
Vol.:(0123456789)1 3

Cellular and Molecular Neurobiology (2022) 42:1283–1300 
https://doi.org/10.1007/s10571-020-01027-6

REVIEW PAPER

Role of Microgliosis and NLRP3 Inflammasome in Parkinson’s Disease 
Pathogenesis and Therapy

Fillipe M. de Araújo1,2  · Lorena Cuenca‑Bermejo1  · Emiliano Fernández‑Villalba1  · Silvia L. Costa2  · 
Victor Diogenes A. Silva2  · Maria Trinidad Herrero1 

Received: 13 August 2020 / Accepted: 8 December 2020 / Published online: 2 January 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, 
postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta 
(SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose 
recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. 
Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discover-
ies of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been 
investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has 
been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with 
the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.
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ERK 1/2  Extracellular signal-regulated kinase
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IL-1β  Interleukin-1β
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LRR  Leucine-rich repeats
MAL/TIRAP  MyD88 adaptor-like protein/TIR-contain-

ing adaptor protein
MAS  Macrophage activation syndrome
MAO-B  Monoamine oxidase B
MAPK  Mitogen-activated protein kinases
MD2  Myeloid differentiation protein-2
MPTP  1-Methyl-4-phenyl-1,2,3,6-tetrahydropyri-

dine
MyD88  Myeloid differentiation protein
NACHT  Nucleotide-binding and oligomerization
NF-κB  Factor nuclear kappa B
NLRP3  NOD-like receptor protein 3
NLRs  NOD-like receptors
NO  Nitric oxide
PAMPs  Pathogen-associated molecular pattern
PET  Positron emission tomography
Pro-IL-1β  Pro-interleukin-1β
PRRs  Pattern-recognition receptors
PYD  Pyrin domains
ROS  Reactive oxygen species
SNpc  Substantia nigra pars compacta
TIR  Toll/interleukin-1
TNF-α  Tumor necrosis factor-α
TNFR1  Tumor necrosis factor receptor 1
TNFR12  Tumor necrosis factor receptor 2
TLR  Toll-like receptor
TSPO  Translocating protein

Introduction

In 2016, 6.1 million people worldwide were diagnosed with 
Parkinson’s disease (PD), what represents 2.4 times more 
than the number of people diagnosed in 1990 (Dorsey et al. 
2018a, b; Simon et al. 2019). In addition, it is estimated that 
the number of cases will exceed 12 million individuals in 
2040. This growing number of cases is especially related 
to the increase in life expectancy, since PD is uncommon 
in individuals under 50 years, affecting predominantly indi-
viduals over 60 years of age and increasing dramatically 
after 75 years (Abdullah et al. 2015; Dorsey et al. 2018a, 
b). Age is the main risk factor for PD, but there is also an 
association with environmental factors related to industri-
alization, including pesticides, solvents and metals (Vlaar 
et al. 2018). The symptoms of PD were first described by 
James Parkinson in 1817 as a heterogeneous manifestation 
(Parkinson 1817). Nowadays, the symptoms of PD are well 
characterized, marked by motor symptoms such as bradyki-
nesia, ataxia, postural stiffness and resting tremor associated 
with dopaminergic neuronal loss in the Substantia Nigra 
pars compacta (SNpc) and deficit of dopamine in the basal 
ganglia (Goldman and Postuma 2014; Obeso et al. 2017). 

However, it is believed that the pathogenic process begins in 
the pre-motor phase marked by sleep disturbance, olfactory 
deficit, anxiety and depression with pathogenic bases largely 
undefined (Schapira et al. 2017).

Most PD symptoms are associated with a slow and pro-
gressive degeneration of dopaminergic neurons in the SNpc 
with a subsequent dopamine depletion in the target areas 
(Obeso et al. 2017). The cause that leads to neuronal loss in 
PD is still unclear and has been object of continuous experi-
mental studies in different systems (Cuenca et al. 2005; Her-
rero and Morelli 2017; Kalinderi et al. 2016; Kazlauskaite 
and Muqit 2015). However, even after many decades, the 
understanding of the mechanisms underlying the PD patho-
genesis remains partially unknown. Several theories have 
been studied and some have been shown to indicate that the 
disease has multifactorial causes associated with genetic, 
environmental and aging changes that, when combined, 
confer a risk for the development of neuronal degeneration 
through molecular and cellular disorders, such as neurotox-
icity by α-synuclein (Lau et al. 2020; Poewe et al. 2017) or 
product of dopamine oxidation (Segura-Aguilar 2017), oxi-
dative stress (Puspita et al. 2017), reduction of endogenous 
neuroprotective molecules and mitochondrial dysfunction 
(Macdonald et al. 2018; Rani and Mondal 2020), dysfunc-
tion in protein degradation and autophagy system (Cheng, 
et al. 2020a; Hou et al. 2020; Lane et al. 2017; Menzies et al. 
2017; Zhang et al. 2016b) and neuroinflammation (Arle-
hamn et al. 2020; Hirsch and Hunot 2009).

In particular, inflammation, a term that encompasses neu-
roinflammation and peripheral inflammatory responses, is 
documented in PD acting not only as a mere dysfunction 
that occurs in the disease process, but also as an important 
factor of PD pathogenesis (Glass et al. 2010; Salter and Ste-
vens 2017; Schlachetzki et al. 2014). In the brain, continuous 
interactions between neurons, extracellular space and glial 
cells are determinant for the maintenance of neural homeo-
stasis and/or for the emergence of neurological disorders, 
such as those occurring in PD (De Stefano and Herrero 
2017; Heneka et al. 2010). Microglial activation is a typical 
pathological characteristic of neurodegenerative diseases. 
Emerging evidences indicate that sustained activation of the 
inflammatory response mediated by microglial activation in 
human and in animal models of PD plays an important role 
in explaining part of the cascade of events leading to dopa-
minergic degeneration in PD (Kim and Joh 2006).

