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Abstract

Glioma is the prevalent aggressive primary brain tumor, with a very poor prognosis. The absence of advanced understanding
of the roles played by the cells within the glioma microenvironment limits the development of effective drugs. A recent study
indicates that periostin expressed by pericytes is crucial for glioma angiogenesis. Here, we describe succinctly the results
and implications of this discovery in what we know about pericytes within the glioma microenvironment. The emerging
knowledge from this work will benefit the development of therapies for gliomas.
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Introduction

In the past few decades, oncology research groups have
focused their concentration mostly on malignant cells
(Manini et al. 2018). Nevertheless, emerging evidence dem-
onstrates that the surroundings where these malignant cells
are located play key roles in tumor development (Vannucci
2015). These surroundings are defined as tumor microenvi-
ronment, which contains signaling molecules, growth fac-
tors, extracellular matrix, and non-malignant cells, such as
immune cells, mesenchymal stem cells, endothelial cells,
neurons, fibroblasts, adipocytes, pericytes, and others (Picoli
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et al. 2020; De Vleeschouwer and Bergers 2017; Prazeres
et al. 2020; Azevedo et al. 2017, 2018a; Paiva et al. 2017,
2018; Lousado et al. 2017; de Alvarenga et al. 2018). The
constituents of the tumor microenvironment by commu-
nicating with cancer cells, as well as between themselves,
influence tumor initiation, progress, invasion, and metastasis
(Quail and Joyce 2013).

Gliomas are the most common presentations of primary
brain tumors. Their classification is based on histopatho-
logical and clinical characteristics established by the World
Health Organization (WHO), and are typified by high
mortality due to their aggressiveness (Ostrom et al. 2014).
Although meaningful increment has been made in our
knowledge of disease pathogenesis, improving diagnostics,
gliomas prognosis is still very poor (Weller et al. 2015).
The initiation and progression of gliomas are attributed to
genetic mutations in single cells. Despite several improve-
ments, unfortunately, treatments like surgery, radiotherapy,
and chemotherapy can rarely control completely this disease
(Birbrair et al. 2017b; Roberts and Munson 2020). Patients
with glioma have a limited long-term survival, mainly due
to the escape of tumor initiating cells of the initial treatments
(Krex et al. 2007). Since these escaped cells are more resist-
ant to treatments, adjuvant therapies that could effectively
destroy these remaining cancer cells would have a consider-
able impact on anti-glioma therapy. The absence of an accu-
rate comprehension of the cellular and molecular processes
that mediate glioma advancement impede the development
of efficient anti-glioma therapies.
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Interestingly, cerebral microvessels have higher pericytes/
endothelial cells ratio (10-30 fold) than other tissues (Win-
kler et al. 2014), therefore, contribution of blood vessels,
specifically pericytes, to the establishment of glioma micro-
environment have attracted interest in the recent years. Peri-
cytes were defined, more than a century ago, as a population
of contractile cells with long projections encircling the blood
vessel walls (Rouget 1873; Zimmermann 1923; Birbrair
et al. 2015). The narrow microscopic competence, earlier
than the twenty-first centurys culminated in the concept of
pericytes being merely static perivascular supporting cells.
Lately, numerous modern tools, including confocal micro-
scopes and transgenic mouse models, influenced positively
the extending knowledge on recently discovered novel func-
tions of pericytes in pathophysiology (Birbrair et al. 2015).

Pericytes play important roles in tumoral angiogenesis
(Birbrair et al. 2014c¢). Nevertheless, the molecular mecha-
nisms that govern pericytes behavior within the glioma
microenvironment remain unknown. In a recent article in
Journal of Neuropathology & Experimental Neurology,
Huizer and colleagues suggest that periostin expressed by
pericytes is essential for angiogenesis within the glioma
microenvironment (Huizer et al. 2020). The authors ana-
lyzed periostin expression in human gliomas, and found that
its expression in high-grade glial tumors was increased when
compared with normal brain tissue. This expression was
localized in cells associated with brain blood vessels, more
specifically in PDGFR + pericytes. Importantly, periostin
expression was not detected in glial cells in vivo (Huizer
et al. 2020). To understand the role of periostin in pericytes,

