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Abstract
Epigenetic mechanisms involving the modulation of gene activity without modifying the DNA bases are reported to have 
lifelong effects on mature neurons in addition to their impact on synaptic plasticity and cognition. Histone methylation and 
acetylation are involved in synchronizing gene expression and protein function in neuronal cells. Studies have demonstrated in 
experimental models of neurodegenerative disorders that manipulations of these two mechanisms influence the susceptibility 
of neurons to degeneration and apoptosis. In Alzheimer’s disease (AD), the expression of presenilin 1 (PSEN1) is markedly 
increased due to decreased methylation at CpG sites, thus promoting the accumulation of toxic amyloid-β (Aβ) peptide. In 
Parkinson’s disease (PD), dysregulation of α-synuclein (SNCA) expression is presumed to occur via aberrant methylation at 
CpG sites, which controls the activation or suppression of protein expression. Mutant Huntingtin (mtHTT) alters the activity 
of histone acetyltransferases (HATs), causing the dysregulation of transcription observed in most Huntington’s disease (HD) 
cases. Folate, vitamin B6, vitamin B12, and S-adenosylmethionine (SAM) are vital cofactors involved in DNA methyla-
tion modification; 5-azacytidine (AZA) is the most widely studied DNA methyltransferase (DNMT) inhibitor, and dietary 
polyphenols are DNMT inhibitors in vitro. Drug intervention is believed to reverse the epigenetic mechanisms to serve as a 
regulator in neuronal diseases. Nevertheless, the biochemical effect of the drugs on brain function and the underlying mecha-
nisms are not well understood. This review focuses on further discussion of therapeutic targets, emphasizing the potential 
role of epigenetic factors including histone and DNA modifications in the diseases.
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HTT  Huntingtin
TF  Transcription factor
CREB  Cyclic adenosine monophosphate response 

element-binding protein
CBP  CREB binding protein
HATs  Histone acetyltransferases
FDA  Food and Drug Administration
ASD  Autism spectrum disorder
CGIs  CpG islands
HHCys  Hyperhomocysteinemia
NFTs  Neurofibrillary tangles
PP2A  Protein phosphatase 2A
SVs  Synaptic vesicles
LRRK2  Leucine-rich repeat kinase 2
CNV  Copy number variant
ChIP-Seq  Chromatin immunoprecipitation sequencing
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FA  Folic acid
AzaC  Azacitidine
DNMTi  DNMT inhibitors
MDS  Myelodysplastic syndrome
NMDA  N-Methyl-D-aspartate
T6FA  Tacrine-6-ferulic acid
NPI  Neuropsychiatric inventory
ADL  Alzheimer’s Disease Cooperative Study-

Activities of Daily Living
DRTs  Dopamine replacement therapies
ICDs  Impulse control disorders
5-aza-dC  5-Aza-2′-deoxycytidine
RAR-β2  Retinoic acid receptor-β2
ATRA   All-trans-retinoic acid
SPB  Sodium phenylbutyrate
SAHA  Suberoylanilide hydroxamic acid
BDNF  Brain-derived neurotrophic factor

Introduction

Many studies over the last decade have strongly implicated 
epigenetic mechanisms in the regulation of gene expression 
involved in the regulation of several ageing-related diseases, 
such as cancer and heart failure, and in promoting the altera-
tion of gene expression responsible for the ageing process 
of different tissues. Therefore, alteration of the epigenetic 
mechanisms occurring during ageing renders cells more 
prone to the transcriptional changes responsible for ageing-
related diseases (Lovrečić et al. 2013; Pagiatakis et al. 2019).

Neurodegeneration is a progressive loss of neuronal func-
tion that often results in cell death and brain dysfunction (Lu 
et al. 2013). The phenotypic effects are related to the spe-
cific areas encountering cell death (Armstrong and Barker 
2001). Aberrant collaboration between proteins that bring 
about unusual intracellular and extracellular accumulation 
of self-aggregating misfolded proteins and the development 
of high-ordered insoluble fibrils are pathological features of 
many neurodegenerative diseases (Jellinger 2001). Important 
proteins involved in Alzheimer’s disease (AD), Parkinson’s 
disease (PD) and Huntington’s disease (HD) are amyloid 
precursor protein (APP), α-synuclein (SNCA), presenilin, 
tau, and Huntingtin (HTT) (Winner et al. 2011). SNCA is 
localized at the presynaptic terminal of neurons in the cen-
tral nervous system (CNS) (Jakes et al. 1994) and dysfunc-
tion of this protein is a common hallmark in PD. The aggre-
gation and deposition of these abnormal SNCA proteins in 
dopaminergic neurons have been postulated to be responsi-
ble for subsequent neurodegeneration (Recchia et al. 2004).

The presenilin 1 (PSEN1) gene is a key element in the 
creation of Aβ (De Strooper et al. 1998) via the proteolytic 
activity of γ-secretase (Vetrivel et al. 2006). Mutation in 
this gene alters the activity of the proteolytic enzyme and 

intensifies the accumulation of Aβ, which is generally found 
in AD patients. Tau proteins are crucial for maintaining nor-
mal cell function by interacting with tubulin in the formation 
of microtubules (Thomas and Fenech 2007). Hyperphos-
phorylation of tau protein leads to the formation of tangles, 
hence leading to the dissociation of the tau-tubulin complex 
and cell death (Thomas and Fenech 2007). Both Aβ and tan-
gle formation are common in patients diagnosed with AD.