Microglia is the main immunological cell of the Cen-
tral Nervous System (CNS), responsible for its first line of 
defense, acting as a sensor that responds to physiological 
changes and pathological stimuli in the cerebral microen-
vironment (Aguzzi et al. 2013; Hanisch and Kettenmann 
2007). These microglia changes, from a "quiescent state” 
to an activated phenotype, are characterized by a set of 
responses that may affect CNS function during the disease 
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or injury, generating consequences ranging from the loss of 
synapses to progressive neurodegeneration (Bernier et al. 
2020; Salter and Stevens 2017). During chronic brain dam-
age, microglia release pro-inflammatory factors that are 
toxic to neurons (Cheng et al. 2020a; Wang et al. 2014). 
Among the released factors, the cytokine IL-1β is a prod-
uct of inflammasome, a multiprotein complex present in the 
cytoplasm for the microglia responsible for the degradation 
of the pro-IL-1β zymogen in IL-1β. Several studies have 
shown the involvement of the NLRP3 type inflammasome 
in numerous human diseases in the CNS and found that the 
product of this molecule increases the rates of dopamine 
neuron degeneration in 6-Hydroxydopamine (6-OHDA) rat 
model (Chatterjee et al. 2020; Haque et al. 2020; Koprich 
et al. 2008; McGeer et al. 2002). In this review, we describe 
the role of microglial activation and inflammasome with 
clinical aspects, pathogenesis and therapeutic approaches 
in PD.

Symptoms in Parkinson’s Disease and Association 
with Neuroinflammation

This chronic and progressive neurodegenerative disease is 
mainly characterized by clinical motor manifestations that 
include bradykinesia, rigidity, postural instability and tremor 
at rest (Giráldez-Pérez et al. 2014; Das and Sharma 2016). 
Diagnosis of PD occurs primarily with the onset of motor 
symptoms that begins when 50–60% of the dopaminergic 
neurons are lost. On the other hand, these symptoms can 
be preceded by a pre-motor or prodromal phase that begins 
20 years or more before the motor manifestations of the dis-
ease (Goldman and Postuma 2014; Kalia 2015).

Conditions associated with decreased olfaction, depres-
sion, disturbances in sleep behavior, anxiety and intestinal 
constipation are frequently reported by in patients with PD 
in retrospective and longitudinal studies and are recognized 
as the most common non-motor symptoms of this disease 
(Bhidayasiri and Martinez-Martin 2017; Reichmann 2017; 
Schapira et al. 2017). The progress of the disease involves 
other brain areas (thalamus, hypothalamus, brainstem, cor-
tex) resulting in the increase in autonomic failures, sensory, 
cognitive and psychiatric disorders (Giráldez-Pérez et al. 
2014). In a retrospective study, it was observed that in the 
years prior to the diagnosis, individuals complained to their 
primary care physicians about non-motor characteristics of 
PD, mainly for constipation, which was the most reported, 
neuropsychiatric disorders (depression, anxiety and mem-
ory problems), and disorder in sleep behavior (Schrag et al. 
2015). In another retrospective case–control study, it was 
shown that 61.2% of the subjects with PD interviewed 
reported the presence of one or more pre-motor symptoms 
such as hyposmia, depression, anxiety, constipation and 
sleep disorders, with a significant relationship between the 

presence of symptoms and the risk of developing PD (Rod-
riguez-Violante et al. 2017). In fact, recognition of PD pre-
motor symptoms is useful for the development of strategies 
to identify individuals at risk, to make early diagnosis and 
to prevent or stop the development and progression of the 
neurodegenerative process (Chaudhuri et al. 2006; Martinez-
Martin et al. 2017).

The Braak hypothesis of PD development postulates that 
it begins in the periphery (enteric plexus and olfactory bulb) 
and works its way into the CNS in six neuropathological 
stages (Braak et al. 2004). It is an important support to pro-
vide evidence that inflammation is involved in the develop-
ment of non-motor and motor symptoms in PD. The stage 1 
can be associated with the activation of the immune system 
by Helicobacter pylori infection, which induces an autoim-
mune response targeting mitochondria and possibly leading 
to the deposition of α-synuclein, alterations in enteric nerv-
ous system that may manifest as gastrointestinal dysfunction 
(Barnum and Tansey 2012); the stage 2 is associated with 
an inflammatory transmission to the CNS, mainly expressed 
by high levels of TNF-α and IL-6 and a subsequent reduc-
tion in serotonin levels via an indoleamine-2, 3-dioxygenase 
(IDO) and kynurenine degradative pathway of tryptophan 
and degeneration of monoaminergic systems that results 
in low mood and sleep disturbances (Lim et al. 2017); the 
stages 3, 4, 5 and 6 are marked by widespread inflammation 
in the CNS that may contribute to cognitive decline, demen-
tia, psychosis and motor symptoms (Barnum and Tansey 
2012). The unidirectional spread of PD pathogenesis postu-
lated by Braak and coworkers has been revised (Braak et al. 
2004). Studies in monkeys reinforcing the involvement of 
alpha-synuclein in PD pathogenesis support the notion of the 
existence of a range of alpha-synuclein pathogenic structures 
with distinct toxic properties within the PD brain, and sug-
gest a possible systemic mechanism in which the general 
circulation would act as a route for long-distance bidirec-
tional transmission of endogenous α-synuclein between the 
enteric and the central nervous systems (Arotcarena et al. 
2020; Bourdenx et al. 2020).