Fig.1 Schematic illustrat-

ing possible roles of periostin
derived from pericytes in the
glioma microenvironment.
Pericytes are attached to the
brain vasculature. The study of
Huizer and colleagues now indi-
cates that periostin expressed by
pericytes can induce angio-
genesis within the brain tumor
(Huizer et al. 2020). Other
studies show the importance of
periostin for cancer cells prolif-
eration and migration to second-
ary sites. State-of-art modern
technologies will reveal in detail
whether periostin derived from
pericytes is essential for these
processes within the glioma
microenvironment
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Huizer and colleagues performed serial in vitro experiments
using human cell lines of pericytes, astrocytes, endothelial
cells and U87 glioma cells. These experiments revealed that
Glioma-derived factors in vitro enhance periostin expression
in pericytes. Interestingly, silencing of periostin expression
in pericytes resulted in a decrease of their angiogenic capac-
ity in vitro, indicating that periostin is necessary for peri-
cytes-dependent angiogenesis in glioma pathogenesis. This
study provides a new possible role of periostin in pericytes
during normal blood vessel formation, once this protein was
also highly expressed in arteriovenous malformations sam-
ples. Here, we critically analyze the discoveries from this
study, evaluating recent progress in our knowledge on the
glioma microenvironment and pericytes biology (Fig. 1).

Perspectives/Future Directions

The outcome from this study claiming the pro-angiogenic
role of periostin in pericytes in the glioma microenvironment
are based on experiments carried out using pericytes grown
in vitro. Remarkably, cell cultures are characterized by arti-
ficial conditions and high concentration of mitogens. There-
fore, they can induce specific features in pericytes which
may not be found in the corresponding endogenous glioma
pericytes in vivo (Snippert and Clevers 2011; Birbrair et al.
2017a). Transgenic mice are presently the most trustworthy
approach to examine the function of specific cell populations
in vivo (Buckingham and Meilhac 2011). These mice have
been extensively utilized to evaluate different components
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within various tissue microenvironments (Silva et al. 2018a,
b; Borges et al. 2017; Andreotti et al. 2018a, b, 2019; Hen-
riques et al. 2018; Guerra et al. 2018a; Leonel et al. 2019;
Magno et al. 2019; Kanashiro et al. 2020; Miranda et al.
2020; Goncalves et al. 2019). The possibility to eliminate
one gene in pre-defined cells within adult mouse models
has answered multiple questions relative to the molecular
mechanisms that govern numerous physiologic and patho-
logic processes. In the cerebral tumor microenvironment, the
key players that control disease progression remain poorly
defined (Andreotti et al. 2017; Birbrair 2017).

A study using murine orthotopic glioblastoma xenograft
mouse model identified periostin being produced by glioma
stem cells (Zhou et al. 2015; Guerra et al. 2018b). Interest-
ingly, lineage tracing shows that, in the glioma microen-
vironment, cancer stem cells originate pericytes that sup-
port blood vessel function and tumor development (Zhou
et al. 2017; Cheng et al. 2013). These findings support the
possibility that periostin may be important also in vivo in
the glioma microenvironment. Huizer et al. (2020) now
proposed that periostin in pericytes is essential for glioma
angiogenesis. Nonetheless, periostin has not been condition-
ally eliminated from cerebral pericytes in vivo, therefore
there is no direct proof that pericytes are the only/main cells
secreting periostin and inducing angiogenesis during glio-
blastoma progression. This issue may be examined, thanks to
recent technological breakthroughs, which allow us to spe-
cifically genetically eliminate periostin from brain pericytes
during glioma development. The main findings from this
study are based on the data in which periostin expression
was silenced with siRNA in vitro. It would be interesting in
future studies to explore the role of periostin in vivo as well.
To perform pericyte-specific periostin targeting in vivo, a
specific mouse model can be used in future studies, i.e.,
PDGFRB-CreERT2/periostin floxed mice (Gerl et al. 2015).
This model would allow genetic elimination of periostin in
different stages of glioma progression and define the role of
periostin on perivascular PDGFRf-expressing cells during
glioma development.