HTT is a multifunctional protein required for transcrip-
tional modulation and intracellular transport and is associ-
ated with the endosome–lysosome pathway (Landles and 
Bates 2004). Mutant huntingtin (mtHTT) results in HD, as 
it causes bioenergetic failure, HD-linked neural dysfunction 
and cell death (Bossy-Wetzel et al. 2004).

Epigenetic processes that modulate gene action without 
modifying the DNA sequences have been proven to have 
lifelong effects on mature neurons (Tsankova et al. 2007) 
and exert their impact on synaptic plasticity and cognition 
(Abel and Zukin 2008). Histone methylation and acetyla-
tion are involved in the regulation of gene expression and 
protein function in neural stem cells (Mattson 2003). It has 
been proven in experimental models of neurodegenerative 
disorders that manipulations of both mechanisms influence 
the susceptibility of neurons to degeneration and apopto-
sis (Mattson 2003). In the postmortem AD human brain, 
higher presenilin 1 (PSEN1) expression during brain devel-
opment and in disease progression is seen due to the reduced 
methylation mechanisms both at CpG and non-CpG sites 
(Monti et al. 2020), and promotes the accumulation of toxic 
Aβ peptide. In PD, dysregulation of SNCA expression is 
presumed to be caused by aberrant methylation at CpG 
sites, which control the activation or suppression of pro-
tein expression. The distribution of methylated CpG sites 
is related to anticipated transcription factor (TF) binding 
sites, suggesting that a decrease in methylation could stimu-
late SNCA expression in the PD brain (Jowaed et al. 2010). 
Cyclic adenosine monophosphate response element-binding 
protein (CREB) binding protein (CBP) functions as a histone 
acetyltransferase (HAT) as well as a transcriptional cofactor. 
CBP acts as a HAT in acetylating histones that contribute to 
transcription by restoring the chromatin configuration. Sig-
nificantly, it has been known that sequestration of CBP by 
mtHTT prompts neuronal transcriptional dysfunction (Lee 
et al. 2013). MtHTT alters the activity of HATs and causes 
the transcription regulation anomalies observed in most HD 
patients (Sadri-Vakili and Cha 2006).

Restraint of histone deacetylase (HDAC) activity controls 
cellular and molecular capacities, triggering synaptic plas-
ticity and neuronal apoptosis, limiting oxidative stress, acti-
vating transcription, and inducing modification of histone 
acetylation levels, eventually encouraging neuroprotection 
(Gupta et al. 2020). Folate, vitamin B6, vitamin B12, and 
S-adenosyl methionine (SAM) are vital cofactors involved 
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in DNA methylation modification (Coppedè 2014); 5-aza-
cytidine (AZA) is the most widely studied DNA methyl-
transferase (DNMT) inhibitor (Xu et al. 2012b), and dietary 
polyphenols are DNMT inhibitors in vitro (Fang et al. 2007).

This review is centred on the role of methylation in the 
pathogenesis of AD, PD, and HD and how methylation is 
associated with these neurodegenerative diseases. We will 
also discuss the therapeutic targets available to date high-
lighting the role of epigenetics in these diseases, including 
histone and DNA modifications.

Epigenetic Regulation in Neurodegenerative 
Diseases

Principles of Epigenetics

The mechanisms of epigenetic regulation, which include 
DNA methylation, chromatin remodelling, histone post-
translational modifications, and non-coding RNAs (Pagia-
takis et al. 2019), are involved in several aspects of neuronal 
function and advancement (Berson et al. 2018; Aristizabal 
et al. 2019). Epigenetic regulation has consequences in 
human wellbeing, with modifications in chromatin known 
to be associated with numerous illnesses, in which drugs 
that hinder DNA methylation and histone deacetylation have 
been approved for clinical use by the Food and Drug Admin-
istration (FDA) (Jones et al. 2016).

With explicit significance in the brain, changes in a few 
chromatin-related factors lead to neurological disorders, 
including autism spectrum disorder (ASD), mental retarda-
tion, intellectual disability, and epilepsy (Bourgeron 2015), 
highlighting the vital roles of epigenetic mechanisms for 
brain development and capacity (Wilson 2008). Methylation 
of the gene often gives rise to silencing, which will affect the 
phenotype, and these silenced states are inheritable during 
cellular division (Miranda and Jones 2007). Hypermethyl-
ated DNA retains its methylation and remains transcription-
ally silent (McGarvey et al. 2007), hence allowing daughter 
cells to maintain the same expression pattern as the precur-
sor cells (Miranda and Jones 2007).

DNA methylation is involved in development and nor-
mal cell homeostasis by regulating cellular processes such 
as transcription, chromatin structure, chromosome stability, 
and genomic imprinting (Robertson 2005). DNA methyla-
tion controls transcription by adding a methyl group at the 5′ 
carbon of the cytosine ring situated in CpG dinucleotides via 
the action of DNMTs (Lu et al. 2013). CpG islands (CGIs) 
or unmethylated CpG dinucleotides are localized in tissue-
specific genes and vital "housekeeping" genes engaged 
in routine maintenance and are expressed in most tissues 
(Rodenhiser and Mann 2006). Unmethylated CpGs promote 
transcription, and DNA silencing occurs upon methylation 