Animal models have contributed to the understanding of 
how neuroinflammation is involved in the development of 
pre-motor and motor symptoms. The injection of 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is capable to 
induce reactive gliosis and dopaminergic degeneration in 
rodents and non-human primates (Annese et al. 2013, 2015; 
Barcia et al. 2013; Kastner et al. 1994). Studies showed that 
microglial activation starts in a distress phase that precedes 
neuronal death in MPTP animal model (Hirsch and Hunot 
2009). Moreover, it is suggested that intranigral lipopolysac-
charide (LPS) administration in Wistar rats can provide new 
insights about the role of neuroinflammation on simulating 
features of the pre-motor phase of PD, since it produces 
dopamine and glutathione impairment but not a reduction 
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in locomotion frequency and rearing frequency in compari-
son with MPTP and 6-OHDA, nor did it induce an increase 
in immobility time frequency in comparison with 6-OHDA 
(Ariza et al. 2010). On the other hand, single systemic injec-
tion of lipopolysaccharide (5 mg/kg i.p.) in three-month-old 
male mice generated discrete, progressive neurodegeneration 
resembling the spatiotemporal pattern of neurodegenera-
tion in PD. This LPS-induced neurodegeneration involves 
important brain regions associated with locomotor activi-
ties (substantia nigra and motor cortex), as well as areas 
associated with non-motor behavior activities, such as locus 
coeruleus (LC) and hippocampus (Song et al. 2019a). In 
addition, it is clear that the induction of non-motor symp-
toms including hyposmia, constipation, anxiety, sociability, 
exaggerated startle response and impaired learning, as well 
as motor symptoms including decreased rotarod activity, 
grip strength and gait disturbance in 9-week-old male mice 
with LPS intraperitoneal injection depends on a potentia-
tion induced by the noradrenergic selective neurotoxin N-(2-
chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), sug-
gesting the association of noradrenergic dysfunctions and 
neuroinflammation in PD pathogeneses (Song et al. 2019b).

Microglial Functions in Homeostasis 
and in Neuroinflammation in Parkinson’s Disease

Derived from early Erythroid Myeloid Precursors (eEMPs) 
from the yolk sac, the microglia represent 10–15% of the 
total glial cell population in the CNS (Tay et  al. 2016) 
(Fig. 1). This cell was described morphologically a century 
ago by Del Río-Hortega (1919) and before the advent of 
immunological and molecular techniques, the morphological 
changes of the microglia were considered as the main char-
acteristics of their activation and an indicator of pathology in 
the CNS, but currently we know that branched, hypertrophic 
and ameboid phenotypes are present in people without neu-
rological diseases (Salamanca et al. 2019; Torres-Platas 
et al. 2014). The advancement in methodology tools using 
single-cell analysis allowed for the staggering in the identifi-
cation of microglial types (branched, hypertrophic and ame-
boid) for the classification of subtypes and the demonstration 
of spatial heterogeneity of microglia in in vivo studies and 
postmortem brain tissue (Böttcher et al. 2019; Masuda et al. 
2019; Silvin and Ginhoux 2018) (Fig. 1). The understanding 
of the mechanisms that regulate homeostasis and microglial 
function can provide means to manipulate these cells for 
therapeutic purposes. Studies have been advanced through 
the discovery of the microglial molecular diversity in a tem-
poral and spatial way during embryogenesis, homeostasis, 
adulthood, aging and CNS disorders (Prinz et al. 2019).

Microglia have long been erroneously considered as 
static observers in the healthy CNS with minimal functions 
in homeostasis. Nowadays, it is known that microglia are 

supremely agile, performing multitasking in the CNS dur-
ing neurogenesis, adulthood and aging brain maintenance of 
homeostasis, neuronal survival, cell death and synaptic mod-
ulation (Colonna and Butovsky 2017). For example, micro-
glia are required for synaptic pruning in neuronal develop-
ment and provide support for neuronal networks functioning; 
they also phagocyte apoptotic cells during neurogenesis and 
may also support the formation of synapses associated with 
learning through the release of neurotrophic factors (Madore 
et al. 2020; Miyamoto et al. 2016; Paolicelli and Ferretti 
2017). The microglia morphology in the healthy CNS is typ-
ically branched, where it maintains a steady state of constant 
surveillance. In this conditions, these cells are immobile, 
but their extensions can reach distances equivalent to ten 
times their size and are responsible for identifying changes 
in the cerebral microenvironment by making constant inter-
actions with neurons and other glial cells, including other 
microglia, monitoring synapses and looking for any kind of 
breakdown of homeostasis (Arcuri et al. 2017; Savage et al. 
2019). When there are small disturbances of homeostasis, 
the microglia change their morphology to hypertrophic. In 
large disorders, these cells acquire an amoeboid shape, with 
an increase in the phagocytic capacity and the expression of 
molecules associated with this profile, such as pro-inflam-
matory mediators and receptors for the antigen recognition 
(Anderson and Vetter 2019; Kirkley et al. 2017; Labzin et al. 
2018; Sominsky et al. 2018) (Fig. 2).