Pericytes are heterogeneous in their distribution, origin,
phenotype and function (Sims 2000, 1991; Armulik et al.
2011; Dias Moura Prazeres et al. 2017; Birbrair and Delbono
2015; Coatti et al. 2017; Prazeres et al. 2018a, b; Picoli et al.
2019; Valle et al. 2020; Isasi and Olivera-Bravo 2020), and
several subpopulations have been characterized in various
tissues (Asada et al. 2017; Khan et al. 2016; Birbrair et al.
2013c, d; Goritz et al. 2011; Stark et al. 2013; Birbrair and
Frenette 2016; Costa et al. 2018; Santos et al. 2018; Almeida
et al. 2018), including the brain (Goritz et al. 2011; Birbrair
et al. 2014a; Azevedo et al. 2018b; Santos et al. 2019). In
the central nervous system, we identified two pericyte sub-
types, based on Nestin-GFP expression (Birbrair et al. 2011,
2013Db), type-1 (NG2 +/Nestin-GFP-) and type-2 (NG2+/

Nestin-GFP +), using a double-transgenic Nestin-GFP/NG2-
DsRed mouse (Birbrair et al. 2013a, 2014a). The cerebral
pericyte subsets differ in their functions, as i.e., after brain
injury, only type-1 pericytes participate in the scar tissue for-
mation (Birbrair et al. 2014a). What is the exact role of these
pericyte subpopulations during glioma progression remains
unknown. And, more interestingly, whether periostin over-
expression is important in the function of each of these sub-
types should be explored in future studies. Additionally, it is
necessary to examine whether different pericytes’ subtypes
change their functions after being exposed to glioma cells.
Moreover, the exact identity of glioma cancer cells is not
well defined. These tumors are composed of heterogeneous
subclones of cancer, including glioma stem cells. Whether
these cancer cell subsets vary in their interactions with peri-
cytes subpopulations should be addressed.

Importantly, the perivascular anatomical location is not
exclusive of pericytes. Other cellular populations have been
shown to be located in the same anatomical position: i.e.,
smooth muscle cells, fibroblasts (Soderblom et al. 2013),
adventitial cells (Crisan et al. 2012), Lepr + cells (Sena
et al. 2017a), Glil +cells (Sena et al. 2017b), and even
macrophages (Bechmann et al. 2001; Guillemin and Brew
2004). Periostin was also identified in other cells, such as
human gastric cancer-associated fibroblasts. By functional
studies, the authors demonstrated that periostin stimulated
human gastric cancer cell line OCUM-2MLN to proliferate
via ERK pathway activation in vitro. Also, co-inoculation
with mouse fibroblast NIH3T3 overexpressing periostin
increases tumoral growth and invasiveness in vivo (Kikuchi
et al. 2014). Interestingly, patients with high levels of peri-
ostin expression in cholangiocarcinoma-associated fibro-
blasts have poor prognosis compared to those with low
levels (Utispan et al. 2010). One major distinction that out-
lines pericytes in comparison to other perivascular cells is
that pericytes are covered by the perivascular basal lamina
mainly composed of laminin (Allsopp and Gamble 1979;
Payne et al. 2020). Huizer and colleagues used PDGFRf
to identify periostin expression in pericytes (Huizer et al.
2020). Nevertheless, PDGFR{ is a known marker of fibro-
blasts in the central nervous system (Soderblom et al. 2013;
Spitzer et al. 2012). Although none of brain pericyte markers
are specific, when used in combination they clearly distin-
guish pericytes from other cell types. Single pericyte RNA
sequencing analysis will confirm the expression of important
molecules in glioma pericytes in future works.