of these pairs (Rodenhiser and Mann 2006). Neuronal 
methylation, which consists of ~ 75% CpG and ~ 25% CpH 
(H = A/C/T) methylation, is conserved in the human brain, 
enriched in regions of low CpG density, used up at protein-
DNA interaction sites and negatively correlated with gene 
expression (Guo et al. 2014). Previous reports found that 948 
out of 27,578 CpG sites are involved in disease-associated 
methylation differences in DNA originating from the human 
prefrontal cortex (Bakulski et al. 2012). Three DNMT iso-
forms are involved in maintaining the methylation status 
within the genome: DNMT1, DNMT3a, and DNMT3b, 
and SAM functions as a methyl donor (Halušková 2010). 
DNMT1 is fundamental in methylation for appropriate neu-
ronal and CNS functioning during early development (van 
Groen 2010). Apart from their involvement in synaptic plas-
ticity, learning and memory, DNMT1 and DNMT3 are both 
required to conserve DNA methylation and to synchronize 
gene expression in the adult CNS (Tian et al. 2010) (Jin 
et al. 2011). In addition, the DNA hypomethylation of long 
interspersed element-1 (LINE-1) and Alu elements (Alu) 
in circulating blood has potential value for cancer diagno-
sis (Xu et al. 2012a). However, several studies have shown 
that there is no significant ageing-associated hypometh-
ylation of LINE-1 and Alu retroelements in cellular DNA 
from peripheral blood (El-Maarri et al. 2011; Erichsen et al. 
2018). Another recent study showed that some locus-specific 
DNA methylation changes are highly reproducible across 
aged people, independent of sex and tissue type which point 
to the existence of a programmed epigenetic reconfiguration 
during ageing and has given rise to the “epigenetic clock” 
theory (Ciccarone et al. 2018).

Therefore, further studies should aim to confirm whether 
DNA methylation also remains stable in older populations 
(60–80-year-old individuals). It is yet to be proven whether 
this epigenetic marker is the causative event or a conse-
quence of the progression of these diseases. In addition, 
the fact that the methylation pattern of DNA varies among 
individuals and the large amounts of DNA input required to 
provide sufficient and representative data may limit findings.

Epigenetics and Alzheimer’s Disease

AD is a complex multifactorial disorder involving familial 
and sporadic forms. It is more prevalent in women than men, 
especially in people aged more than 80 years. Familial forms 
represent only a minority of the cases, ranging from 5 to 10% 
of the cases, compared with sporadic forms, which represent 
most cases and likely occur as a result of complex gene–gene 
and gene-environmental interplay (Migliore and Coppedè 
2009). Familial early-onset AD begins before age 65 years 
and is mainly caused by point mutations in three genes, 
APP, PSEN1, and PSEN2 (Migliore and Coppedè 2009). 
These genes are involved in the APP processing pathway, the 
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proteins of which are encoded on chromosome 21, chromo-
some 14, and chromosome 1. More than 150 mutations in 
PSEN1 and a few in PSEN2 have been reported, for a total 
of approximately 160 mutations in the PSEN genes alone 
(Migliore and Coppedè 2009). Mutation of PSEN1 fosters 
the deposition of Aβ by increasing extracellular cleavage, 
known as the amyloidogenic pathway, through the action 
of γ-secretase and β-secretase, releasing Aβ1-42 peptides, 
whereas the non-amyloidogenic pathway releases Aβ1-40 
by the cleavage of α-secretase and γ-secretase. Research has 
shown an elevated ratio of Aβ1-42/Aβ1-40 in the brains of 
young transgenic animals co-expressing APP and mutant 
PS1 compared to the brains of transgenic mice co-express-
ing APP alone and transgenic mice co-expressing wild-type 
human PS1 and APP (Borchelt et al. 1996). Another study 
proved that PS1 mutants caused AD by modulating APP pro-
cessing and favouring the production of Aβ1-42/43, while 
the loss of normal PS1 function did not lead to AD (Davis 
et al. 1998). Full-length Aβ1-42 and the modified pyroglu-
tamate peptides Aβp3-42 and Aβp11-42 are found abun-
dantly in the AD brain, but less study has been devoted to 
the truncated proteins than to the full-length proteins (Sand-
ers et al. 2009). Recent findings proved that the truncated, 
modified peptides can inhibit the aggregation of full-length 
Aβ1-42 (Sanders et al. 2009). The latest studies proposed 
that cerebrospinal fluid biomarker profiles characterized by 
decreased Aβ peptide levels and increased total and phos-
phorylated tau levels at threonine 181 (pT181) can be used 
to discriminate between AD and other neurodegenerative 
diseases. However, these changes are not entirely specific to 
AD, and it is noteworthy that other phosphorylated isoforms 
of tau, possibly more specific for the disease process, have 
been described in the brain parenchyma of patients (NICE. 
and NICE 2018; Barthélemy et al. 2020).

DNA methylation plays a pivotal role in running the bio-
chemical process in the higher organisms for normal devel-
opment. These processes involve the accumulation of methyl 
group in the 5′ of the cytosine within the CpG dinucleotides. 
This accumulation is enhanced by DNA methyltransferases 
(DNMTs), which is heritable (Yi and Kim 2015).

In AD, DNA methylation has already been proven to 
be involved in modulating Aβ production by regulating 
the expression of PSEN1 and BACE1. Hypomethylation 
of both genes boosts their expression and gives rise to the 
mass build-up of Aβ peptides (Fuso et al. 2005). Fuso et al. 
(2011) reported a hypomethylated PSEN1 gene promoter 
in cell lines and transgenic mouse models of AD carrying 
APP gene mutations (Fuso et al. 2011). BACE1 contributes 
to synaptic functions by regulating the cAMP/PKA/CREB 
pathway, and alteration of its expression has been proven to 
have a significant effect on memory functions and cognitive 
deficits in transgenic mice (Chen et al. 2012). In late 2019, a 
case–control study was conducted in Colombia involving 50 

individuals with late-onset Alzheimer disease (LOAD) and 
50 age- and sex-matched controls to evaluate DNA methyla-
tion patterns in the BIN1 (bridging integrator 1) 3′ intergenic 
region. The findings of this study showed that loss of DNA 
methylation at CpGs in BIN1 might play an important role 
in the expression of BIN1 and may be a biomarker for iden-
tifying individuals at high risk of developing LOAD in the 
future (Salcedo-Tacuma et al. 2019).