Changes in the immune system of PD patients evidence 
continuous neuroinflammation. It is possible to observe in 
these individuals changes of lymphocyte population in cer-
ebrospinal fluid and blood, increased synthesis of immuno-
globulins, cytokines and acute phase proteins (Obeso et al. 
2017). In addition, direct evidence of microgliosis can be 
provided in the CNS of PD patients by Positron Emission 
Tomography (PET) using the  [18F]-radiolabeled prenoxy-
anilide  ([18F]-FEPPA) radioligand, a biomarker known 
to interact with the translocating protein (TSPO) located 
in the microglia mitochondrial membrane (Koshimori 
et al. 2015; Roussakis and Piccini 2018). Furthermore, 
evidence of microgliosis shown in the SNpc of patients 
has revealed reactive microglia expressing complement 
receptor 3 (McGeer et al. 1988) and increase in the num-
ber of amoeboid immunoreactive microglia as detected 
by the expression of the ionized calcium-binding adaptor 
molecule 1 (Iba1) specific marker (Doorn et al. 2014). The 
microgliosis was also evidenced in animal models, such as 
MPTP-treated monkeys (Barcia et al. 2004, 2011) and Par-
kinsonian young and old mice (Gil-Martínez et al. 2019, 
2018). In addition, studies show that blocking microglia 
activation and neuroinflammation with anti-inflammatory 
drugs, inhibitors of matrix metalloproteinase and inhibi-
tors of activation of p21(ras) and Factor Nuclear kappa B 
(NF-κB) protect dopaminergic neurons in MPTP-treated 
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young mice (Costa et al. 2020; Ghosh et al. 2009). MPTP 
is an exogenus neurotoxin that induces acute dopaminergic 
degeneration. On the other hand, aminochrome, an endog-
enous molecule derived from dopamine oxidation has been 
suggested as a neurotoxin capable to promote dysfunction 
in the dopaminergic system, slow dopaminergic degenera-
tion in vivo, and microglia activation and neuroinflamma-
tion in vitro (Santos et al. 2017; de Araújo et al. 2018; to 
review see Segura-Aguilar et al. 2019).

Mechanism of Microglial Activation in Parkinson´s 
Disease

Microglia are endowed with Patterns-recognition receptors 
(PRRs) and their activation can be generated by the presence 
of Pathogen-Associated Molecular Pattern (PAMPs) highly 
conserved in microorganisms and/or by Damage-Associated 
Molecular Pattern (DAMPs), which can be generated by 
the presence of damaged cells and include poorly folded 

Fig. 1  Microglia are originated from the early Erythromyeloid Pre-
cursors (eEMPs) from the yolk sac embryonic. In the development, 
they migrate to the neural tube, where they proliferate, colonize 
the entire parenchyma and remain throughout the life of the organ-
ism. Neonatal microglia are characterized by an ameboid morphol-
ogy with a high rate of proliferation and heterogeneity. In adult 
brain, microglia are represented by different phenotypes distributed 
in distinct regions of the CNS that can be identified through differ-
ent morphologies and molecular markers. The satellite microglia, 
named due to its location near the neuron, have spherical morphol-

ogy. These cells interact preferentially in the axon initial segment 
region. The microglia 1 are identified through the profile of mark-
ers:  TMEM119+,  P2RY12+,  CX3CR1+,  CD206lo. The microglia 2 
are identified through the profile of markers:  TMEM119+,  P2RY12+, 
 CX3CR1+,  CD206lo. The microglia 3 are identified through the 
profile of markers: expresses  TMEM119+,  P2RY12+,  CX3CR1+, 
 CD11c+,  CD68+. The microglia 4 are identified through the profile 
of markers:  TMEM119lo,  P2RY12lo,  CX3CR1lo,  SLC2A5lo,  CCL2+, 
 CCL4+,  EGR2+,  EGR3+. Figure created with BioRender.com
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proteins, peptide aggregates and nucleic acids that are pre-
sent in the neurodegenerative diseases (Wolf et al. 2017). 
An important family of PRRs is Toll-Like Receptor (TLR), 
which is composed of 13 highly conserved protein mem-
bers. These proteins can be expressed in the cell membrane 
surface (TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10) or 
in intracellular vesicles, such as the endoplasmic reticulum, 
endosomes and lysosomes (TLR3, TLR7, TLR8 and TLR9) 
(Bayraktar et al. 2019). They play a key role in the activation 
of several signaling pathways and activation of transcription 
factors that induce the expression of important genes for the 
development of pro-inflammatory responses (Lu et al. 2018).

The structure of TLRs is composed of two domains: 
an extracellular one also known as ectodomain containing 
blocks of Leucine-Rich Repeats (LRR), and another with 
cysteine-rich coatings in the amino terminal and carboxy 
terminal domains. The C-terminal structure is connected to 
a transmembrane α-helix that attaches to the second domain 
of the protein, located in the cytoplasm known as the Toll/ 
interleukin-1 (TIR) receptor domain or TIR identity region 
that couples the transduction of the signal, activating the 
transcription cascade (Gay et al. 2006) (Fig. 3). TLRs are 
widely expressed in various CNS cells. Studies show that 
these receptors are present in neurons by activating differ-
ent signaling pathways related to control of neuronal mor-
phology, development and response to pathologies (Hung 

et  al. 2018); in astrocytes, they are involved in several 
defensive mechanisms (Marinelli et al. 2015; Verkhratsky 
and Nedergaard 2018); in oligodendrocytes, the TLR7 is 
involved in the production of pro-inflammatory molecules 
such as Chemokine Ligand 2 (CCL2), Chemokine Ligand 
8 (CXCL8) and Interleukin-6 (IL-6) (Parthasarathy and 
Philipp 2018); and in the microglia, which express all TLRs 
isoforms, these receptors are involved in the activation 
reported in several neurodegenerative diseases, such as PD 
and Alzheimer’s disease (Subhramanyam et al. 2019).