Huizer and colleagues performed the functional studies
using cell lines derived from normal brain (Huizer et al.
2020). It would be interesting to analyze the behavior of
pericytes derived from human glioma biopsies of differ-
ent glioma grades. This would help to correlate pericytes
behavior with glioma progression. Head and neck squa-
mous cell carcinoma (HNSCC)-derived periostin promotes
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lymphangiogenesis through the upregulation of VEGF-
C in vitro. In HNSCC human samples, periostin can be
detected in the cytoplasm of tumoral cells. Periostin expres-
sion had no correlation with the number of peri and intra-
tumoral lymphatic vessels, but was significantly associated
with lymphatic invasion in HNSCC human samples (Kudo
et al. 2012). Furthermore, non-small cell lung cancer patients
whose tumors showed low levels of periostin expression on
mesenchymal cells had almost twice 3-year survival rate
increased (81.5%) compared with those with high levels of
periostin expression (45.4%) (Hong et al. 2013).

Periostin also have been used as a therapeutic target, its
neutralization with a monoclonal antibody induced ovarian
cancer cell apoptosis, reduced migration and inhibited inva-
sion in vitro, as well as decreased ovarian cancer growth and
metastasis in vivo (Zhu et al. 2011). Is important to notice
that Huizer and collegues (Huizer et al. 2020) observed peri-
ostin expression mainly in grade I (pilocytic astrocytoma)
and in grade IV (glioblastoma) astrocytomas. Grade II/I11
astrocytomas and grade II/III oligodendrogliomas expressed
the same levels of periostin as normal brain tissue. Diagnos-
tic markers in clinical practice are useful to differentiates gli-
omas, for example, distinguishing small cell glioblastomas
from high-grade oligodendrogliomas, or high-grade astro-
cytomas that are likely to behave as aggressively as glioblas-
tomas (Tanaka et al. 2013). Thus, the use of periostin as a
diagnostic marker in gliomas deserves further investigation.
An enormous challenge now is to translate basic research
into clinic. Bettering the accessibility to human cancer tissue
samples will be crucial to achieve this goal. Future studies
will establish whether the periostin in glioma pericytes play
critical role for tumor progression.

Multiple important functions of pericytes have been dis-
covered in the last two decades. Pericytes interact with astro-
cytes to regulate the maintenance of the blood-brain barrier
(Bell et al. 2010; Thanabalasundaram et al. 2011; Kamouchi
etal. 2011). They also participate in vascular development,
maturation and remodeling, as well as contributing to its
normal architecture and permeability (Soriano 1994; Enge
et al. 2002; Hellstrom et al. 2001; Leveen et al. 1994; Lin-
dahl et al. 1997). Pericytes regulate the blood flow (Pallone
et al. 2003), and recent studies showed that pericytes can
function as stem cells, generating several other cell types,
including neural cells (Birbrair et al. 2014b). Pericytes also
play immune functions by regulating lymphocytes activation
(Balabanov et al. 1999; Tu et al. 2011; Verbeek et al. 1995;
Fabry et al. 1993), by attracting innate leukocytes that exit
through the sprouting vessels (Stark et al. 2013), by con-
tributing to the clearance of toxic cellular byproducts, as
pericytes possess phagocytic activity (Caspani et al. 2014),
and by affecting blood coagulation (Kim et al. 2006; Fisher
2009; Bouchard et al. 1997; Jeynes 1985; Balabanov et al.
1996; Thomas 1999; Hasan and Glees 1990; Castejon 2011).

@ Springer

Importantly, within the glioma microenvironment, pericytes
also have been shown to induce immunosuppression (Valdor
et al. 2017; Sena et al. 2018). Whether periostin is essen-
tial for other pericyte functions in special within the tumor
microenvironment remains to be elucidated.

Conclusion

In conclusion, the study by Huizer and colleagues suggest
that periostin expressed by pericytes in the cerebral micro-
environment during glioma progression plays a critical role
in tumoral angiogenesis. However, our understanding of
glioma microenvironment and the role of pericytes within it
still remains limited, and the interactions of distinct glioma
constituents during disease development should be eluci-
dated in future studies.
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