In view of histone modifications in epigenetics, there is 
a significant increase in the levels of histone deacetylase 
6, a modulator for tau phosphorylation and accumulation 
has been seen in the brain regions such as hippocampus tis-
sues and cerebral cortical in Alzheimer’s disease patients 
when compared with the control subjects (Ding et al. 2008). 
Another trait of AD that is most likely connected to memory 
impairment and cognitive decline is synaptic failure. APOE 
isoforms differentially manage synaptic plasticity and repair. 
It is intriguing to note that studies of one-month-old mice 
uncovered comparable outcomes, suggesting that APOE4-
driven changes in neuronal circuitry occur early (Safieh et al. 
2019). Approximately 20% of the individuals in a typical 
control population carry at least one APOE4 allele (Zhong 
and Weisgraber 2009). In addition to this major risk genetic 
factor, hyperhomocysteinemia (HHCys) has been correlated 
with AD and PD, especially in the late stages of the ill-
nesses or after long-term levodopa treatment. A longitudi-
nal study, lasting ≥ 8 years, which involved 1092 individuals 
with dementia (mean age = 76 years), disclosed that the risk 
of developing AD was doubled in patients with levels of 
HHCys > 14 μmol/l (Feligioni et al. 2019). In addition, low 
concentrations of dietary and circulating folate during gesta-
tion increased the risks of premature delivery, underweight 
infants, and foetal growth retardation (Hernández-Díaz et al. 
2000), resulting in elevation of homocysteine levels and an 
increased risk of AD. This condition was found to stimulate 
neuronal degeneration of APP-mutant transgenic mice and 
increased Aβ-induced death in cultured hippocampal neu-
rons (Kruman et al. 2002). In 2014, Lunnon et al. (2014) 
and De Jager et al. (2014) reported the results of the first two 
large-scale, epigenome-wide association studies (EWAS) in 
AD. These two-independent epigenome-wide association 
studies of AD cohorts have identified overlapping meth-
ylation signals in four loci, ANK1, RPL13, RHBDF2, and 
CDH23.

Likewise, Aβ-induced phosphorylation of tau protein and 
its resultant inability to bind microtubules will lead to the 
formation of intracellular tangles known as neurofibrillary 
tangles (NFTs), the presence of which has been reported to 
correlate with protein phosphatase 2A (PP2A), which modu-
lates tau phosphorylation by reverting it (Cleveland et al. 
1977), (Xu et al. 2006). Increased demethylation of PP2A 
at the L309 site is mediated by Aβ overexpression, giv-
ing rise to compromised dephosphorylation of abnormally 
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hyperphosphorylated tau (Zhou et al. 2008). The aforemen-
tioned study also conveys a subunit-specific reduction in 
PP2A catalytic and regulatory mRNA, resulting in dimin-
ished protein expression and phosphatase activity, hyper-
phosphorylation of tau, the formation of NFTs and neuronal 
degeneration (Vogelsberg-Ragaglia et al. 2001). There have 
likewise been reports of overexpression of endogenous 
inhibitors of PP2A, such as inhibitor 2, along with their 
cleavage and redistribution, and when overexpressed in an 
in vivo model, these inhibitors resulted in key features of 
AD, including amyloid-β deposition, tau hyperphosphoryl-
ation, neurodegeneration and cognitive deficits (Voronkov 
et al. 2011). In some postmortem brains or neuronal cells of 
AD individuals, a lot of work has been done to find more 
specific evidence. Wang et al. (2008) had demonstrated 
that patients with LOAD have a larger epigenetic distance 
from the normal in brain tissue. It has been compared with 
controls and that the epigenetic distance increases with 
age. Hence, these findings supporting the role of epigenetic 
effects in the development of the disease. Some genes that 
play central roles in amyloid-β processing are PSEN1 and 
APOE, and methylation homeostasis such as MTHFR and 
DNMT1 also show a significant interindividual epigenetic 
variability, which may contribute to AD predisposition. In 
cortical neurons of a postmortem AD brain, immunoreactiv-
ity for 5-methylcytosine (5-mC) was decreased compared to 
the control (Mastroeni et al. 2010).

Epigenetics and Parkinson’s Disease

Mutations in SNCA, PARK2, LRRK2, PINK1, UCHL1, or 
DF1 have been reported to be the causative genes and found 
occasionally in most of the sporadic cases of PD, although 
there is no evidence in the majority of the cases (Matsu-
moto et al. 2010). Less than 1% of PD patients in the general 
population have gene mutations in SNCA, while the majority 
have abnormal aggregation of SNCA protein (Maraganore 
et al. 2006).