In PD, endogenous molecules such as α-synuclein act 
as a DAMP leading to microglial activation through the 
TLR2, which induces a neuroinflammatory response with 
the production and release of Tumor Necrosis Factor-
alpha (TNF-α), IL-6, Chemokine Ligand 1  (CX3CL1) and 
Chemokine Ligand 5 (CCL5) inflammatory mediators as 
a consequence of the activation of NF-κB and Mitogen-
Activated Protein Kinases (MAPK) (Kim et al. 2018). The 
NFκB pathway is responsible for the production of TNF-
α, Pro-Interleukin-1β (pro-IL-1β), and IL-6, Cyclooxy-
genase-2 (COX-2), Nitric Oxide (NO) and chemokines 
(CCL2, CXCL8, among others) (Dresselhaus and Mef-
fert 2019; Taetzsch et al. 2015; Yan et al. 2017). On the 
other hand, the MAPKs, p38 MAPK, c-Jun NH2-terminal 
kinase (JNK) and extracellular signal-regulated kinase 
(ERK 1/2) pathways, related to proliferation, survival 

Fig. 2  Microglia acts on homeostasis and neurodegeneration. The 
microglia in homeostasis have important functions such as synap-
tic pruning, production of neurotrophic factors. For example, the 
brain-derived neurotrophic factor (BDNF) and the glia-derived neu-
rotrophic factor (GDNF), both factors are essential for brain devel-
opment. The microglia also support neuronal connections, phago-

cytosis of cellular debris and infection control. In neurodegenerative 
diseases, microglia become highly reactive, producing various neu-
roinflammatory molecules, such as IL-1β, IL-18, IL-6, TNF-α and 
chemokines, in addition to reactive species, such as nitric oxide, 
which are toxic to tissue and can damage neurons
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and production of pro-inflammatory factors in microglia 
(Bohush et al. 2018; Tong et al. 2018) (Fig. 3). In addi-
tion, it was demonstrated in the microglia treated with 
α-synuclein that the formation of a heterodimer complex 
of TLR1 and TLR2 is involved in the increase of NF-κB 
nuclear translocation and consequently in the increase 
of TNF-α and IL-1β. Myeloid differentiation protein 
(MyD88), a molecular adapter critical for TLR, plays 
an important role in the increase of pro-inflammatory 
cytokine production, as it allows the dimerization of 
TLR1 and TLR2 receptors (Daniele et al. 2015). TLR4 
is also expressed by astrocytes that act on its activation 
by α-synuclein; when this receptor is suppressed, astro-
cytes show a reduction in the pro-inflammatory response 
(Fellner et al. 2013).

Inflammasome Activation: Canonica 
and Non‑canonica Pathway

TLR family is not the only receptors involved in the recogni-
tion of DAMPs and PAMPs. A second class of PRRs that is 
present in the intracellular compartments is also implicated 
in that function. This class includes the Absent in Melanoma 
2 (AIM2), receptor-type AIM2-like (ALR) and the NOD-
like receptors (NLRs) (Lamkanfi and Dixit 2014; Wang et al. 
2020b). A subfamily of the NLRs is characterized by the 
presence of a central nucleotide-binding and oligomerization 
domain (NACHT), which is commonly flanked by C-ter-
minal leucine-rich repeats (LRRs) and N-terminal caspase 
recruitment (CARD) or pyrin domains (PYD) (Yang et al. 
2019a). The LRRs domain functions as a sensor that detects 

Fig. 3  Structure of the Toll-like 
Receptor and signaling pathway 
responsible for stimulating 
the proliferation, survival and 
production of pro-inflammatory 
factors by the microglia through 
the activation of membrane 
TLRs. The presence of two 
domains, one extracellular 
responsible for the recogni-
tion of PRRs and the other 
intracellular responsible for 
signal transduction. α-Synuclein 
aggregates are recognized 
on the microglia surface by 
TLR type 1, 2 heterodimers 
or by a complex set of TLR 
4 and Myeloid differentiation 
protein-2 (MD2). TLR stimula-
tion recruits adapter proteins 
that include Myd88 and Mal/
TIRAP. The next step is an 
Myd88-dependent signaling 
cascade leading to the formation 
and translocation of NFkB into 
the nucleus and transcription 
of cytokine and chemokine 
mRNA. MAPks activation 
is also observed as a conse-
quent activation of the nuclear 
transcription factors JNK, ERK 
1/2 and p38MAPK promoting 
the proliferation, survival and 
production of pro-inflammatory 
factors
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intracytoplasmic activation signals; the NACHT domain is 
present in all members of the NLRs family, being related to 
the activation of the complex through its oligomerization. 
The CARD or PYD domains mediate interactions between 
NLR and effector or adapter proteins, necessary for dow-
stream signaling (Schroder and Tschopp 2010). The NLRs 
containing a pyrin domain (NLRP1–NLRP14—to review 
see Table 1) has drawn attention due to its participation in 
the formation of inflammasome in the presence of activators 
(Platnich and Muruve 2019; Wang et al. 2017; Yang et al. 
2019a).

