, decrease immobility 
in FST

Engers et al. (2015)

10 μL/g,i.p Mouse (C57BL/6 J) Prevent motivational deficits 
induced by acute stress, 
increase latency to immo-
bility and decrease total 
immobile time in FST and 
TST; reverse anhedonia 
induced by chronic CORT 
treatment or exposure to 
CVS

Joffe et al. (2019)

VU6010572 3 mg/kg, i.p Mouse (CD-1) Reduce immobility time in 
TST

Engers et al. (2017)
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synaptic plasticity, rather than pharmacokinetic profile of the 
antagonists, as they are quickly cleared from the body within 
one day (Nakazato 2009; Ornstein et al. 1998).

As discussed above, one-third of depressed patients show 
resistance to the treatment of conventional antidepressants. 
These conventional drugs show limited efficacy in rodent 
models of conventional antidepressant-resistant such as 
learned helplessness (Yoshimizu et al. 2006) and corti-
costerone-treated animal models (Ago et al. 2013; Iijima 
et al. 2010). However, some mGluR2/3 antagonists, such 
as LY341495, potentiate stress resilience in rodents (High-
land et al. 2019) and induce antidepressant effects in the 
SSRI-resistant CD-1 mice (Witkin et al. 2016). LY341495 
was also shown to increase glutamate outflow in the lim-
bic regions and PFC (Hascup et al. 2010; Xi et al. 2002), 
increase mTOR pathway signaling and thereby promote 
the expression of the synaptic proteins GluR1, PSD-95 and 
Synapsin I (Dwyer et al. 2012; Koike et al. 2011a). These 
preclinical findings indicate that mGluR2/3 antagonists may 
be effective for TRD which currently prescribed antidepres-
sants are not. Furthermore, LY3020371 shows a ketamine-
like antidepressant effect in the forced swimming test (FST) 
(Witkin et al. 2017a), but doesn't produce any ketamine-
like adverse effects (Witkin et al. 2017b). All these studies 
demonstrate that mGluR2/3 antagonists possess prolonged, 

fast-acting antidepressants with relatively high safety, indi-
cating a promising value in the treatment of depression.

The Antidepressant‑Like Effects of mGluR2/3 NAMs

NAMs antagonize noncompetitively the activity of the 
orthosteric ligand (Hampson et  al. 2008). Therefore, 
mGluR2/3 NAMs show similar antidepressant-like effects 
to those of mGluR2/3 antagonists. It was reported that 
mGluR2/3 NAMs are able to reverse passive coping behav-
ior in FST (Joffe et al. 2020). Furthermore, RO4491533, a 
mGluR2/3 NAM, shows a strong and fast antidepressant-like 
effects in acute tests like FST and tail suspension test (TST) 
(Campo et al. 2011). Selective mGluR3 NAMs, including 
VU6010572 and VU650786, have been reported to have ket-
amine-like antidepressant effects in acute depression models 
like TST (Engers et al. 2017). Notably, a core symptom of 
depression, the anhedonia induced by corticosterone treat-
ment or chronic stress stimuli can be reversed by a single 
treatment with mGluR2 or mGluR3 NAM (Chaki 2021; 
Joffe et al. 2020). These NAMs exert their effects through 
distinct mechanisms (Machado-Vieira et al. 2017; Tomasetti 
et al. 2019) (Please refer to Fig. 1), such as activating unique 
PFC pyramidal cell ensembles, enhancing thalamocortical 
transmission and reducing long-term depression (Joffe et al. 
2020). mGluR3 NAMs are also found to be efficacious in 

Fig. 1  Schematic representa-
tion of the mechanism of 
antidepressant-like action medi-
ated by mGluR2/3 inhibitors. 
Briefly, the antagonists and 
NAMs including MGS0039, 
LY341495 and VU6010572, 
target at mGluR2 or/and 3 
which increases the release 
of glutamate by inhibiting 
the activity of cAMP in the 
presynaptic neuron. While in 
depression state the extracellu-
lar glutamate level is decreased 
and so does its binding to the 
AMPAR receptor. The latter 
further reduces the phospho-
rylation of mTOR and affects 
the expression of downstream 
genes (including GluR1, BDNF, 
PSD95 and Synapsin I), result-
ing in a damage of synaptic 
plasticity and long-term poten-
tiation. cAMP cyclic adeno-
sine monophosphate, SNARE 
Soluble N-ethylmaleimide-sen-
sitive factor attachment protein 
receptor
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preventing motivational deficits and changes in the amyg-
dalo-cortical plasticity (Joffe et al. 2019), suggesting the 
potential utility of mGluR3 NAMs for treating psychiatric 
disorders. Together, these studies demonstrate that develop-
ing selective agents to modulate the activity of mGluR2 and 
mGluR3 may be a promising approach to addressing depres-
sive symptomology.