The brain contains an abundance of synuclein protein, 
consisting of three members: α-synuclein, β-synuclein, and 
γ-synuclein (Goedert 2001). Among these, α-synuclein 
(SNCA), which is the main component of Lewy bodies and 
Lewy neuritis and makes up the filamentous inclusions of 
system atrophy, is the cardinal neuropathological marker 
in PD and other neurodegenerative disorders (Spillantini 
et al. 1998). SNCA also plays a critical role in PD patho-
genesis. Both duplication or triplication and point mutations 
(e.g. A30P, E46K, and A53T) in SNCA1 are associated 
with autosomal dominant familial PD (Huang et al. 2019). 
Extracellular aggregated SNCA induced microglial activa-
tion and later enhanced dopaminergic neurodegeneration in 
a mesencephalic neuron-glia culture system (Zhang et al. 
2005). Lewy bodies, which are related to nerve loss are more 

abundant in patients with mild and moderate neuronal loss 
than in those with severe neuronal loss (Schulz-Schaeffer 
2010).

Current studies have reported that there is a decrease 
in DNA methylation in the regulatory regions of specific 
genes in PD brains. Decreased levels of nuclear DNMT1 
are mediated by SNCA, leading to global DNA hypometh-
ylation, which was observed in postmortem human brain 
samples and the brains of SNCA transgenic mouse models 
(Desplats et al. 2011). Findings in other studies indicated 
that mRNA expression of SNCA is decreased but the protein 
levels are maintained at high levels due to the regulation 
of post-translational stabilization of the proteins (Li et al. 
2004). Hypomethylation in the DNA from the substantia 
nigra, putamen, and cortex region of sporadic PD patients 
has been reported (Jowaed et al. 2010). A study on meth-
ylation of SNCA and leucine-rich repeat kinase 2 (LRRK2) 
showed significant hypomethylation in certain CpG sites 
in leukocyte DNA from PD patients compared to controls 
(Tan et al. 2014). In contrast, analysis of the SNCA methyla-
tion level on CpG islands located in intron 1 of PD patients 
showed no significant differences between PD patients and 
controls (Song et al. 2014b).

Oxidative stress by free radicals is one of the significant 
causes of PD. It is currently well established that free radi-
cals play a vital role in ageing (Hamilton et al. 2001), and 
PD has been regarded as one of the greatest risk factors 
in ageing. Initially, the proof for the presence of oxidative 
stress in PD originated from reports dependent on postmor-
tem examinations of brain samples from patients with PD 
that exhibited elevated degrees of oxidized proteins, lipids, 
and nucleic acids (Kumar et al. 2012).

Genome-wide methylation analysis of sporadic PD 
patients discovered a single hypomethylated gene, CYP2E1, 
in both putamen and cortex regions (Kaut et al. 2012), indi-
cating that epigenetic variants in this gene contribute to PD 
susceptibility.

Epigenetics and Huntington’s Disease

Although the loss of neurons in many brain areas has been 
accounted for in HD, the selective neurodegeneration of 
the γ-aminobutyric acid-releasing spiny-projection neurons 
of the striatum is predominant (Landles and Bates 2004). 
Damage of brain striatal neurons is a consequence of the 
extension of CAG repeats in the HTT protein, which lead 
to HD characteristics (Steffan et al. 2000). HD pathogen-
esis includes cytoplasmic cleavage of HTT, which releases 
an amino-terminal fragment capable of nuclear localiza-
tion (Steffan et al. 2000). Individuals with normal amounts 
of CAG repeats have 7–34 repeats, whereas mutations in 
exon 1 of this gene extend the cytosine-adenine-guanine 



582 Cellular and Molecular Neurobiology (2022) 42:577–595

1 3

trinucleotide repeats, which code for the polyglutamine 
(polyQ) moiety in the HTT protein (Sadri-Vakili and Cha 
2006).

However, the age of onset of symptoms depends on 
whether the gene is passed through the paternal or maternal 
germline. The gene itself becomes modified differently, and 
paternal transmission has been shown to involve DNA meth-
ylation that can lead to higher or earlier expression of the 
gene (Reik 1988). There is proof for a relationship between 
male exposure to various drugs/toxins and increased muta-
tions, including numerical and basic chromosomal abnor-
malities, point mutations, copy number variations (CNVs), 
and duplications/deletion of microsatellite regions (Curley 
et al. 2011).

Transcriptional impairment has been proven to be 
involved in HD (Ferrante et al. 2003). Genome-wide chro-
matin immunoprecipitation sequencing (ChIP-Seq) con-
firmed that AP-1 and SOX2 are transcriptional regulators 
associated with methylation changes in regions of low CpG 
content due to the presence of mtHTT in cell lines derived 
from mouse striatal neurons (Ng et al. 2013). Specific and 
significant losses of acetylated essential histone (AcH2A, 
AcH2B, AcH3, and AcH4) expression in cells in the caudate 
nucleus and Purkinje cells of the cerebellum were observed 
in HD compared with patients with frontotemporal lobar 
degeneration and control subjects, while the level of HDAC5 
was elevated in these cells (Yeh et al. 2013). The epigenetic 
changes that occur in AD, PD and HD is summarized in 
Table 1.

Therapeutic Interventions for Neurodegenerative 
Diseases

Epigenetics and Therapeutic Approaches

Mounting evidence of the involvement and importance of 
epigenetic alterations in neurodegenerative disorders has 
presented new therapeutic interventions for these disorders. 
Experiments in animal models of neurodegenerative disor-
ders have confirmed the possible role of epigenetic drugs, 
together with inhibitors of histone deacetylases and methyl 
donor compounds (Adwan and Zawia 2013). Small drugs 
such as histone deacetylase inhibitors (HDACi) can cross 
the blood–brain barrier (BBB), thus slowing the initiation 
and development of symptoms in animal models of neuro-
degenerative diseases (Coppedè 2014).