The inflammasome is a multiprotein complex present in 
the microglia, other machophages, dendritic cells and some 
other immune cells. It controls the activation of the proteo-
lytic enzyme caspase-1 and it can be subdivided into three 
components: a PRR as a sensing molecule, an adapter pro-
tein and an enzymatic component (Yang et al. 2019b). The 
most common inflammasome is NLRP3 due to its involve-
ment in several human diseases, especially in PD (Haque 
et al. 2020; Lee et al. 2019). It has a domain for the recruit-
ment of the caspase activating adapter protein (ASC) and an 
enzymatic component to caspase-1 (Guo et al. 2015; Wang 
et al. 2019). These three structures are assembled to react to 
infections or signs of endogenous danger through the pro-
duction of IL-1β (Man and Kanneganti 2015). When ASC 
binds to NLRP3 through its pyrin domain, ASC induces 
the aggregation of pro-caspase-1 to initiate self-cleavage for 
activated caspase-1, which subsequently will carry out the 
zymogen cleavage of the pro-inflammatory cytokines IL-1β 
and IL-18 (He et al. 2016; Qiao et al. 2017). These cytokines 
are secreted and will activate other cells, amplifying the 
inflammatory response (Howrylak and Nakahira 2017).

In fact, the mechanism of the inflammatory activation 
of the NLRP3 involves two pathways: canonical and non-
canonical. The canonical pathway inflammasome is depend-
ent on caspase-1 and requires two signals for its function. 
The first signal, also known as priming, is responsible for 
sensitizing any receptor that activates the NFκB pathway 
by ligands for TLR, NLRs or IL-1R1, TNFR1 and TNFR2 
cytokine receptors inducing the transcription and translation 
of Pro-IL-1β, pro-IL-18 and NLRP3 (Latz et al. 2013; Lin 
et al. 2014; Sutterwala et al. 2014). The production of pro-
IL-1β, pro-IL-18 and NLRP3 is necessary because the basal 
levels of cytoplasmic NLRP3 are insufficient for the path-
way activation and pro-IL-1β is not constitutively expressed 
(Vanaja et al. 2015). The second one is responsible for 
inflammasome activation mediated by Lys-63-specific deu-
biquitinase (BRCC3). This enzyme removes the ubiquitin 
bound to NLRP3 allowing the formation of the NLRP3-
ASC, nucleated ASC sequentially recruits pro-caspase-1, 
which undergoes proximity-induced autocatalytic cleavage 
generating active subunits that will then cleave pro-IL-1β 
and pro-IL-18 in their active forms (Py et al. 2013; Xiang 

et al. 2020). Multiple danger signs can contribute to second 
signal NLRP3 inflammasome activation, including: ROS 
elevation (Tschopp and Schroder 2010), change in ion con-
centration (Hafner-Bratkovič and Pelegrín 2018) and mito-
chondrial dysfunction (Sarkar et al. 2017). The non-canon-
ical pathway was evidenced for the first time by Kayagaki 
et al. (Kayagaki et al. 2011); in this study, it was observed 
that caspase-11 activated in mice performs the activation of 
caspase-1 and production of IL-1β. Functionally, caspase-11 
has been identified as an LPS sensor in the cytoplasm of 
immune cells. It can induce a pyroptotic response and con-
tribute to the assembly of the NLRP3 inflammasome in 
the non-canonical pathway (Sharma and Kanneganti 2016; 
Zheng et al. 2020).

NLRP3 Inflammasome Activation in Parkinson´s 
Disease

The main event that regulates the secretion of IL-1β by the 
microglia is the activation of inflammasome, a key function 
developed by the innate immune system in PD to sustain the 
neuroinflammatory process. This event marked by elevating 
IL-1β, IL18, caspase-1 and NLRP3 can be observed in a 
rodent study model of PD (Chen et al. 2019; Cheng et al. 
2020a; Mao et al. 2017). In addition, studies in patients with 
this disease show an increase in IL-1β and IL-18 in the cer-
ebrospinal fluid, cytokines that are generated by the action 
of inflammasome (Zhang et al. 2016a). These evidences 
demonstrate the key role of this multiprotein complex in the 
neuroinflammatory process.

In PD, α-synuclein aggregates and DAMPs from dam-
aged neurons can be released into the extracellular space and 
be recognized by TLR2 or other microglia TLRs. This rec-
ognition activates the canonical pathway followed by NFκB 
translocation for the production of Pro-IL-1β and NLRP3. 
It is important to note that the IL-1R and TNFR receptors 
can activate the signal priming when stimulated by their 
ligands (Chatterjee et al. 2020; Codolo et al. 2013; Javed 
et al. 2020; Lang et al. 2018; Sutterwala et al. 2014) (Fig. 4). 
The newly produced inflammasome NLRP3 is in a preacti-
vated state, in which ubiquitination prevents its oligomeriza-
tion with the ASC protein (Ren et al. 2019; Shim and Lee 
2018). The second signal, generated by the presence of ROS 
and neurotoxic alpha-synuclein fibrils, stimulates NLRP3 
deubiquitination mediated by BRCC3 deubiquitinase and 
activates the nucleation of the inflammasome with ASC 
forming the NLRP3-ASC-Caspase-1. This complex will 
form IL-1β and IL-18 from their zymogenes generated in the 
priming signal (Cheng et al. 2020b; Py et al. 2013; Sarkar 
et al. 2017) (Fig. 4). Another second signal, for example the 
increase in  K+ efflux, increase in  Ca+ influx, cathepsin B 
from lysosomes and mitochondrial DNA, can generate acti-
vation of NLRP3 inflammasome in PD (Haque et al. 2020). 
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The secretion of IL-1β and IL-18 by the microglia occurs 
through the action of Gasdermin D; this protein is cleaved 
and activated by caspase-1, which after this process activates 
Gasdermin D translocates to the plasma membrane of the 
microglia forming pores through which IL-1β and IL-18 can 
be released into the extracellular space. This phenomenon 
will eventually induce pyroptosis, which is a pro-inflamma-
tory form of cell death (Heneka et al. 2018; Shi et al. 2015).