Clinical Trials of mGluR2/3 NAMs and Antagonists 
in Treatment for Depression

Several mGluR2/3 NAMs and antagonists were launched 
into clinical trials.

For instance, clinical studies are being conducted with 
RO4995819 (a mGluR2/3 NAM, also known as RG1578 
and decoglurant) by Roche (see http:// www. clini caltr ials. 
gov/ ct2/ show). The Roche RO4995819 has undergone sev-
eral safety and tolerability Phase I clinical trials (for full 
list see http:// www. roche trials. com/ resul tsByP roduc tGet. 
action? produ ctName= RO499 5819), but no published results 
are currently available. A Phase II 6-week clinical trials are 
also underway to assess the effects of RO4995819 as an 
adjunctive treatment in 357 patients with MDD and find no 
antidepressant responses compared with placebo (see http:// 
www. clini caltr ials. gov/ ct2/ show/ NCT01 457677) (Umbricht 
et al. 2020). Furthermore, a combined usage of sub-effec-
tive dosage of LY341495 and ketamine was efficacious for 
the depression treatment without producing any ketamine-
induced side-effects in patients (Agnieszka et al. 2019), sug-
gesting that combination therapy using mGluR2/3 antagonist 
and ketamine can reduce the effective dosage of ketamine 
and its side-effects. TS-161, another mGluR2/3 antagonist, 
has completed phase I (NCT03919409) trials in 70 healthy 
volunteers to evaluate its safety profile, tolerability and phar-
macokinetics. This agent is presently in phase II studies for 
TRD at the National Institute of Mental Health (Henter et al. 
2021). Although both of these drugs appear to be targeted 
at depression, to date, little human proof-of-concept data 
are available with mGluR2/3 antagonists and NAMs. How-
ever, the clinical efficacies of these compounds could be 
predicted by investigating similarities in the neural mecha-
nisms between mGluR2/3 antagonists/NAMs and ketamine.

Discussion

As a mood disorder, depression has a high morbidity and 
the number of depressed individuals keeps growing with 
the increase in social competition and life rhythm speed, 
especially in developing countries (Ren et  al. 2020). 
Despite major advancements in the pathophysiology of 
depression in recent years, the neural circuits, cellular and 
molecular mechanisms underlying depression remain poorly 

understood and the treatment of depression with currently 
available antidepressants is inadequate either. It highlights 
the urgent need for further investigation on the pathogenesis 
of depression and the development of novel antidepressants.

Over the last two decades, several neural systems are 
proven to be implicated in depression such as the cholin-
ergic system (Drevets et al. 2013) hypothalamo-pituitary-
adrenal (HPA) axis (Machado-Vieira et al. 2014), opioid sys-
tem (Knoll and Carlezon Jr 2010) and melatonergic system 
(Alexis Geoffroy et al. 2015). In this context, agents acting 
on these neural systems have also been made and their anti-
depressant effects are tested in preclinical and/or clinical 
trials. Although administration of the modulator of choliner-
gic system, including scopolamine and VU0255035, induces 
antidepressant effects, it produces unacceptable side-effects 
like psychosis (Khajavi et al. 2012; Navarria et al. 2015). 
Similarly,mifepristone and CP-316, two antagonists of HPA 
axis, show disappointing results in clinical studies (http:// 
www. inpha rmate chnol ogist. com/ Regul atory- Safety/ Sanofi- 
pulls- plug- on- four- Ph- III- drugs 2009) (Binneman et  al. 
2008). The opioid system is an undervalued but a promis-
ing target in future studies of depression and one modula-
tor of this system, ALKS-5461, shows positive results in 
phase II trials and is further evaluated in phase III trials as 
an adjuvant treatment for TRD (http:// phx. corpo rate- ir. net/ 
phoen ix. zhtml?c= 92211 &p= irolc orpor ateNe wsArt icle& 
ID= 18258 172013). However, to our limited knowledge, just 
a few agents acting on this system are reported. As to the 
melatonergic system, an agonist, ramelteon, shows substan-
tial antidepressant efficacy in preclinical and clinical stud-
ies (Bertaina-Anglade et al. 2006; Montgomery and Kasper 
2007).