HDACs are separated into four different classes; HDA-
CIs, HDACIIs, HDACIIIs, and HDACIV (Dokmanovic 
et al. 2007). HDACs are potential therapeutic targets in 
various chronic diseases, including cancer and fibrotic 
disorders (Pang and Zhuang 2010). HDAC-induced his-
tone hypoacetylation is associated with gene silencing; 
thus, altered expression and mutations in genes encoding 

HDACs have been correlated with tumour development 
(Ropero and Esteller 2007). HDAC3 deficiency increases 
collagen deposition in atherosclerotic lesions and induces 
the stable plaque phenotype observed in transplanted 
atherosclerosis-susceptible mice upon HDAC3 deletion 
(Hoeksema and de Winther 2016). HDACi stimulates 
growth arrest, inhibits differentiation, induces apopto-
sis of tumour cells, and affects the acetylation status and 
function of non-histone proteins, with minimal effects on 
normal tissue (Kim et al. 2006; Lane and Chabner 2009). 
Although the mechanisms of HDACi are not completely 
elucidated, they are believed to be able to cause a build-up 
of acetylated histones and many non-histone proteins that 
are implicated in the regulation of gene expression, cell 
proliferation, cell migration, and cell death, and a wide 
diversity of altered cells are sensitive to inhibitor-induced 
cell death (Dokmanovic et al. 2007). Several structural 
classes of HDACi are under clinical trial for various dis-
eases, including hydroxamic acids (vorinostat), cyclic 
peptides (depsipeptide or romidepsin), benzamides, and 
aliphatic acids (valproic acid (VA)) (Adwan and Zawia 
2013).

Nutrition and dietary compounds, for instance, vitamin 
B, folate, and methionine, are known to affect epigenetic 
regulation and mechanisms, especially DNA methylation 
and one-carbon metabolism. In addition, dietary compounds 
can modulate the activity of protein-related methylation; for 
example, they can inhibit DNMTs. Thus, both nutriepige-
netic or nutriepigenomic molecules, which influence basic 
human wellbeing, have been developed as another promis-
ing field in current research. Polyphenols, as an example, 
highlight the unique cooperation between the genome and 
the environment, particularly at physiological concentrations 
(Remely et al. 2015). They induce a significant effect only if 
consumed in large amounts or if the levels of methyl donors 
are limited; however, but possible toxicity resulting from 
oxidation of polyphenols might occur, and precautions need 
to be taken upon consuming these compounds (Fang et al. 
2007).

Folate supplementation, for instance, can inhibit the 
adverse effects of ageing, for example, uracil misincorpora-
tion, DNA methylation, protein methylation, mitochondrial 
deletion, and critical gene expression, and was observed to 
protect against colon cancer (Jang et al. 2005; Kim 2005). 
However, severe folate insufficiency generated hypomethyla-
tion (by 40%) within a mutation hot spot (exons 6–7), but 
not in exon 8, of the p53 tumour suppressor gene, despite a 
56% increase in genomic DNA methylation in the rat liver. 
This finding increases the likelihood that the impact of folate 
insufficiency on DNA methylation might be site- and gene-
specific and proposes that the progression of genomic and 
site-specific DNA methylation because of folate deficiency 
may vary (Mierzecki et al. 2015).
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5-Azacytidine or azacitidine (AzaC) is one of the most 
widely studied DNMT inhibitors (DNMTi) and is mainly 
used in managing myelodysplastic syndrome (MDS), in 
which it functions as a methyl donor remover in vitro to 
weaken the gene silencing effect upon methylation. A 
67-year-old man with high-risk MDS exhibited haemato-
logical improvement three months after the first cycle of 
AzaC therapy (Takaoka et al. 2014).

AD and Epigenetic Therapy

The current drugs agreed upon by the FDA for the treat-
ment of AD are acetylcholinesterase inhibitors such as done-
pezil, rivastigmine, galantamine, and tacrine along with the 
N-methyl-D-aspartate (NMDA) receptor antagonist meman-
tine, but they do not impede the progression of AD and 
instead merely target symptoms. It has been demonstrated 
on AD models that some epigenetic drugs might be ben-
eficial in protecting against neurodegeneration and improv-
ing cognitive function (Adwan and Zawia 2013; Cacabelos 
and Teijido 2018). Moreover, the donepezil-treated group 
revealed a considerably lower incidence of cardiac rupture 
during the acute phase of myocardial infarction than the 
untreated group, an effect that occurred via the inhibition of 
metalloproteinase-9-related acute inflammatory tissue injury 
(Arikawa et al. 2011). Combined administration of donepezil 
and memantine deters the diminution of cerebral blood flow 
in the prefrontal area and improves clinical symptoms of 
overall cognitive function and behavioural and psychological 
symptoms of dementia in AD patients (Araki et al. 2014). 
Nasal administration enables the potential absorption of the 
drug into the CNS by bypassing the BBB and ensures target-
ing of therapeutics to the CNS with rapid achievement of 
sufficient drug levels in the target tissue and low systemic 
exposure (Sharma et al. 2015). Recently, a nanoemulsion 
(NE) loaded with memantine was studied. The finalized NE 
showed a particle size of ~ 11 nm and a percentage transmit-
tance of ~ 99%. The in vitro release studies showed 80% drug 
release in simulated nasal fluid. The developed NE loaded 
with memantine could be used for intranasal administration 
to enhance the effect on AD (Kaur et al. 2020).