Age plays an important role as a risk factor for the devel-
opment of neurodegenerative diseases. In the elderly, an 
annual reduction in total brain volume between 0.5 and 1% 
can be seen in areas associated with cognition and memory 
(Scheiblich et al. 2020). Senescent cells of the elderly, and in 
in vivo study models, develop a secretome profile with high 
levels of pro-inflammatory markers, such as IL-1β and TNF-
α, which has a summing effect for the progression of cellular 
dysfunction and tissue damage by impairing neuronal regen-
eration and growth, loss of synapses and reduction in the 
formation of synapses dependent on learning (Garré et al. 
2017; Malaquin et al. 2016; Newman et al. 2016; Tsarou-
chas et al. 2018). The inflammation shown in the brain of 
these individuals promotes microglial activation with active 
participation of NLRP3 inflammasome in the production of 
IL-1β. Genetic or environmental risk factors can increase 
the risk of losing the age-associated inflammatory physi-
ological control, which can result in sustained inflammatory 
exacerbation and development of neurodegenerative diseases 
such as PD (Scheiblich et al. 2020). Evidence also suggests 
that peripheral inflammasome activation in mice, through 
changes in the intestinal microbiota, can raise the levels 
of pro-inflammatory factors in the peripheral circulation, 
aggravating or promoting the inflammatory process at the 
CNS level with M1 reactivity of the microglial and conse-
quent activation of the NLRP3 inflammasome that contrib-
utes to the development or aggravation of neurodegenerative 
diseases (Shen et al. 2020).

Inflammasome in Parkinson’s Disease: A Potential 
Target for New Therapies

A controlled and well-balanced inflammasome response is 
essential to maintain homeostasis, continuous and exacer-
bated activation of this complex can generate an inflamma-
tory process harmful to the tissue. Regulatory feedback mol-
ecules that inactivate excessive inflammatory responses are 
essential to prevent tissue damage or even systemic inflam-
mation. Understanding the effector mechanisms of these 
molecules can provide evidence of pharmacological targets 
helping to control the inappropriate inflammatory process(de 
Almeida et al. 2015). Immune cells naturally have endog-
enous molecules capable of making this regulatory feedback, 
and a group of proteins that can act on the inflammasome 
complex by inactivating its assembly are the PYRIN-only IE
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proteins (POPs) (Ratsimandresy et al. 2017). POP1 inhib-
its the assembly of the inflammasome; this protein is able 
to interact with the PYD of the ASC, its regulatory action 
is induced by IL-1β thus avoiding the nucleation of the 
ASC-NLRs and consequent perpertuation of the response 
(de Almeida et al. 2015). POP2 in addition to interacting 
with the PYD of the ASC also interacted with the PYD of 
other NLRPs and inhibited the activation of the NFkB. Thus, 
POP2 is able to simultaneously block the priming and the 
activation of the inflammasome (Ratsimandresy et al. 2017). 
POP3 does not bind to ASC, but interacts with AIM2, block-
ing the activation of the inflammasome and promoting the 
production of type I interferon (Khare et al. 2014).

The usual clinical treatment for PD is aimed at increas-
ing dopamine levels in the brain using exogenous dopa-
mine precursors (levodopa), monoamine oxidase B 

(MAO-B) inhibitors and dopamine receptor agonists 
(Goetz and Pal 2014). The dopamine precursor l-3,4-di-
hydroxyphenylalanine (l-dopa) produces important side 
effects, which usually appear several years after chronic 
use, such as motor fluctuations, dyskinesia and psychosis. 
On the other hand, despite its side effects, l-dopa remains 
as the best option for stiffness and akinesia, improving the 
patient’s quality of life (Ramirez-Zamora and Molho 2014; 
Tarakad and Jankovic 2017). For four decades the main 
treatment for PD has been the use of l-dopa. However, 
these therapeutic approaches aimed at restoring dopamine 
levels in the CNS do not prevent or delay the neurodegen-
erative process in PD. As an alternative, neuroinflamma-
tion, which plays an important role in the development of 
the disease as discussed, has been investigated as a new 

Fig. 4  Possible mechanism of inflammasome activation in PD 
through α-synuclein. Activation of the inflammasome requires two 
signals, the first one will generate the activation of NF-κB provided 
the production of NLRP3 and pro-IL-1β, and the second signal will 

provide the desubiquitination of NLRP3 making that molecule free to 
bond with ASC and caspase-1 and form the inflammasome complex 
that will cleave pro-IL-1β to IL-1β 
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therapeutic target for reducing the damage in dopaminer-
gic neurons (Martinez et al. 2017; Tan et al. 2020).