In addition to the neural systems mentioned above, 
mounting evidence has confirmed that dysregulation 
of glutamatergic system leads to depression (Lee et al. 
2022; Olajide et al. 2021). Furthermore, agents acting 
on the glutamatergic system are efficacious for treat-
ing depression. For example, ketamine, the most  con-
cerned iGluR(NMDAR) modulator, is highly efficacious 
for depression including TRD, though it causes unfa-
vorable side-effects. Other iGluR modulators, including 
GluN2B-specific NMDA receptor antagonists (CP-101/
MK-0657) (Ibrahim et al. 2012; Preskorn et al. 2008) and 
NMDA receptor glycine-site partial agonists (D-cycloser-
ine/GLYX-13) (Depression 2015; Phase), are also under 
various stages of clinical trials and the results appear to 
be acceptable to some extent. Under the encouragement of 
the robust antidepressant effects of ketamine, an increas-
ing number of compounds targeting mGluRs have been 
tested (Cross et al. 2018; Moridi et al. 2020), and these 
compounds seem to be the most promising agents under 
studies for depression among the modulator of glutamater-
gic system (Dogra and Conn 2021). Notably, compared 

http://www.clinicaltrials.gov/ct2/show
http://www.clinicaltrials.gov/ct2/show
http://www.rochetrials.com/resultsByProductGet.action?productName=RO4995819
http://www.rochetrials.com/resultsByProductGet.action?productName=RO4995819
http://www.clinicaltrials.gov/ct2/show/NCT01457677
http://www.clinicaltrials.gov/ct2/show/NCT01457677
http://www.inpharmatechnologist.com/Regulatory-Safety/Sanofi-pulls-plug-on-four-Ph-III-drugs2009
http://www.inpharmatechnologist.com/Regulatory-Safety/Sanofi-pulls-plug-on-four-Ph-III-drugs2009
http://www.inpharmatechnologist.com/Regulatory-Safety/Sanofi-pulls-plug-on-four-Ph-III-drugs2009
http://phx.corporate-ir.net/phoenix.zhtml?c=92211&p=irolcorporateNewsArticle&ID=18258172013
http://phx.corporate-ir.net/phoenix.zhtml?c=92211&p=irolcorporateNewsArticle&ID=18258172013
http://phx.corporate-ir.net/phoenix.zhtml?c=92211&p=irolcorporateNewsArticle&ID=18258172013
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to other mGluRs, mGluR2/3 is a more specific target for 
developing novel antidepressants (Dogra and Conn 2021). 
In fact, the antagonist/NAM of mGluR2/3 shows fast-
acting and sustained antidepressant-like effects with no 
ketamine-like side-effects produced. However, it should 
be noticed that the safety and efficacy of these compounds 
(particularly for those that have not yet undergone clinical 
trials) need to be further verified in preclinical and clinical 
investigations, as to date, relevant data are not sufficiently 
comprehensive.

Although several mGluR2/3 antagonists/NAMs show 
great therapeutic potential for the treatment of depres-
sion in preclinical investigations, the outcomes of clinical 
trials were not particularly encouraging (Umbricht et al. 
2020). The possible reasons might be: (I) these drugs 
have poor gastrointestinal permeability resulting in low 
oral bioavailability (Holly, LaCrosse, & Hillhouse); (II) 
both mGluR2/3 antagonists and NAMs selectively target at 
specific sites (mainly mGluR2/3), but the pathogenesis of 
depression is multifactorial, thus limiting the antidepres-
sant effects of these agents. At the same time, it highlights 
the importance of a combined usage of drugs with differ-
ent mechanisms of action in the treatment of depression; 
(III) current mGluR2/3 antagonists and NAMs lack speci-
ficity in brain regions related to depression.

Conclusion

Collectively, we remain encouraged by this area of 
research despite the mixed results and failures. Com-
pounds discussed above selectively acting on mGluR2 
and/or mGluR3 have been shown to possess rapid and 
prolonged antidepressant-like effects with fewer side-
effects in preclinical or clinical studies. The advent of 
these agents has shed valuable light on novel treatment 
avenues and advanced the ultimate goal of developing 
much-needed, novel, rapid-acting, safe, and effective treat-
ment options for the millions of individuals worldwide 
suffering from depression.
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