Galantamine had an apparent effect on the preservation 
of memory in patients with mild-to-moderate AD during 
26 weeks (Song et al. 2014a). The one and only drug that 
actively promoted for the treatment of AD with proven 
activity as an allosteric modulator of nicotinic acetylcho-
line receptors (nAChRs), a competitive inhibitor of acetyl-
cholinesterase (AChE) and reversible is galantamine. With 
galantamine, it helps to decrease in activity and expression 
of nAChRs promote a huge reduction in central cholinergic 
neurotransmission in patients with AD (Lilienfeld 2002). 
Tacrine-6-ferulic acid (T6FA) significantly inhibits auto-
aggregation and acetylcholinesterase-induced aggregation 

of Aβ1–40 in vitro, blocks cell death induced by Aβ1–40 in 
PC12 cells, and improves cognitive ability in an AD mouse 
model (Pi et al. 2012). Hybrid tacrine-8-hydroxyquinoline 
(IQM-622) decreases the deposition of Aβ in APP/PS1 mice, 
promotes the degradation of intracellular Aβ in astrocytes 
and protects against Aβ toxicity in cultured astrocytes and 
neurons (Antequera et al. 2012). Patients that treated with 
tacrine required multiple-dosage regimen to maintain the 
therapeutic level in given of its short half-life and adverse 
effect. These patients also need to undergo regular blood 
monitoring due to the hepatotoxicity of the drugs (Watkins 
et al. 1994). Up to date, tacrine was discontinued due to the 
liver toxicity and many side effects (Sharma 2019). Signifi-
cant improvements with the rivastigmine patch and capsule 
were observed in patients with advanced dementia stage, 
yet no significant improvements were noted in patients with 
mild-to-moderate AD (Farlow et al. 2011).

Cognitive capacities in the neurodegenerating brain are 
not lost but merely impaired due to epigenetic blockade 
mediated by HDAC2, which can potentially be reversed 
(Gräff et  al. 2012). Treatments with sodium valproate, 
sodium butyrate, or vorinostat completely restored contex-
tual memory in APPswe/PS1dE9 mice and inhibited HDACI 
isoforms, indicating that HDACI inhibition is plausible for 
treating cognitive deficits associated with early-stage AD 
(Kilgore et al. 2010). Valproic acid (VPA) decreased Aβ pro-
duction by halting the GSK-3β-mediated γ-secretase cleav-
age of APP, reduced neuritic plaque formation, and allevi-
ated memory deficits in APP23 mice carrying the human 
Swedish mutant APP751 (Qing et al. 2008). VPA alleviated 
p65 NF-κB phosphorylation and boosted the levels of acetyl-
H3, Bcl-2, and GSK-3β in the hippocampus of APPswe/
PS1dE9 (APP/PS1) transgenic mice (Xuan et al. 2015).

In addition, ageing-related memory impairments can also 
be affected by sodium butyrate via its influence on the early 
consolidation phase of memory formation. However, sodium 
butyrate showed no effect in younger rats with normal mem-
ory retention (Reolon et al. 2011). Sodium butyrate improves 
associative memory by elevating hippocampal histone acety-
lation and increasing the expression of genes implicated in 
associative learning in APPPS1-21 mice even when adminis-
tered at an advanced stage of pathology (Govindarajan et al. 
2011).

Another study reported that high consumption of vita-
mins C, E, B6, and B12, folate, unsaturated fatty acids, and 
fish can decrease AD risk (Luchsinger and Mayeux 2004). 
Another study showed that SAM, exerts a neuroprotective 
function on both methylation and oxidation metabolism 
by preventing oxidative stress and lipid peroxidation and 
modulating glutathione metabolism through superoxide 
dismutase and glutathione S-transferase activity (Caval-
laro et al. 2010). Patients receiving vitamin or nutraceutical 
formulations (folate, vitamin B6, alpha-tocopherol, SAM, 
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N-acetyl cysteine, and acetyl-l-carnitine) had improved 
the domains of the Neuropsychiatric Inventory (NPI) and 
maintenance of performance in the Alzheimer’s Disease 
Cooperative Study-Activities of Daily Living (ADL) when 
compared with patients receiving naproxen, rofecoxib, or 
placebo. These studies also showed equivalent or more pro-
found effects than previous studies using donepezil and gal-
antamine (Chan et al. 2009). Rofecoxib (Vioxx), however, 
was removed from the market due to the increased risk of 
cardiovascular events.

PD and Epigenetic Therapy

Dopamine replacement therapies (DRTs) have improved PD 
management, yet these treatments cause weakening when 
used in the long term and do not protect deteriorating neu-
rons against death (Harrison and Dexter 2013). Impulse 
control disorders (ICDs) are prevalent among patients with 
PD receiving dopaminergic medications and begin after ini-
tiation of dopamine (DA) agonist therapy and cease upon 
its discontinuation (Ambermoon et al. 2011). A correlation 
analysis in a cohort study uncovered that increasing doses 
of DA were related with decreasing performance on a pat-
tern recognition task in treated patients with PD, showing 
that DRT improves frontal lobe function (strategizing) yet 
degrades temporal lobe function (visual memory) (Miah 
et al. 2012).