Postmortem histological studies of PD patients revealed 
increased NLRP3 expression in mesencephalic neurons, 
highlighting that Human Embryonic Kidney 293 cells 
(HEK293) with NLRP3 rs7525979 polymorphism asso-
ciated with protein instability, reduction in solubility and 
an increase in affinity for ubiquitination affect the progres-
sion of PD (von Herrmann et al. 2018). In NLRP3 (KO) 
mice treated with MPTP, a reduction in the progression of 
dopaminergic neurodegeneration has been shown in com-
parison with wild-type mice, suggesting a relation between 
inflammasome and PD (Yan et al. 2015). Moreover, Cx3Cr-
1CreER-microglia-based animals with specific expression 
of mutant NLRP3 presented exacerbated motor deficits and 
dopaminergic neuronal loss. It has also been shown that ani-
mals with NLRP3 deficits, when intoxicated with MPTP, 
present reduced motor deficit, neuronal loss, microglial 
recruitment, IL-1β production and caspase-1 activation (Lee 
et al. 2019). Not only the NLRP3 deficiency of inflamma-
some is able to reduce neuroinflammation in PD models, 
but some molecules are also able to induce their inhibition 
and reduction of inflammatory process (Yang et al. 2019b). 
For example, the tenuigenin, a mixture of saponins extracted 
from P. tenuifolia roots, was able to reduce the levels of 
NLRP3, caspase-1, pro-IL-1β and IL-1β in MPTP mouse 
acute model, and in BV2 microglia cells exposed to LPS 
(Fan et al. 2017).

The mechanisms underlying the pharmacological inhi-
bition of NLRP3 inflammasome are diverse. Some agents 
such as glyburide present indirect action via ATP-sensitive 
 K+ channels, while others such as VX-740, VX-765, parthe-
nolide, CY-09 and MCC950 present direct action in one or 
more molecular target (NLRP3, Caspase 1, NF-κB, IKKβ) to 
inhibit NLRP3 inflammasome (Zahid et al. 2019). CY-09 is 
an molecule that directly binds to the ATP-binding motif of 
NLRP3 NACHT domain and inhibits NLRP3 ATPase activ-
ity, resulting in the suppression of NLRP3 inflammasome 
assembly and activation (Jiang et al. 2017), while MCC950 
inhibition of NLRP3 inflammasome involves direct interac-
tion with NLRP3 ATP hydrolysis motif within the NLRP3 
NACHT domain, thereby blocking ATP hydrolysis and 
inhibiting canonical and non-canonical NLRP3 inflamma-
some activation (Shao et al. 2015).

It has been recently demonstrated that pharmacological 
inhibition of NLRP3 inflammasome activation with the oral 
treatment of MCC950, a small molecule derived from syn-
thesis, prevents α-synuclein pathology and dopaminergic 
neurodegeneration in mice (Gordon et al. 2018). This is a 
promising drug for several inflammasome-related-diseases. 
However, in experimental autoimmune encephalomyeli-
tis, a single-dose pharmacokinetic profile of MCC950 in 
C57Bl/6 mice via intravenous (3 mg/kg) and oral (20 mg/

kg) administration resulted in a short half-life. This phar-
macokinetic profile may be an obstacle to the success of the 
inhibitor in human clinical trials (Shao et al. 2015). Even so, 
the inhibitory effects of MCC950 and tenuigenin indicate 
NLRP3 inflammasome as a target for promising agents for 
alleviating dopaminergic degeneration in PD.

Additionally, there is information about the effect of 
some non-steroidal anti-inflammatory drugs (NSAIDs) in 
the NLRP3 inflammasome inhibition. The fenamate class is 
effective to inhibit IL-1β secretion from macrophages and 
selective inhibitors of the NLRP3 inflammasome via inhibi-
tion of the volume-regulated anion channel in macrophages, 
regardless of COX enzymes (Laliberte et al. 1994). The 
flufenamic acid and mefenamic acid therapeutic efficacy to 
inhibit NLRP3 inflammasome and induce neuroprotection 
in a model of amyloid beta induced memory loss, and in a 
transgenic mouse model of Alzheimer’s disease, suggesting 
that fenamate NSAIDs could be repurposed as Alzheimer’s 
disease therapeutics (Daniels et al. 2016).

Another important way for the regulation of inflam-
masome activation is the activation of autophagy, since it 
involves the degradation of damaged organelles and recy-
cling of cellular metabolites that can active inflammassome; 
it can regulate inflammasome activation via a reduction 
of ROS production, degradation of ASC aggregates, and 
sequestration of pro-IL-1β (Harris et al. 2011; Jabir et al. 
2015; Shi et al. 2012; Zhou et al. 2011). The involvement 
of autophagy in the neuroprotection in PD has been widely 
studied and associating the control of inflammasome as 
another mechanism of its neuroprotective action serves as 
a stimulus for the prospection of new molecules and invest-
ments for further studies in drugs with a potential inducer 
of autophagy.

Concluding Remarks

There are increased evidences that inflammatory reactions 
and changes in the immune system are always present in 
PD. Microglia, whose role is to orchestrate the immune 
responses in the CNS, can be activated when cerebral 
homeostasis breaks, releasing a series of pro-inflammatory 
cytokines and neurotoxic factors that induce neuronal death. 
In PD, production and release of α-synuclein will gener-
ate the activation of these cells with concomitant activation 
of the NLRP3 inflammasome that will stimulate the pro-
duction of IL-1β, creating a toxic environment for neurons 
and potentiating the neurodegenerative process. Therefore, 
development of immunomodulatory therapeutic strategies 
could be beneficial for the survival of dopaminergic neu-
rons and NLRP3 seems to be an important pharmacologi-
cal target for the negative modulation of neuroinflammatory 
response in PD.
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