There is increasing evidence that there is a pathologi-
cal disparity in PD among the deacetylation and acetylation 
of histone proteins, and therefore, the utilization of histone 
deacetylase-inhibiting agents has been proposed to improve 
this pathological imbalance (Harrison and Dexter 2013). In 
a study of novel recognition tests, the time spent discovering 
new objects by mice was markedly improved and there was 
a SIRT2-induced decrease in cell proliferation and neuro-
blast differentiation in the dentate gyrus after treatment with 
sodium butyrate (Yoo et al. 2015). Trichostatin A (TSA) 
increases astrocytic glutamate uptake when neurotoxicity 
occurs, thus enhancing glutamate uptake to decrease the 
MPP-induced elevation of glutamate in the medium, which 
might partially prevent the downregulation of GluTs. This 
finding might be a new mechanism implicated in the neuro-
protection of HDACIs (Wu et al. 2008). Nevertheless, TSA 
treatment influences PD pathogenesis by decreasing cell 
survival and increasing apoptosis in dopaminergic neuronal 
cells (Wang et al. 2009).

Apart from the anticonvulsant drug sodium valproate, 
also known as Epilim, valproate also likely acts as a brain-
penetrant and has been well tested and used clinically (Nali-
vaeva et al. 2009). It is noteworthy that in the action of mood 
stabilizers, epigenetics may propose a crucial role. As one 
of the histone deacetylase (HDAC) inhibitor, sodium val-
proate probably has a downstream epigenetics action (Lee 

et al. 2015). It is widely known that HDAC inhibitors are 
one of the epigenetic regulators with numerous beneficial 
effects at both systemic and cellular levels (Hull et al. 2016). 
Nonetheless, accumulating reports suggest that valproate 
leads to adverse effects such as organ failure, birth defects if 
consumed during gestation, and a decline in IQ in children. 
Administration of valproate to eight patients with PD with 
defects in GABA metabolism did not markedly alter any of 
the disease features; instead, it increased dyskinesia in the 
patients (Nutt et al. 1979). However, a recent study reported 
that a combination of valproate and lithium carbonate ame-
liorated the loss of dihydroxyphenyl acetic acid and rescued 
dopaminergic neurons following MPTP treatment in male 
C57BL/6 mice with PD (Li et al. 2012). Apart from that, 
given the progressive degeneration of dopaminergic neu-
rons and aggregation of a-synuclein that correlated with PD 
pathophysiology, it is reported that HDAC6 help to relieve 
polyglutamine-mediated neurodegeneration via autophagy 
(Shukla and Tekwani 2020).

The DNMT inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) 
induced transcriptional upregulation of tyrosine hydroxylase 
and SNCA, thus increasing the vulnerability of dopaminer-
gic neurons to neurotoxic damage (Wang et al. 2013). 5-Aza-
dC restored retinoic acid receptor-β2 (RAR-β2) inducibility 
by all-trans-retinoic acid (ATRA) in some cell lines with a 
hypermethylated RAR-β2 promoter (Youssef et al. 2004).

HD and Epigenetic Therapy

Drugs aimed at correcting epigenetic alterations, including 
histone modifications and DNA modifications, have shown 
promise in treating HD (Wang et al. 2014). Potential disease-
modifying therapeutics for HD include histone deacetylase 
inhibitors, such as sodium phenylbutyrate (SPB) or sodium 
butyrate (Hu et al. 2011). Sodium butyrate amplified his-
tone and specificity protein-1 acetylation, protected against 
3-nitropropionic acid neurotoxicity, and limited neuro-
pathological sequelae in the R6/2 transgenic mouse model 
of HD (Ferrante et al. 2003). Administration of phenylbu-
tyrate increased brain histone acetylation, decreased histone 
methylation levels, and exerted neuroprotective effects in the 
N171-82Q transgenic mouse model of HD (Gardian et al. 
2005).

The HDACi 4b and 136 presented a strong ability to 
inhibit HDAC3 and were most effective in limiting the 
expression of genes relevant to HD, including Ppp1r1b, 
in R6/2 transgenic mice (Jia et al. 2012). SIRT2 enhances 
motor function, extends survival, and reduces brain atro-
phy and is associated with a decrease in aggregated mtHTT 
in two genetic mouse models of HD (Chopra et al. 2012). 
SIRT2-specific inhibitor AK-1 treatment-induced proteaso-
mal degradation of the Snail transcription factor resulted in 
the upregulation of p21, a cyclin-dependent kinase inhibitor, 
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leading to G1 arrest, slow proliferation, and slow wound-
healing activity in HCT116 human colon cancer cells 
(Cheon et al. 2015).

Vorinostat or suberoylanilide hydroxamic acid (SAHA), 
an inhibitor of HDACIs and HDACIIs, can cross the BBB 
and increase histone acetylation in the brain and can be 
administered orally by drinking water when complexed with 
cyclodextrins (Hockly et al. 2003). Prolonged SAHA treat-
ment causes degradation of HDAC4 in the cortex and brain 
stem but not in the hippocampus and decreases HDAC2 
levels without affecting their transcript levels in vivo (Miel-
carek et al. 2011). SAHA, on the other hand, increases 
vesicular transport of BDNF by inhibiting HDAC6, thereby 
increasing acetylation at lysine 40 of α-tubulin in HD brains 
(Dompierre et al. 2007). The Epigenetic intervention in AD, 
PD and HD is summarized in Table 2.

Conclusion

Epigenetic changes play an important role in the progres-
sion of AD, PD and HD. Thus, it is important to develop 
and improve techniques to examine chromatin structure and 
function to understand epigenetic regulation in normal age-
ing and neurodegenerative diseases. More studies should 
be conducted aiming at restoring chromatin dynamics and 
therefore proper gene expression, which may provide novel 
therapeutic strategies if applied early and in combination 
with other therapies addressing all aspects of these diseases.
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